1 Host-derived CEACAM-laden vesicles engage enterotoxigenic E. coli for elimination and

2 toxin neutralization.

3

Alaullah Sheikh¹, Debayan Ganguli¹, Tim J. Vickers¹, Bernhard Singer^{2*}, Jennifer FoulkeAbel³, Marjahan Akhtar^{1,4}, Nazia Khatoon¹, Bipul Setu¹, Supratim Basu¹, Clayton Harro^{5*},
Nicole Maier⁶, Wandy L. Beatty⁷, Subhra Chakraborty⁵, Tafiqur R. Bhuiyan⁴, Firdausi Qadri⁴,
Mark Donowitz³, and James M. Fleckenstein^{1,8}

8

- ⁹ ¹Division of Infectious Diseases, Department of Medicine, Washington University in Saint
- 10 Louis, School of Medicine, Saint Louis, Missouri, USA; ²Institute of Anatomy, Medical Faculty,
- 11 University of Suisberg-Essen, 45147 Essen, Germany; ³Division of Gastroenterology &
- 12 Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- ⁴International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh.
- 14 ⁵Department of International Health, Division of Global Disease Epidemiology and Control,
- 15 Johns Hopkins Bloomberg School of Public Health; ⁶PATH, Seattle Washington, USA;
- 16 Department of Molecular Microbiology, Washington University School of Medicine, Saint
- 17 Louis, Missouri, USA; ⁸Medicine Service, Infectious Disease Section, Veterans Affairs Health
- 18 Care System, Saint Louis, Missouri, USA.

19 corresponding author

- 20 James M. Fleckenstein
- 21 Division of Infectious Diseases
- 22 Department of Medicine
- 23 Washington University School of Medicine
- 24 Campus Box 8051
- 25 660 South Euclid Avenue
- 26 Saint Louis Missouri, USA 63110
- 27 p 314-362-9218
- 28 jfleckenstein@wustl.edu
- 29
- 30 *deceased

31 Keywords

- 32 enterotoxigenic *Escherichia coli* (ETEC); cell adhesion molecules; diarrhea; host- pathogen
- 33 interactions; extracellular vesicles.

34 abstract

35	Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging
36	from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are
37	associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited.
38	Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the
39	expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules
40	(CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT
41	also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that
42	CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions,
43	scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these
44	findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently
45	favoring the pathogen, but ultimately contributing to innate responses that extinguish these common
46	infections.

47 Significance statement

48 Enterotoxigenic E. coli, characterized by the production of heat-labile (LT) and heat-stable 49 (ST) toxins, are a very common cause of diarrhea in low-income regions responsible for 50 hundreds of millions of infections each year, and the major cause of diarrhea in travelers to 51 endemic areas. Although these infections may be severe and cholera-like, they are typically self-limited. These studies demonstrate that extracellular vesicles produced by host intestinal 52 53 cells can capture the bacteria and its secreted toxins at a distance from the cell surface, 54 potentially acting as molecular decoys to neutralize the enterotoxins and extinguish the 55 infection.

56 Introduction

57	Enterotoxigenic Escherichia coli (ETEC) comprise a diverse diarrheagenic pathovar
58	defined by the production of heat-labile (LT) and/or heat-stable (ST) enterotoxins. These
59	pathogens are thought to account for hundreds of millions of cases of diarrheal illness
60	annually with young children in low-middle income countries disproportionately affected ¹ .
61	ETEC have remained a leading cause of death due to acute diarrheal illness ² , and are
62	associated with long-term sequelae including malnutrition, growth stunting ^{3,4} and cognitive
63	impairment ⁵ .
64	The basic mechanism by which these pathogens cause diarrheal illness is well-established.
65	Heat-labile toxin (LT) binds to gangliosides on the intestinal surface, and once internalized
66	stimulates production of cAMP. Heat-stable toxins (ST) bind to guanylate cyclase C on the
67	surface of enterocytes to stimulate production of cGMP. These cyclic nucleotides, cAMP and
68	cGMP, in turn activate protein kinase A (PKA) and protein kinase G (PKG), respectively. Kinase
69	-mediated phosphorylation of cellular ion channels including the cystic fibrosis
70	transmembrane regulator (CFTR), and the sodium hydrogen exchanger (NHE3) modulates
71	ion transport resulting in the net export of NaCl and water into the intestinal lumen leading to
72	watery diarrhea ⁶ .
73	Diarrheal illness caused by ETEC can range from mild to severe and cholera-like. Indeed,
74	ETEC were initially discovered in patients with Vibrio cholerae-negative clinical cholera, and
75	severe ETEC is clinically indistinguishable from cholera ⁷⁻¹¹ . Importantly, while ETEC infections
76	can occasionally cause more protracted symptoms ¹² , acute diarrhea caused by these

pathogens is typically self-limited, with resolution after several days. However, what dictatesthe self-limited nature of ETEC diarrhea is unknown.

79	To cause diarrhea, ETEC must transit to the small intestine, migrate through intestinal
80	mucin ¹³ , and directly engage the brush border of enterocytes to effectively deliver toxin
81	directly at the epithelial surface ¹⁴ . ETEC employ both plasmid-encoded adhesins unique to
82	the ETEC pathovar ¹⁵ as well as highly conserved chromosomally-encoded type 1 fimbriae to
83	engage enterocytes ¹⁶ .
84	Recent studies demonstrate that ETEC use type 1 fimbriae ¹⁶ to bind to members of a
85	family of extracellular glycoproteins known as carcinoembryonic antigen related cell
86	adhesion molecules (CEACAMs) on the surface of enterocytes, and that these interactions
87	play a critical role in bacterial adhesion and toxin delivery to small intestinal epithelia ¹⁷ .
88	Moreover, we found that heat-labile toxin accelerates production of CEACAMs by small
89	intestinal enterocytes ¹⁷ , effectively modifying the epithelial landscape to transiently benefit
90	the pathogen.
91	Notably however, CEACAMs are normally present in abundance in human stool ^{18 19} , with
92	approximately 50-70 mg of carcinoembryonic antigen shed in the course of a day ¹⁹ . The
93	majority of fecal CEACAMs are membrane-bound ¹⁹ , and can be released in soluble form with
94	phosphatidylinositol specific phospholipase C (PI-PLC).
95	Our current studies suggest that CEACAMs play opposing roles in ETEC interactions with
96	gastrointestinal epithelia. While initial expression of these molecules on enterocytes
97	facilitates ETEC-host cell engagement and toxin delivery ¹⁷ , we demonstrate here that the host
98	may interrupt these encounters by deploying CEACAM-laden extracellular vesicles as decoys

99	to mitigato	offoctivo	attachmont	oftha	hactoria	to the c	nithalial	surface	while	absorbing	and
11	to miligate	enective	allaciment	or the	Dacteria	to the e	pillienai	Sunace	wille	absorbing	anu

- 100 neutralizing secreted ETEC enterotoxins, potentially explaining the self-limited nature of
- 101 these common infections.

102 Results

- 103 CEACAM expression alters kinetics of ETEC intestinal colonization.
- 104 Carcinoembryonic cell adhesion molecules (CEACAMs) are host cell glycoproteins
- 105 comprising a large subgroup of the immunoglobulin superfamily that form homodimeric
- 106 intercellular adhesion complexes²⁰ and which participate in intracellular signaling pathways
- 107 that can direct cellular differentiation²¹. CEACAMs differ significantly between mice and
- 108 humans. Although mice have at least 20 putative CEACAM genes, only CEACAM1,
- 109 CEACAM16, CEACAM18, CEACAM19, and CEACAM20 are shared with humans²², and all of
- 110 the GPI-anchored gastrointestinal CEACAM molecules, CEACAMs 5,6, and 7, as well as
- 111 CEACAM3 which is predominantly on neutrophils, are absent in conventional mice.
- 112 Therefore, we challenged CEABAC10 transgenic mice²³, which express human CEACAMs 5-7
- 113 in the intestine, as well as CEACAM3 to examine the impact on ETEC-host interactions. These
- 114 studies demonstrated that while gastrointestinal CEACAM expression was associated with
- 115 modest increases in intestinal colonization immediately after ETEC (jf876, <u>supplemental table</u>
- 116 <u>1</u>) challenge (<u>figure 1</u>A, <u>supplemental figure 1A</u>), CEABAC10 mice consistently cleared ETEC
- 117 more rapidly (figure 1B) than parental C57BL/6NCrl controls suggesting that these molecules
- 118 play a complex role in directing the kinetics of intestinal colonization.

119	Examination of intestinal tissues of CEABAC10 transgenic mice revealed that while
120	CEACAMs were expressed on small intestinal mucosal surfaces (figure 2A), we also found
121	many clusters of CEACAM-positive material in the intestinal lumen, (figure 2B-C), Many of the
122	smaller CEACAM-positive structures in the intestinal lumen were in direct contact with the
123	bacteria (inset, figure 2C), suggesting that they may engage ETEC at a distance from the
124	mucosal surface, potentially preventing direct interaction with epithelia. Although CEABAC10
125	mice may express CEACAM3 on neutrophils ²³ , we were unable to demonstrate neutrophilic
126	infiltration beyond the basolateral surface of the intestines of infected mice (supplemental
127	figure 1B). Many of the smaller structures ~ 100-300 nm in diameter in the lumen were
128	similar in size to plasma-membrane derived extracellular vesicles (EV) ^{24,25} . Indeed, we were
129	able to identify multiple individual CEACAM-laden EV (figure 2D), as well as clusters of
130	vesicles (figure 2E), and direct interaction of these EV with bacteria in samples from the ileal
131	lumen of H10407-challenged CEABAC10 mice (figure 2F). Examination of fecal material
132	likewise revealed abundant CEACAM+ EV (figure 2G). Following challenge of CEACAM-
133	expressing mice with ETEC expressing green fluorescent protein (GFP) (jf2450, supplemental
134	table 1), we observed that while individual bacteria shed in stool appeared to be positive for
135	CEACAMs (figure 2H), and we identified CEACAM+ EV bound to ETEC by immunogold
136	transmission electron microscopy of fecal material following challenge (supplemental figure
137	2), the majority of ETEC emerged in large clusters of bacteria embedded in a CEACAM
138	matrix (<u>figure 2I</u>), (<u>supplemental movie 1</u>).

139 CEACAMs serve as ETEC decoys and enterotoxin scavengers

140	Interestingly, while our earlier studies demonstrated that CEACAM6 could be identified on
141	the microvillus surface of enterocytes where it served as a receptor for ETEC ¹⁷ , transmission
142	electron micrographs of ETEC-infected ileal enteroid monolayers demonstrated large
143	clusters of CEACAM-positive extracellular vesicles (EVs) interposed between the bacteria and
144	microvilli of the intestinal brush border (figure 3A,B). CEACAM6-positive concentrated
145	culture supernatants from polarized human ileal monolayers significantly blocked ETEC
146	adhesion to target intestinal cells, while subtractive absorption with anti-CEACAM antibody
147	partially restored effective adhesion of wild type ETEC to target intestinal epithelial cells
148	further suggesting that CEACAMs can modulate ETEC-host interactions (figure 3C). To
149	determine whether EV could specifically interrupt effective interaction of ETEC with target
150	receptors on enterocytes, we first purified EVs from supernatants of small intestinal enteroid
151	monolayers by size exclusion chromatography (supplemental figure 3a-b), and confirmed the
152	presence of CEACAMs by immunogold labeling (<u>supplemental figure 3c</u>). These CEACAM+
153	purified vesicles adhered to the surface of ETEC (<u>supplemental figure 4A</u>). Interestingly, while
154	earlier studies suggested that EV, from rat small intestine, impaired the growth of both
155	commensal <i>E. coli</i> as well as another <i>E. coli</i> pathovar (EPEC) ²⁶ , EV isolated from polarized
156	human small intestinal epithelial enteroids had no apparent impact on ETEC growth or
157	survival (supplemental figure 4B,C). However, exogenous administration of these EVs
158	significantly impaired the ability of ETEC to bind to intestinal epithelial cells (figure 3d). We
159	had previously shown that LT increases CEACAM6 expression on the surface of intestinal
160	enterocytes ¹⁷ . Notably, CEACAM6 abundance in EV also increased following exposure to LT

161	and we found that EV obtained from LT-treated ileal monolayers were significantly more
162	effective in blocking ETEC interaction with epithelial cells (figure 3E). Similarly, EV isolated
163	from CEACAM-expressing mice were more effective in preventing bacterial adhesion
164	compared to those from control mice (<u>figure 3F</u>).
165	We also found that purified EV can bind to heat-labile toxin (figure 4A-C, supplemental
166	figure 5A), and were able to block LT-mediated activation of cAMP in target intestinal cells
167	(figure 4D) suggesting that EV also bear GM1 ganglioside receptors for the LT-B subunit.
168	Indeed, EV effectively competed with target epithelial cells resulting in complete abrogation
169	of toxin delivery to target intestinal epithelia by wild type ETEC (figure 4E). Notably, analysis
170	of CEACAM6+ EV fractions from size exclusion chromatography (SEC) revealed that these EV
171	also bound fluorescently labeled cholera toxin B subunit (CT-B) (supplemental figure 5A),
172	which like LT binds to GM-1 gangliosides. ETEC outer membrane vesicles (OMV) are known
173	to have significant amounts of LT ^{27,28} which can deliver toxin to host cells ²⁹ . While we
174	demonstrated that purified ETEC OMV could bind directly to GM-1 gangliosides
175	(supplemental figure 5B), we were unable to demonstrate substantial interaction between
176	OMV and EV (supplemental figure 5c), and EV were ineffective in mitigating OMV-directed
177	toxin delivery (supplemental figure 5D), suggesting that EV act primarily by engaging ETEC
178	and free toxin.
179	In addition, we found that these same EV fractions also possessed guanylate cyclase C
180	(GC-C), the receptor for heat-stable toxins (supplemental figure 5A). By size exclusion
181	chromatography, we demonstrated that glutathione S transferase fused to STh (GST-STh) co-
182	eluted with EV fractions containing CEACAMs (figure 4F, G), and that preincubation of the

GST-STh fusion with EV impaired ST binding to target T84 cells (figure 4H), ultimately leading
to significant reduction in toxin-mediated activation of cGMP (figure 4I). In summary these
studies suggest that CEACAM-laden EV can engage ETEC and absorb both LT and ST
effectively mitigating pathogen-host interactions by serving as molecular decoys for the
bacteria as well as its secreted toxins.

188 heat-labile toxin alters the composition of EVs

189 Although LT-mediated increases in cAMP, and subsequent activation of PKA are central to 190 acute diarrhea caused by ETEC, PKA also governs the transcription of multiple host genes as 191 it enters the nucleus to phosphorylate the cAMP-response element binding protein CREB^{30,31}. 192 Recent studies have demonstrated that LT modulates the transcription of multiple host genes 193 in small intestinal epithelia ^{17 13 32}. To determine how the composition of EVs might be altered by LT we performed tandem mass spectrometry on vesicles isolated from 2D small intestinal 194 195 enteroid monolayers with and without LT treatment (supplemental dataset 1). Interestingly, 196 these studies also showed that the abundance of multiple proteins including both CEACAM6 197 and MUC2 were increased in abundance in EVs from LT-treated enteroids relative to those 198 from controls (Figure 5, supplemental table 3). While the protein with the most increased 199 abundance in LT-treated samples, FCGBP, which like MUC2 is also secreted by goblet cells, 200 and intimately associated with mucin, its actual function remains undetermined^{33,34}. 201 We previously observed³² modulation of proteins linked to brush border biogenesis 202 including the membrane adapter protein BAIAP2L1 involved in microvillus elongation^{35,36}, or 203 associated with exosomes including CD59 a membrane-bound complement regulatory

204	protein ^{37,38} . Notably, our recent transcriptome studies of ileal enteroids also demonstrated
205	that transcription of <i>myo1a</i> , a gene encoding microvillar motor protein ^{26,39} involved in EV
206	biogenesis, is significantly depressed in following exposure to LT, leading us to question
207	whether the quantity of EVs produced by epithelial cells would be impacted by LT exposure.
208	However, short-term exposure (24 h) of small intestinal epithelia to LT had little appreciable
209	impact on either the apparent size or quantity of EVs (<u>supplemental figure 6A</u>). Some
210	suppression of EV production was observed with longer exposures to LT (72 h, supplemental
211	figure 6B). Altogether however, toxin exposure appears to primarily drive changes in EV
212	composition rather than the kinetics of EV biogenesis <i>in vitro</i> .
213	ETEC infection enhances fecal shedding of CEACAMs
214	In CEACAM-expressing transgenic mice we observed increases in CEACAM shedding in
215	feces following ETEC infection (supplemental figure 7). Examination of stools from children
216	with ETEC diarrheal illness in Bangladesh demonstrated the presence of EV bearing the
217	canonical EV marker CD9 and abundant CEACAMs (figure 6A). As previous
218	immunohistochemistry studies of small intestinal biopsies obtained from ETEC-infected
219	patients demonstrated that CEACAM6 production in the mucosa appeared to increase
220	following infection ¹⁷ , and earlier studies also showed that CEA (CEACAM 5) is normally shed
221	in significant amounts in human stool ^{18,19,40,41} , we questioned whether the shedding of
222	CEACAMs also increased during human infection. To address this question, we developed a
223	sandwich assay to capture CEACAM-laden material from fecal suspensions of ETEC-infected
224	human hosts (figure 6B). We found that Bangladeshi patients with ETEC had appreciably

- higher amounts of CEACAMs in stool compared to healthy controls from the same endemic
- region(<u>figure 6C</u>), and that on challenge of human volunteers with ETEC, CEACAM content in
- stool transiently increases in the week following infection (<u>figure 6D</u>), further suggesting that
- 228 expression of these molecules may play an important role in the innate response to ETEC
- infection in humans.
- 230
- 231

232 Discussion

233	Enterotoxigenic E. coli that cause infections in humans are largely host-restricted
234	pathogens. Recently, we have demonstrated that ETEC engage gastrointestinal CEACAMs, in
235	particular CEACAM6, to facilitate bacterial adhesion and toxin delivery to human intestinal
236	epithelia ¹⁷ . Interestingly, the GPI-anchored CEACAMs including CEACAM6 are found
237	exclusively in primates ⁴² , potentially contributing to the unique relationship of ETEC to its
238	human hosts. Indeed, CEACAM molecules appear to be at the center of an evolutionary
239	"arms race" between pathogens and their human hosts. On the one hand, a diverse group of
240	pathogens have evolved a variety of adhesins to engage these molecules as receptors. In
241	contrast, under selective pressure of these pathogens, the host may deploy divergent or
242	variant CEACAMs ⁴³ to minimize adhesin engagement and mitigate host tropism, or to target
243	pathogens for destruction ⁴³⁻⁴⁶ .
244	The data presented here suggest a complex paradigm in which the same CEACAM is
245	involved in bacterial adhesion and in innate host defenses. We previously demonstrated that
246	the heat-labile toxin enhances bacterial adhesion by up-regulating target CEACAM6 on the
247	surface of small intestinal enterocytes ¹⁷ . Here however, we show that LT also significantly
248	increases CEACAM6 abundance in extracellular vesicles (EV) which can bind the bacteria at a
249	distance to interdict effective adhesion to target enterocytes. Therefore, use of CEACAMs as
250	receptors may ultimately come at some cost to the pathogen as they are eliminated by
251	extracellular CEACAM-laden vesicles.

subunits of both LT and the closely related cholera toxin, which like LT also upregulates

254	production of CEACAMs on small intestinal epithelia ¹⁷ . Likewise, they bear GC-C, the
255	receptor for heat-stable toxin (ST) as well as the endogenous peptides guanylin and
256	uroguanylin. Notably, the affinity of ST for GC-C is 100 x that of guanylin and 10 x higher than
257	uroguanylin, and both native peptides, unlike ST are subject to proteolysis ⁴⁷ . Therefore, EV
258	could aid in restoration of intestinal homeostasis by capturing the ST super agonist at a
259	distance from receptors on the surface of epithelial cells, thereby eliminating competition
260	with the lower affinity locally produced endogenous peptides. The ability to engage
261	gastrointestinal pathogen(s) while effectively scavenging any secreted exotoxins may make
262	EV a particularly effective element of innate intestinal defenses.
263	We found that other molecules potentially important in pathogen engagement were also
264	concentrated in CEACAM-positive EVs. The Fc Gamma binding protein (FCGBP) most
265	increased in abundance in EVs from LT treated enteroids, has previously been shown to be
266	associated with exosomes ^{48,49} , and it has been suggested that these mucin-like molecules,
267	which are concentrated in the intestinal goblet cells ^{50,51} , may play an important role in
268	defense of the intestinal mucosa ^{52,53} . Similarly two other proteins shown here to be
269	enhanced in EVs, CEACAM1 and CLCA1 are also associated with the mucin proteome ⁵⁴⁻⁵⁶ ,
270	findings that may relate to LT acting as a potent stimulus for goblet cell mucin production and
271	secretion ⁵⁷ .
272	The precise role of EV and the contribution of CEACAMs localized on their surface in the
273	elimination of ETEC and other enteric pathogens deserves additional study. We should also
274	note that in addition to the CEACAMs expressed on mucosal epithelia of the gastrointestinal
275	tract, CEABAC10 mice also express low levels of CEACAM3 on neutrophils ²³ . Studies of

276	children with ETEC diarrhea have demonstrated significant amounts of lactoferrin as well as
277	the leukocytes in stool ⁵⁸ . In addition, single nucleotide polymorphisms in the lactoferrin gene
278	have been associated with an increased risk of traveler's diarrhea ⁵⁹ , suggesting a role for
279	recruitment of neutrophils in innate responses to ETEC infection. Although CEACAM6 and
280	CEACAM3 share similar amino-terminal IgV-like domains ²¹ , our earlier studies suggested that
281	ETEC preferentially engage CEACAM6 with little or no affinity for CEACAM3 ¹⁷ . Overall, the
282	current studies demonstrate that ETEC encounter CEACAM-laden vesicles en route to target
283	intestinal epithelial cells, and that these have the potential to modulate the course of
284	infection. The significant differences observed in the kinetics of infection between wild type
285	and CEACAM-expressing transgenic mice may also point out limitations to the use of
286	conventional mice in the investigation of ETEC and other <i>E. coli</i> pathovars.
287	Altogether, CEACAMs appear to play a bifunctional role in the pathogenesis of ETEC,
288	acting both as toxin-induced receptors for these common pathogens as well as toxin-
289	responsive molecular decoys for their elimination. These findings have important implications
290	for the investigation of the molecular pathogenesis of ETEC and other gastrointestinal
291	pathogens.
292	

293 Materials and Methods

294 propagation of human small intestinal enteroids and transformed intestinal cells

- 295 Enteroids from human small intestine were propagated as previously described¹⁷. Briefly,
- cells originated from biopsy samples obtained from adults undergoing routine endoscopy
- 297 with their consent and approval of the Washington University in Saint Louis School of
- 298 Medicine Institutional Review Board. Stem cells derived from these samples were maintained
- in a biobank of the Precision Animal Models and Organoids Core (PAMOC) of the
- 300 Washington University in Saint Louis Digestive Diseases Research Core Center (DDRCC).
- 301 Samples from human ileum (Hu235D) were re-suspended in Matrigel (BD Bisosciences, San

302 Jose, California, USA), incubated at 37° C and 5% CO₂ with 50% L-WRN conditioned media

- 303 (CM) and 50% primary culture medium (Advanced DMEM/F12, Invitrogen) supplemented
- 304 with 20% FBS, 2mM L-glutamine, 100 units/mL penicillin, 0.1mg/mL streptomycin, 10 µM Y-
- 305 27632 (ROCK inhibitor, Tocris Bioscience, R&D systems, Minneapolis, MN, USA), and 10 µM
- 306 SB431541 (TGFBR1 inhibitor, Tocris Bioscience, R&D systems).
- 307 After washing and trypsinization cells were centrifuged (1100 x g for 5 minutes), then re-

308 suspended (1:1 CM and primary medium with Y-27632 and SB431541) as described above,

- and plated onto filters (Transwells[®], 6.5 mm insert, 24 well plate, 0.4 μm polyester
- 310 membrane, Corning Incorporated, Kennebunk, ME, USA) coated with collagen IV (Millipore
- 311 Sigma). Inserts were rinsed with DMEM/F12 with HEPES, 10% FBS, L-glutamine, penicillin,
- and streptomycin, and cells grown to confluency in 50% conditioned media (CM). To

differentiate monolayers media was changed to 5% CM in primary medium + ROCK inhibitorfor 48 hours.

- 315 Caco-2 cells (ATCC <u>HTB-37</u>) were propagated at 37°C, in an atmosphere of 5% CO₂, in
- 316 Eagel's Minimum Essential Media (MEM) supplemented with fetal bovine serum (FBS) to a
- 317 final concentration of 20%. Cells were seeded and grown to confluence in 96 well plates for
- 318 adhesion assays to determine bacterial adhesion by detergent lysis, or alternatively onto
- 319 Transwell filters for confocal microscopy. T84 cells (ATCC <u>CCL-248</u>) were propagated in
- 320 DMEM: F12 Media containing 5 % FBS.

321 tandem mass tag-mass spectrometry (TMT-MS) of EVs

322 Sample proteolysis, isobaric mass tag labeling, peptide fractionation, and liquid

323 chromatography-mass spectrometry of EVs isolated from small intestinal enteroids was

324 conducted by the Mass Spectrometry & Proteomics Core, Johns Hopkins University School of

325 Medicine. Samples were reduced, alkylated, and bound to SP3 beads for digestion with 25

326 µg/mL trypsin (Pierce, MSMS grade) in 100 mM triethylammonium bicarbonate (TEAB) for 16 h

327 at 37 °C. Bead-bound peptides were then labeled in 100 mM TEAB with TMT Pro 16plex

328 Isobaric Mass Tags (Pierce ThermoFisher). Peptides were fractionated by basic reverse phase

329 chromatography and then analyzed on a nano-LC-Orbitrap-Lumos-ETD (ThermoFisher)

interfaced with an EasyLC1000 series reverse-phase chromatography. Survey scans (full mass

331 spectrum) were acquired within 375-1600 Da m/z using a Data Dependent Top 15 method

- 332 with dynamic exclusion of 15 s. MS/MS spectra were searched with Mascot v.2.8.0 against the
- 333 RefSeq2021_204_Human database. Search qualifiers included trypsin sites with missed

334	cleavage 2 tolerance, precursor mass tolerance of 5 ppm, and fragment mass tolerance of
335	0.01 Da. Carbamidomethylation on Cys, TMT 16pro tag on N-terminus, and TMT 16pro tag
336	on Lys were included as fixed peptide modifications. Oxidation on Met and deamidation of
337	Asn and Gln were included as variable modifications. Peptide identifications from the Mascot
338	searches were processed within Proteome Discoverer and Percolator to identify peptides
339	with a confidence threshold of 1% False Discovery Rate, based on an auto-concatenated
340	decoy database search, and to calculate the protein and peptide ratios. Only unique
341	peptides were used for normalization and ratio calculations.
342	CEACAM expressing transgenic mice
343	Transgenic mice which express multiple human CEACAM molecules (CEACAMs 3, 5, 6
344	and 7) were propagated from 2 female heterozygous CEABAC10 mice ²³ kindly supplied by
345	the Gray-Owen laboratory at the University of Toronto. These were mated in the Washington
346	University Mouse Genetics Core facility with C57BL/6N Crl (Charles River Laboratories) males.
347	Pups generated from matings were genotyped to identify CEACAM+ heterozygotes.
348	Genotyping was performed on genomic mouse DNA extracted in hot sodium hydroxide/tris
349	(HotSHOT) ⁶⁰ . Briefly, 1-2 mm tail snips were dissolved in 75 μ l of alkaline lysis buffer (25 mM
350	NaOH, 0.2 mM disodium EDTA, pH 12) at 95°C for 30 minutes and then neutralized with
351	equal volume of 40 mM Tris-HCl, pH 5. Presence or absence of the CEACAM5 gene was
352	detected using primers- GACACAGCAAGCTACAAATGTGAAACCCAG (forward) and
353	GCCACAGGTGATATTGTCAGAGGGAAGTGG (reverse) which amplify a 460bp amplicon.

- 354 Both male and female mice were used throughout the studies for both CEABAC10 mice and
- 355 C57BL/6N Crl controls.
- 356 Intestinal challenge with enterotoxigenic E. coli
- 357 7-8 week-old mice were challenged with ETEC by orogastric lavage as previously
- described⁶¹. Briefly, mice were pretreated with streptomycin in drinking water (5 g/l) two days
- 359 prior to challenge to reduce intestinal colonization with competing microbiota, and then
- 360 returned to water without antibiotics 1 day prior. Two hours prior to challenge mice were
- 361 treated with famotidine (1.25 mg in a volume of 125 µl) administered intraperitoneally (IP) to
- reduce gastric acidity, and fasted until gavage with ~1.5 x 10⁴ colony forming units of jf876
- 363 (<u>supplemental table 1</u>). Stools were collected daily and fecal suspensions were diluted in PBS
- and plated onto Luria agar containing kanamycin (25 µg/ml). All studies in mice were
- 365 conducted under protocol 20-0438 approved by the IACUC at Washington University in Saint
- 366 Louis, School of Medicine.
- 367 EV isolation and characterization
- 368 EVs were recovered from antibiotic-free supernatants of differentiated small intestinal
- 369 enteroids propagated from human ileum (Hu235D). Supernatants were centrifuged at 1048 x
- g for 10 minutes to pellet debris and then concentrated ~ 14-fold to a final volume of 0.5 ml
- 371 (Amicon, 30K MWCO) prior to additional processing.
- 372 To isolate EVs, concentrated supernatants were separated by size exclusion
- 373 chromatography (SEC) using resin with a 35 nm pore size (qEVoriginal/35 nm, Izon). The size
- 374 distribution and quantity of EVs was determined by tunable resistance pulse sensing (TPRS)

375	(qNano, Izon Ltd., Christchurch, New Zealand). All steps of nanopore optimization and
376	sample measurement followed the guidelines outlined in the qNano Gold User Manual and
377	Izon Control Suite software Custom Planner Tool (Izon). For the analysis, a nanopore NP100
378	(Pore ID A87921, Izon Ltd.) with an analysis range of 50–330 nm was utilized. The
379	optimization of the nanopore was performed using polystyrene calibration particles (CPC100,
380	Batch ID 20221003, Izon Ltd.) with an average particle diameter of 100 nm and a
381	concentration of 1.8E+13 for calibration purposes. Both the calibration particles and the
382	samples were run under the same conditions, including stretch, pressure, voltage, and
383	baseline current. To eliminate the impact of pore and particle charge on the detected
384	concentration, all samples were analyzed at two pressure points.
385	Dot-immunoblotting of SEC fractions
386	2 μl of each fraction was spotted onto nitrocellulose membranes, dried at 37°C for 5
387	minutes, blocked with 5% milk in PBS, 0.05% Tween-20 for 30 minutes at 37°C, then
388	incubated with primary antibodies against CEACAM6 (9A6), CD9 (C-4), lysozyme, or
389	intestinal alkaline phosphatase diluted 1:1000 in 2.5% milk in PBS, 0.05% Tween-20 for 1
390	hour at 37°C. After washing 3x in PBS, membranes were incubated with the respective anti-
391	mouse or anti-rabbit HRP-conjugated secondary antibodies (1:1000 dilution in PBS) for 45
392	minutes at room temperature, washed again in PBS, and developed with Clarity ECL Western
393	blot substrate (Bio-Rad, <u>1705061</u>). To detect binding of the cholera toxin B subunit,
394	fluorophore-conjugated CT-B (ThermoFisher <u>C34775</u>) was incubated with membranes
395	prepared as above at a final concentration of 4 μ g/ml in PBS 0.05% Tween-20 for 30 minutes

at room temperature, washed 3 x im PBS and imaged on an Azure biosytems c600 molecularimager.

398	To detect CEACAMs in the feces of CEABAC10 mice following ETEC infection, fecal
399	pellets were collected prior to infection, and on days 1 and 9 post infection. 300 μg from
400	each mouse was resuspended in resuspension buffer (PBS-0.5% Tween-20 containing 5 mM
401	sodium azide) by vigorous vortexing and centrifuged at 845 x g for 30 minutes at 4°C.
402	Clarified supernatant (2 μ l) was dotted onto nitrocellulose as above and probed with rabbit
403	polyclonal anti-CEA primary antibody (1:1000; Dako, Denmark A0115) and HRP conjugated
404	anti-rabbit secondary antibody (1:1000; Rockland, 611-1322). Blots were visualized by
405	chemiluminescence using Clarity Western ECL substrate (Bio-Rad <u>1705061</u>) and signal
406	intensities were measured using ImageJ2 v2.14.
407	
408	To isolate extracellular vesicles from CEABAC10 transgenic mice and littermate controls,
409	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS
409 410	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS supplemented with protease inhibitor (Pierce Protease Inhibitor Mini, Thermo Scientific).
409 410 411	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS supplemented with protease inhibitor (Pierce Protease Inhibitor Mini, Thermo Scientific). Debris was removed from the lavage by centrifugation at 1048 x g for 5 minutes, followed by
409 410 411 412	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS supplemented with protease inhibitor (Pierce Protease Inhibitor Mini, Thermo Scientific). Debris was removed from the lavage by centrifugation at 1048 x g for 5 minutes, followed by passage of lavage fluid through a 70 µm filter, and concentration through a 3K MWCO filter
409 410 411 412 413	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS supplemented with protease inhibitor (Pierce Protease Inhibitor Mini, Thermo Scientific). Debris was removed from the lavage by centrifugation at 1048 x g for 5 minutes, followed by passage of lavage fluid through a 70 µm filter, and concentration through a 3K MWCO filter (Amicon Ultra-4). EVs were then isolated by size exclusion (qEVoriginal/35 nm, Izon).
409 410 411 412 413 414	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS supplemented with protease inhibitor (Pierce Protease Inhibitor Mini, Thermo Scientific). Debris was removed from the lavage by centrifugation at 1048 x g for 5 minutes, followed by passage of lavage fluid through a 70 µm filter, and concentration through a 3K MWCO filter (Amicon Ultra-4). EVs were then isolated by size exclusion (qEVoriginal/35 nm, Izon). To isolate extracellular vesicles from human fecal specimens, diarrheal samples from ETEC
409 410 411 412 413 414 415	mice were sacrificed, the small intestine excised, and flushed 3 times with 5 ml of PBS supplemented with protease inhibitor (Pierce Protease Inhibitor Mini, Thermo Scientific). Debris was removed from the lavage by centrifugation at 1048 x g for 5 minutes, followed by passage of lavage fluid through a 70 µm filter, and concentration through a 3K MWCO filter (Amicon Ultra-4). EVs were then isolated by size exclusion (qEVoriginal/35 nm, Izon). To isolate extracellular vesicles from human fecal specimens, diarrheal samples from ETEC infected patients (n=5) were pooled together and resuspended in 15 ml PBS supplemented

- 417 centrifuged at 4°C at 875 x g, filtered through 70 µm filter and concentrated using a 30 kDa
- 418 MWCO filter (Amicon Ultra-15, Millipore).
- 419 Total protein concentration of each vesicle preparation was assessed using the Qubit Protein
- 420 Assay Kit (<u>Q33212</u>, ThermoFisher). To ensure complete lysis, vesicle samples were incubated
- 421 with 0.2% SDS for 10 minutes at 95°C. Samples and standards were then incubated with
- 422 Qubit working solutions for 15 minutes at room temperature and read with a Qubit
- 423 Fluorometer 3.0.
- 424 In CEACAM depletion experiments, anti-CEA rabbit polyclonal antibodies (<u>supplemental</u>
- 425 <u>table 2</u>) were immobilized onto protein G Dynabeads (Invitrogen) and incubated with culture
- 426 supernatant at room temperature for 1 hour. CEACAM-depleted supernatant was then
- 427 separated from beads by magnetic separation. CEACAM depletion was verified by
- 428 immunoblotting.
- 429 transmission electron microscopy

430 Transmission electron microscopy (TEM) of small intestinal enteroids infected with ETEC 431 was performed in the Department of Molecular Microbiology Imaging Facility. After gentle 432 washing with PBS, samples were first fixed in a solution of 2% paraformaldehyde/2.5% 433 glutaraldehyde (Ted Pella, Inc., Redding, CA) in 100 mM sodium cacodylate buffer, pH 7.2 for 434 2 hours at room temperature. Samples were then placed at 4°C overnight, and then washed 435 in sodium cacodylate buffer and postfixed in 2% osmium tetroxide (Ted Pella, Inc) for 1 hour 436 at room temperature. After rinsing in deionized water, samples were dehydrated in ethanol, 437 and embedded in Eponate 12 resin (Ted Pella, Inc.) cut into sections (95 nm) with an

438 ultramicrotome (Leica Ultracut UCT, Leica Microsystems, Inc., Bannockburn, IL), and stained439 with uranyl acetate and lead citrate.

440	To immunolabel vesicles, fractions were absorbed onto glow-discharged formvar/carbon-
441	coated nickle grids (<u>Ted Pella, Inc</u> .) for 10 min followed by negative staining. Grids were then
442	washed with PBS and blocked with 1% FBS for 5 min Grids were subsequently incubated
443	with rabbit anti-CEA (Dako, supplemental table 2) for 30 min. Grids were then incubated with
444	secondary goat anti-rabbit IgG antibody conjugated to 12 nm colloidal gold (Jackson
445	ImmunoResearch Laboratories, Inc. <u>111-205-144</u> , West Grove PA) for 30 min. Grids were
446	then washed, fixed with 1% glutaraldehyde, and stained with 1% aqueous uranyl acetate (Ted
447	Pella Inc., Redding CA) for 1 min. Excess liquid was gently wicked off and grids were allowed
448	to air dry. Samples were viewed on a JEOL 1200 EX transmission electron microscope (JEOL
449	USA Inc., Peabody, MA) equipped with an AMT 8 megapixel digital camera and AMT Image
450	Capture Engine V602 software (Advanced Microscopy Techniques, Woburn, MA).
451	Intestinal lavage specimens from CEABAC10 mice challenged with ETEC strain jf876
452	(serotype O78) (table S1) were processed by SEC as above, and concentrated material was
453	then used to identify EV-coated bacteria by immunogold TEM. Grids were incubated with
454	rabbit anti-O78 antisera (Penn State) followed by anti-rabbit 18 nm gold conjugate (Jackson
455	ImmunoResearch) to identify ETEC and mouse anti-CEACAM6 monoclonal antibody (9A6,
456	Santa Cruz) followed by anti-mouse 12 nm gold conjugate.

457 Purification of recombinant GST-STh fusion protein

458	Recombinant glutathione S transferase (GST) and GST-STh fusion proteins were purified as
459	previously described ⁶² . Briefly bacterial strains jf1364 and jf3265 were grown overnight at
460	37°C, 225 rpm from frozen glycerol stocks in 2 ml of Luria Broth containing carbenicillin (100
461	$\mu g/ml$), diluted in fresh media and grown to OD600 of ~0.6 then induced with isopropyl- β -d-
462	thiogalactopyranoside (IPTG) for 2 hours. Cell pellets were extracted by sonication 5x in the
463	presence of protease inhibitor (Roche Complete <u>11697498001</u>). Clarified supernatants were
464	loaded onto 3 ml columns packed with glutathione agarose resin (GoldBio $G-250-10$), and
465	after washing with PBS, recombinant GST or GST-STh was eluted with buffer containing 100
466	mM Tris-HCl, pH 8.0 and 10 mM reduced glutathione (MilliporeSigma 70-18-8), then dialyzed
467	vs PBS.
468	ETEC adhesion-inhibition assays
469	ETEC strain H10407 (<u>supplementary table 1</u>) was grown from frozen glycerol stocks in LB
470	media at 37°C under static conditions as previously described ¹⁶ to enhance expression of
471	type 1 pili. Bacteria were added to Caco-2 cells to achieve a MOI (multiplicity of infection) of
472	~1:10 and incubated with either CEACAM-enriched concentrated supernatants, CEACAM-
473	depleted supernatant, or PBS as a control. To assess the effects of extracellular vesicles (EV)
474	isolated from culture supernatants, the inoculum was incubated with vesicles for 15 minutes

- 476 incubated at 37°C in a humidified tissue culture incubator with 5% CO₂. After incubation for
- 477 an hour, the cell monolayers were washed three times with gentle shaking (100 rpm on an

478	orbital shaker for 1 minute per wash) using pre-warmed media to remove any unbound
479	bacteria. Cell monolayers were then lysed with 0.1% Triton X-100 for 5 minutes, and the
480	lysates were plated on LB-agar and grown overnight at 37°C to enumerate colony forming
481	units (CFU). Alternatively, infected monolayers on Transwell filters were fixed with 4% PFA for
482	30 minutes at 37°C prior to immunofluorescence staining.
483	Toxin binding
484	EV immobilized on nitrocellulose membranes, and blocked with 5% milk in PBS containing
485	0.05% Tween-20, were probed with double mutant heat-labile toxin (dmLT, L192G/L211A) at
486	a concentration of 4 $\mu\text{g}/\text{ml}$ to examine binding of LT to EV. LT binding was detected with
487	mouse antisera raised against dmLT 63 (1:1000), followed by horse anti-mouse IgG
488	conjugated to HRP (Cell Signaling 7076, 1:1000), and developed with ECL substrate. Blots
489	were then imaged on an Azure biosytems c600 molecular imager. Alternatively, EV (0.22
490	mg/ml in a final volume of 100 μ l/well) were immobilized on ELISA plates (Costar, 2580)
491	incubation overnight at 4°C. The following day plates were washed and blocked with 5%BSA
492	in PBS for 1 hour at 37°C. After washing with PBS, plates were incubated with increasing
493	concentrations of LT for 1 hour at 37°C. After washing 3x with PBS, bound LT was detected
494	using mouse polyclonal antisera against LT (1:1000, x 1 hour at 37°C), washing 3x with PBS,
495	incubated with HRP-conjugated horse-anti-mouse IgG secondary antibody (Cell Signaling
496	7076; 1:2000, x 1 hour at 37°C), and developed with 3, 3', 5, 5' - tetramethylbenzidine
497	peroxidase substrate (TMB, sera care <u>5120-0053</u>). ELISA readings were acquired kinetically
498	and recorded as Vmax (milli-units/min) (Eon, BioTek).

499 EV-toxin Molecular interaction assays

500 Purified heat-labile toxin B subunit (LT-B), graciously provi	ided by John D. Clements,
---	---------------------------

- 501 Tulane University, was biotinylated (EZ-Link Sulfo-NHS-LC-Biotin) (Thermo Scientific 21335)
- 502 according to the manufacturer's protocol, and dialyzed to remove excess biotin. Biotinylated
- 503 LT-B ligand (10 µg) was then added to purified EV (~11 µg) and incubated for 1 hour at 37°C
- in a final volume of 100 $\mu l.$ An equal volume of PBS containing biotinylated LT-B was used as
- a negative control. Protein G magnetic beads (<u>Invitrogen 10003D</u>) were combined with anti-
- 506 CEA antibody (Dako), and then used to capture EV for 1 hour at room temperature. Following
- 507 magnetic separation, beads were washed in PBS then incubated in SDS loading dye for 15

508 minutes at 95°C. Solubilized proteins were resolved by 10% SDS-PAGE, and transferred to

509 nitrocellulose then developed with Avidin-HRP (BioRad <u>1706528</u>, <u>1:25,000</u>) followed by

510 enhanced chemiluminescent (ECL) substrate (ThermoFisher Scientific <u>34094</u>).

511 Size exclusion chromatography was performed to demonstrate interaction between heat-

512 stable toxin (STh) expressed as a recombinant GST fusion protein and EV. Supernatant media

513 from Hu235D small intestinal enteroids was first concentrated (~7-fold) through a 30 kD

514 MWCO filter (Amicon Ultra-15, Millipore Sigma <u>UFC903024</u>) to a final volume of ~1 ml. 500 µl

of concentrate was then incubated for 30 minutes at 37°C with either GST alone or GST-STh.

516 Mixtures were then subjected to size exclusion chromatography (<u>35 nm qEVoriginal</u>, Izon),

517 fractions collected and saved at -80°C for subsequent analysis by dot immunoblotting with

- 518 antibodies against GST (Invitrogen 13-6700), or anti-CEACAM6 (Santa Cruz 9A6), followed by
- 519 anti-mouse IgG HRP conjugated antibodies (Cell Signaling 7076S). Fractions 6 to 9 which
- 520 showed maximum GST and CEACAM6 signals in the dotblot assay were resolved by 10%

521 SDS-PAGE, and Western immunoblots processed as above and developed with enhanced
522 chemilumincent substrate (ThermoFisher <u>34094</u>).

523 Toxin neutralization by EV

524	To investigate the impact of EV on ETEC toxin delivery target Caco-2 cells (ATCC <u>HTB-37</u>)
525	were seeded in 96 well tissue culture plates at a density of \sim 3 x 10 ⁴ cells/well, and incubated
526	at 37°C, 5% CO $_2$ for 48 hours. H10407 was grown under static conditions at 37°C as
527	previously described ¹⁶ , and ~ 10^6 cfu (Multiplicity of infection~100:1) were added per well
528	with competing EV (~11.5 $\mu g/well$) an equal volume of media. Following addition of bacteria
529	\pm EV, infected monolayers were incubated at 37°C, 5 % CO ₂ for 2 hours, washed to remove
530	excess bacteria, media replaced, and then cellular cAMP was determined by competitive
531	ELISA (Arbor Assays, <u>k019-h</u>). To examine the ability of EV to bind and neutralize LT, 2.5 ng of
532	LT was added to 11.5 μg of purified EV or an equivalent volume of PBS. After incubation for 1
533	hour at 37°C, the LT \pm EV mixtures were added to target Caco-2 cells and incubated for 18
534	hours at 37°C, 5 % CO $_2$ prior to determination of cAMP levels as above. For ST neutralization,
535	1 mg of GST-STh in a volume of 1 ml was reduced with DTT (5 mM) for 3 hours at room
536	temperature. After addition of 2 units of native bovine protein disulfide isomerase (PDI)
537	(Creative Enzymes, <u>NATE-0533)</u> , the sample was dialyzed overnight against 1 liter of PBS.
538	Following incubation with EV or buffer control, samples were passed through a 100K MWCO
539	filter (Amicon <u>UFC510008</u>) to retain bound GST-STh. Filtrates were diluted 2 fold in tissue
540	culture media then added to target T84 cells in the presence of phosphodiesterase inhibitors

541 (25 μM), incubated for 4 hours at 37°C, 5% CO₂, and intracellular cGMP determined (Arbor
542 Assays <u>K065</u>).

- 543 To detect binding of GST-STh to T84 cells, ~ 50,000 cells were added to Transwell filters
- 544 (Costar 3470) and propagated for 5 days in DMEM/F12 supplemented with 5% FBS. After
- 545 washing with 3 x with PBS, cells were incubated for 30 minutes at 37°C with 10 ng/ml of GST-
- 546 STh in PBS \pm 50 µl of Hu235D EV (220 µg/ml total protein concentration), then washed 3 x
- 547 with PBS. After fixation with 4% paraformaldehyde (37°C x 10 minutes, room temperature x
- 548 20 minutes), filters were washed with PBS, then incubated with 2% BSA in PBS for 30 minutes
- at room temperature. GST-STh was detected with GST-cross-absorbed rabbit anti-GST-STh
- antibodies⁶² followed by goat-anti-rabbit IgG AlexaFluor 488 conjugated secondary
- antibody. Immunofluorescence signals in confocal images were then quantified with NIS-
- 552 Elements AR software (Nikon 5.11.01).
- 553 Confocal microscopy of cell associated bacteria
- 554 Cell-associated bacteria were detected using anti-O78 rabbit primary antibody, followed
- 555 by Alexa Fluor 488 fluorophore conjugated goat anti-rabbit secondary antibody (A11008,
- 556 ThermoFisher) and imaged by confocal microscopy (Nikon ECLIPSE Ti2). Nuclei were stained
- 557 with 4',6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma). Images were processed
- using NIS-Elements AR software version 5.11.01,(Nikon).

559 Myeloperoxidase Immunohistochemistry of ETEC-infected CEABAC10 intestinal tissue

- 560 Small intestinal tissue sections cut from formalin-fixed paraffin-embedded blocks were
- 561 mounted onto glass slides, then deparaffinized with xylene and treated with 3 % H₂O₂ in

562	methanol for 15 minutes. Antigen unmasking was performed using heat retrieval in Diva
563	Decloaker (Biocare Medical <u>DV200MX</u>) in a pressure cooker at 15 PSI and 99°C for 3 minutes.
564	The sections were then blocked with 1% BSA, 10% normal goat serum in PBS. Slides were
565	incubated with anti-MPO antibody (ab20670, Abcam) at a 1:500 dilution overnight at 4°C,
566	washed, and then incubated with VisuCyte Rabbit HRP Polymer (VC003-025, R&D) at 1:4 for 1
567	hour at room temperature. After washing, the slides were developed with DAB (3,3'-
568	diaminobenzidine, Vector SK-4100) as per the manufacturer's protocol, washed, and
569	counterstained with hematoxylin. Brightfield images were obtained with a BZ-X810
570	microscope (Keyence, IL).
571	
572	Flow cytometry
573	Flow cytometry analysis of CEACAM-coated bacteria
574	We infected human CEACAM-expressing CEABAC10+ adult mice with GFP-expressing
575	ETEC. Two days post-infection, fecal pellets were collected. One hundred micrograms (100
576	μ g) of fecal pellets were resuspended in 1 ml of PBS and kept on ice for 15 minutes to allow
577	
	debris to settle. The liquid portion was collected from the top and centrifuged at 3381 x g for
578	debris to settle. The liquid portion was collected from the top and centrifuged at 3381 x g for 5 minutes to pellet down bacteria. To detect CEACAM-coated bacteria, pellets were then
578 579	debris to settle. The liquid portion was collected from the top and centrifuged at 3381 x g for 5 minutes to pellet down bacteria. To detect CEACAM-coated bacteria, pellets were then stained with anti-CEA primary antibody (DAKO) at a 1:200 dilution for 1 hour on ice, washed
578 579 580	debris to settle. The liquid portion was collected from the top and centrifuged at 3381 x g for 5 minutes to pellet down bacteria. To detect CEACAM-coated bacteria, pellets were then stained with anti-CEA primary antibody (DAKO) at a 1:200 dilution for 1 hour on ice, washed three times with PBS, and then incubated with goat anti-rabbit Alexa-Fluor 594-conjugated
578 579 580 581	debris to settle. The liquid portion was collected from the top and centrifuged at 3381 x g for 5 minutes to pellet down bacteria. To detect CEACAM-coated bacteria, pellets were then stained with anti-CEA primary antibody (DAKO) at a 1:200 dilution for 1 hour on ice, washed three times with PBS, and then incubated with goat anti-rabbit Alexa-Fluor 594-conjugated secondary antibody at a 1:200 dilution for 1 hour. For each sample, a tube without the anti-

583	samples were stained with DAPI at a 1:1000 dilution prior to acquisition. Samples were
584	analyzed using FlowJo software (version 10.9.0). GFP+DAPI+ double-positive events were
585	gated for ETEC, from which the amount of CEACAM-positive and CEACAM-negative bacteria
586	was determined based on the corresponding unstained control.
587	Live-dead staining
588	To assess the bactericidal activity of membrane vesicles, we conducted live-dead staining
589	followed by flow cytometry analysis. Both log-phase and stationary phase ETEC cultures were
590	grown in the presence or absence of vesicles for 1 hour, 2.5 hours, and 3.5 hours under
591	different conditions (static or shaking) and in different media (LB, cell culture media, or PBS).
592	After the incubation, bacterial samples were pelleted and resuspended in a live-dead
593	staining buffer (PBS supplemented with 1mM EDTA and 0.1% Na-azide, pH 7.4). To each
594	sample, a final concentration of 50 μM propidium iodide and 420 nM thiazole orange dye
595	was added, followed by vortex mixing and a 5-minute incubation at room temperature.
596	Samples were acquired using a BD FACSCalibur and analyzed with FlowJo software.
597	immunodetection of CEACAMs in stool
598	Stool specimens obtained from patients at icddr,b during natural ETEC infection, healthy
599	controls, or from earlier ETEC controlled human infection model studies ⁶⁴ were shipped on
600	dry ice and maintained at -80°C prior to use. ELISA wells (Costar EIA <u>2580</u> Corning,
601	Kennebunk, ME, USA) were coated overnight (4°C) with 100 μ l/well of CEACAM6-specific
602	monoclonal antibody (9A6) diluted 1:100 in 50 mM carbonate buffer, pH 9.6. Plates were
603	then washed 6 times with 1x PBS (pH 7.4, Corning) containing 0.05% Tween-20 (Sigma), and

604 k	olocked with	1% BSA in PBS	for one	hour at 37°C. S	tool sample	es were extracte	d in	PBS-0.5%	%
-------	--------------	---------------	---------	-----------------	-------------	------------------	------	----------	---

- 505 Tween-20 containing 5 mM sodium azide, and centrifuged at 845 x g for 30 minutes at 4°C.
- 606 Clarified supernatants were then diluted 1:10 in PBS. 30 µl of each sample was added per
- 607 well, and incubated at 37°C for one hour, after which plates were washed 6x with PBS-0.05 %
- 608 Tween. To detect bound CEACAMs 100 μl of polyclonal rabbit anti-CEA antibody (Dako,
- 609 Denmark A0115) diluted 1:1000 in PBS, 0.5% BSA was added per well and incubated at 37°C
- 610 x 1 hour. Plates were again washed 6x with PBS-Tween, and then incubated with 100 µl of
- 611 HRP-conjugated goat IgG anti rabbit IgG (H&L) (Rockland, 611-1322).
- 612 All human studies were approved by the Institutional Review Board at Washington
- 613 University in Saint Louis School of Medicine under protocol number 201110126.

614 Data sharing

- 615 Mass spectrometry and original image data are available on Figshare with Digital Object
- 616 identifiers in <u>supplemental table 4</u>.

617 Statistical analyses

- 618 Mann-Whitney was used to compare two unpaired groups of nonparametric data. Kruskal-
- 619 Wallis was used in comparison of three or more groups of data with Dunn's multiple
- 620 comparisons test. The log-rank (Mantel-Cox) test was used in comparison of survival curves.

621 acknowledgements

- 522 JMF was supported by funding from the Department of Veterans Affairs (5101BX001469-
- 623 05), and the National Institute of Allergy and Infectious Diseases (NIAID) of the National
- 624 Institutes of Health (NIH) R01 AI170949, R01 AI089894, and support by the NIH Washington

- 625 University DDRCC Grant NIDDK P30 DK052574. Research conducted by AS was also
- 626 supported by National Institute of Allergy and Infectious Diseases of the National Institutes of
- 627 Health under Award Number T32AI007172. Mass Spectrometry was conducted in the
- 628 Proteomics Core of the Johns Hopkins Conte Digestive Diseases Basic and Translational
- 629 Research Core Center (P30 DK-089502) with the assistance of the Proteomics Core Director,
- 630 Robert Cole, Ph.D. The content is solely the responsibility of the authors and does not
- 631 necessarily represent the official views of the National Institutes of Health, or the Department
- 632 of Veterans Affairs.

633 References

- Khalil, I. A. *et al.* Morbidity and mortality due to shigella and enterotoxigenic
 Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016. *Lancet Infect Dis* 18, 1229-1240 (2018). <u>https://doi.org/10.1016/S1473-3099(18)30475-4</u>
- Kotloff, K. L. *et al.* Burden and aetiology of diarrhoeal disease in infants and young
 children in developing countries (the Global Enteric Multicenter Study, GEMS): a
 prospective, case-control study. *Lancet* **382**, 209-222 (2013).

640 <u>https://doi.org/10.1016/S0140-6736(13)60844-2</u>

- Black, R. E., Brown, K. H. & Becker, S. Effects of diarrhea associated with specific
 enteropathogens on the growth of children in rural Bangladesh. *Pediatrics* 73, 799805 (1984).
- 644 4 Nasrin, D. *et al.* Pathogens associated with linear growth faltering in children with
 645 diarrhea and impact of antibiotic treatment: The Global Enteric Multicenter Study. J
 646 Infect Dis (2021). https://doi.org/10.1093/infdis/jiab434
- Kotloff, K. L. *et al.* The incidence, aetiology, and adverse clinical consequences of less
 severe diarrhoeal episodes among infants and children residing in low-income and
 middle-income countries: a 12-month case-control study as a follow-on to the Global
 Enteric Multicenter Study (GEMS). *Lancet Glob Health* 7, e568-e584 (2019).
 https://doi.org/10.1016/S2214-109X(19)30076-2
- 6 Fleckenstein, J. M. & Sheikh, A. Emerging Themes in the Molecular Pathogenesis of
 653 Enterotoxigenic Escherichia coli. *J Infect Dis* (2021).
- 654 https://doi.org/10.1093/infdis/jiab359

655 656	7	Sack, R. B. The discovery of cholera - like enterotoxins produced by Escherichia coli causing secretory diarrhoea in humans. <i>The Indian journal of medical research</i> 133
657		171-180 (2011)
658	8	Carpenter, C. C. et al. Clinical and physiological observations during an epidemic
659	C	outbreak of non-vibrio cholera-like disease in Calcutta. <i>Bull World Health Organ</i> 33 ,
660		665-671 (1965).
661	9	Gorbach, S. L., Banwell, J. G., Chatterjee, B. D., Jacobs, B. & Sack, R. B. Acute
662 663		undifferentiated human diarrhea in the tropics. I. Alterations in intestinal micrflora. <i>The Journal of clinical investigation</i> 50 , 881-889 (1971).
664		https://doi.org/10.1172/JCI106560
665 666	10	Sack, R. B. <i>et al</i> . Enterotoxigenic Escherichia coli isolated from patients with severe cholera-like disease. <i>J Infect Dis</i> 123 , 378-385 (1971).
667	11	Vicente, A. C. <i>et al</i> . Outbreaks of cholera-like diarrhoea caused by enterotoxigenic
668 669		Escherichia coli in the Brazilian Amazon Rainforest. <i>Trans R Soc Trop Med Hyg</i> 99 ,
670	12	Roels T. H. et al. Clinical features of infections due to Escherichia coli producing heat-
671	12	stable toxin during an outbreak in Wisconsin: a rarely suspected cause of diarrhea in
672		the United States. Clin Infect Dis 26 , 898-902 (1998)
673	13	Sheikh, A. et al. Enterotoxigenic Escherichia coli degrades the host MUC2 mucin
674		barrier to facilitate critical pathogen-enterocyte interactions in human small intestine.
675		Infect Immun, IAI0057221 (2021). https://doi.org/10.1128/IAI.00572-21
676	14	Dorsey, F. C., Fischer, J. F. & Fleckenstein, J. M. Directed delivery of heat-labile
677		enterotoxin by enterotoxigenic Escherichia coli. <i>Cell Microbiol</i> 8 , 1516-1527 (2006).
678		https://doi.org/10.1111/j.1462-5822.2006.00736.x
679	15	Roy, K. <i>et al</i> . Enterotoxigenic Escherichia coli EtpA mediates adhesion between
680		flagella and host cells. <i>Nature</i> 457 , 594-598 (2009).
681		https://doi.org/10.1038/nature07568
682	16	Sheikh, A. <i>et al</i> . Highly conserved type 1 pili promote enterotoxigenic E. coli
683		pathogen-host interactions. PLoS Negl Trop Dis 11 , e0005586 (2017).
684		https://doi.org/10.1371/journal.pntd.0005586
685	17	Sheikh, A. et al. CEACAMs serve as toxin-stimulated receptors for enterotoxigenic
686		Escherichia coli. Proc Natl Acad Sci U S A 117 , 29055-29062 (2020).
687		https://doi.org/10.1073/pnas.2012480117
688	18	Kuroki, M., Koga, Y. & Matsuoka, Y. Purification and characterization of
689		carcinoembryonic antigen-related antigens in normal adult feces. Cancer research 41,
690		713-720 (1981).
691	19	Matsuoka, Y. et al. Characterization of carcinoembryonic antigen-related antigens in
692		normal adult feces. <i>Jpn J Cancer Res</i> 81 , 514-519 (1990).
693	20	Bonsor, D. A., Gunther, S., Beadenkopf, R., Beckett, D. & Sundberg, E. J. Diverse
694		oligomeric states of CEACAM IgV domains. <i>Proc Natl Acad Sci U S A</i> 112 , 13561-
695		13566 (2015). <u>https://doi.org/10.1073/pnas.1509511112</u>

696	21	Gray-Owen, S. D. & Blumberg, R. S. CEACAM1: contact-dependent control of
697		immunity. Nature reviews. Immunology 6 , 433-446 (2006).
698		<u>https://doi.org/10.1038/nri1864</u>
699	22	Zebhauser, R. et al. Identification of a novel group of evolutionarily conserved
700		members within the rapidly diverging murine Cea family. <i>Genomics</i> 86 , 566-580
701		(2005). <u>https://doi.org/10.1016/j.ygeno.2005.07.008</u>
702	23	Chan, C. H. & Stanners, C. P. Novel mouse model for carcinoembryonic antigen-based
703		therapy. Molecular therapy : the journal of the American Society of Gene Therapy 9 ,
704		775-785 (2004). https://doi.org/10.1016/j.ymthe.2004.03.009
705	24	Shifrin, D. A., Jr., Demory Beckler, M., Coffey, R. J. & Tyska, M. J. Extracellular vesicles:
706		communication, coercion, and conditioning. Mol Biol Cell 24, 1253-1259 (2013).
707		<u>https://doi.org/10.1091/mbc.E12-08-0572</u>
708	25	Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion
709		between extracellular vesicles. Trends Cell Biol 25 , 364-372 (2015).
710		https://doi.org/10.1016/j.tcb.2015.01.004
711	26	Shifrin, D. A., Jr. et al. Enterocyte microvillus-derived vesicles detoxify bacterial
712		products and regulate epithelial-microbial interactions. <i>Curr Biol</i> 22 , 627-631 (2012).
713		https://doi.org/10.1016/j.cub.2012.02.022
714	27	Horstman, A. L. & Kuehn, M. J. Enterotoxigenic Escherichia coli secretes active heat-
715		labile enterotoxin via outer membrane vesicles. The Journal of biological chemistry
716		275 , 12489-12496 (2000). <u>https://doi.org/10.1074/jbc.275.17.12489</u>
717	28	Roy, K., Hamilton, D. J., Munson, G. P. & Fleckenstein, J. M. Outer Membrane Vesicles
718		Induce Immune Responses to Virulence Proteins and Protect against Colonization by
719		Enterotoxigenic Escherichia coli. <i>Clinical and vaccine immunology</i> : <i>CVI</i> 18 , 1803-
720		1808 (2011). https://doi.org/10.1128/CVI.05217-11
721	29	Kesty, N. C., Mason, K. M., Reedy, M., Miller, S. E. & Kuehn, M. J. Enterotoxigenic
722		Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23, 4538-
723		4549 (2004). https://doi.org/10.1038/sj.emboj.7600471
724	30	Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-
725		dependent factor CREB. Nat Rev Mol Cell Biol 2 , 599-609 (2001).
726	31	Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein
727		occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl
728		Acad Sci U S A 102 , 4459-4464 (2005). https://doi.org/10.1073/pnas.0501076102
729	32	Sheikh, A. <i>et al</i> . Enterotoxigenic Escherichia coli heat-labile toxin drives enteropathic
730		changes in small intestinal epithelia. <i>Nature communications</i> 13 , 6886 (2022).
731		https://doi.org/10.1038/s41467-022-34687-7
732	33	Johansson, M. E., Thomsson, K. A. & Hansson, G. C. Proteomic analyses of the two
733		mucus layers of the colon barrier reveal that their main component, the Muc2 mucin,
734		is strongly bound to the Fcgbp protein. Journal of proteome research 8, 3549-3557
735		(2009). https://doi.org/10.1021/pr9002504
736	34	Ehrencrona, E. <i>et al.</i> The IgGFc-binding protein FCGBP is secreted with all GDPH
737		sequences cleaved but maintained by interfragment disulfide bonds. The Journal of
738		biological chemistry 297 , 100871 (2021). <u>https://doi.org/10.1016/j.jbc.2021.100871</u>

739 740 741	35	Postema, M. M., Grega-Larson, N. E., Neininger, A. C. & Tyska, M. J. IRTKS (BAIAP2L1) Elongates Epithelial Microvilli Using EPS8-Dependent and Independent Mechanisms.
742 743	36	Gaeta, I. M., Meenderink, L. M., Postema, M. M., Cencer, C. S. & Tyska, M. J. Direct visualization of epithelial microvilli biogenesis. <i>Curr Biol</i> 31 , 2561-2575 e2566 (2021).
744		https://doi.org/10.1016/j.cub.2021.04.012
745	37	Clayton, A., Harris, C. L., Court, J., Mason, M. D. & Morgan, B. P. Antigen-presenting
746 747		cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. <i>European journal of immunology</i> 33 , 522-531 (2003).
748		<u>https://doi.org/10.1002/immu.200310028</u>
749	38	Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune
750		responses. Nature reviews. Immunology 9 , 581-593 (2009).
751		https://doi.org/10.1038/nri2567
752	39	McConnell, R. E. <i>et al</i> . The enterocyte microvillus is a vesicle-generating organelle. <i>J</i>
753		Cell Biol 185 , 1285-1298 (2009). <u>https://doi.org/10.1083/jcb.200902147</u>
754	40	Matsuoka, Y. et al. Immunochemical differences among carcinoembryonic antigen in
755		tumor tissues and related antigens in meconium and adult feces. Cancer research 42,
756		2012-2018 (1982).
757	41	Matsuoka, Y. et al. Highly effective extraction of carcinoembryonic antigen with
758		phosphatidylinositol-specific phospholipase C. <i>Tumour Biol</i> 12 , 91-98 (1991).
759		https://doi.org/10.1159/000217693
760	42	Kammerer, R. & Zimmermann, W. Coevolution of activating and inhibitory receptors
761		within mammalian carcinoembryonic antigen families. <i>BMC Biol</i> 8 , 12 (2010).
762		https://doi.org/10.1186/1741-7007-8-12
763	43	Baker, E. P. <i>et al</i> . Evolution of host-microbe cell adherence by receptor domain
764		shuffling. <i>Elife</i> 11 (2022). <u>https://doi.org/10.7554/eLife.73330</u>
765	44	Zimmermann, W. Evolution: Decoy Receptors as Unique Weapons to Fight Pathogens.
766		<i>Curr Biol</i> 29 , R128-R130 (2019). <u>https://doi.org/10.1016/j.cub.2018.12.006</u>
767	45	Adrian, J., Bonsignore, P., Hammer, S., Frickey, T. & Hauck, C. R. Adaptation to Host-
768		Specific Bacterial Pathogens Drives Rapid Evolution of a Human Innate Immune
769		Receptor. <i>Curr Biol</i> 29 , 616-630 e615 (2019).
770		https://doi.org/10.1016/j.cub.2019.01.058
771	46	Schmitter, T., Agerer, F., Peterson, L., Munzner, P. & Hauck, C. R. Granulocyte
//2		CEACAM3 is a phagocytic receptor of the innate immune system that mediates
773		recognition and elimination of human-specific pathogens. <i>J Exp Med</i> 199 , 35-46
//4		(2004). <u>https://doi.org/10.1084/jem.20030204</u>
775	47	Brierley, S. M. Guanylate cyclase-C receptor activation: unexpected biology. <i>Curr Opin</i>
//6		Pharmacol 12 , 632-640 (2012). <u>https://doi.org/10.1016/j.coph.2012.10.005</u>
//7	48	Cilibrasi, C. et al. Definition of an Inflammatory Biomarker Signature in Plasma-Derived
//8		Extracellular Vesicles of Glioblastoma Patients. <i>Biomedicines</i> 10 (2022).
779		https://doi.org/10.3390/biomedicines10010125

780 781	49	Gonzales, P. A. <i>et al.</i> Large-scale proteomics and phosphoproteomics of urinary exosomes. <i>J Am Soc Nephrol</i> 20 , 363-379 (2009).	
782		https://doi.org/10.1681/ASN.2008040406	
783 784	50	Kobayashi, K., Hamada, Y., Blaser, M. J. & Brown, W. R. The molecular configuration and ultrastructural locations of an IgG Fc binding site in human colonic epithelium. <i>J</i>	
785		Immunol 146 , 68-74 (1991).	
786	51	Kobayashi, K. et al. Distribution and partial characterisation of IgG Fc binding protein	
787 788		in various mucin producing cells and body fluids. <i>Gut</i> 51 , 169-176 (2002). https://doi.org/10.1136/gut.51.2.169	
789	52	Harada N et al. Human IgGEc binding protein (EcgammaBP) in colonic epithelial cells	
790	02	exhibits mucin-like structure. The Journal of biological chemistry 272 , 15232-15241	
791		(1997), https://doi.org/10.1074/ibc.272.24.15232	
792	53	Liu O et al. Role of the mucin-like glycoprotein ECGBP in mucosal immunity and	
793	00	cancer. Front Immunol 13 , 863317 (2022).	
794		https://doi.org/10.3389/fimmu.2022.863317	
795	54	Johansson, M. E. <i>et al.</i> The inner of the two Muc2 mucin-dependent mucus layers in	
796		colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the	
797		United States of America 105 , 15064-15069 (2008).	
798		https://doi.org/10.1073/pnas.0803124105	
799	55	Birchenough, G. M., Johansson, M. E., Gustafsson, J. K., Bergstrom, J. H. & Hansson,	
800		G. C. New developments in goblet cell mucus secretion and function. Mucosal	
801		Immunol 8 , 712-719 (2015). <u>https://doi.org/10.1038/mi.2015.32</u>	
802	56	Nystrom, E. E. L., Arike, L., Ehrencrona, E., Hansson, G. C. & Johansson, M. E. V.	
803		Calcium-activated chloride channel regulator 1 (CLCA1) forms non-covalent	
804		oligomers in colonic mucus and has mucin 2-processing properties. The Journal of	
805		biological chemistry 294 , 17075-17089 (2019).	
806		https://doi.org/10.1074/jbc.RA119.009940	
807	57	Sheikh, A. et al. Enterotoxigenic Escherichia coli Degrades the Host MUC2 Mucin	
808		Barrier To Facilitate Critical Pathogen-Enterocyte Interactions in Human Small	
809		Intestine. Infection and immunity 90 , e0057221 (2022).	
810		https://doi.org/10.1128/IAI.00572-21	
811	58	Mercado, E. H. et al. Fecal leukocytes in children infected with diarrheagenic	
812		Escherichia coli. <i>J Clin Microbiol</i> 49 , 1376-1381 (2011).	
813		https://doi.org/10.1128/JCM.02199-10	
814	59	Mohamed, J. A. et al. A novel single-nucleotide polymorphism in the lactoferrin gene	
815		is associated with susceptibility to diarrhea in North American travelers to Mexico. <i>Clin</i>	
816		Infect Dis 44 , 945-952 (2007). <u>https://doi.org/CID41623</u> [pii]	
817	817 10.1086/512199		
818	60	Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium	
819		hydroxide and tris (HotSHOT). Biotechniques 29 , 52, 54 (2000).	
820		https://doi.org/10.2144/00291bm09	

821	61	Allen, K. P., Randolph, M. M. & Fleckenstein, J. M. Importance of heat-labile
822		enterotoxin in colonization of the adult mouse small intestine by human
823		enterotoxigenic Escherichia coli strains. <i>Infection and immunity</i> 74 , 869-875 (2006).
824	62	Zhu, Y. et al. Molecular Determinants of Enterotoxigenic Escherichia coli Heat-Stable
825		Toxin Secretion and Delivery. Infection and immunity 86 (2018).
826		https://doi.org/10.1128/IAI.00526-18
827	63	Luo, Q., Vickers, T. J. & Fleckenstein, J. M. Immunogenicity and Protective Efficacy
828		against Enterotoxigenic Escherichia coli Colonization following Intradermal,
829		Sublingual, or Oral Vaccination with EtpA Adhesin. Clinical and vaccine immunology :
830		CVI 23 , 628-637 (2016). <u>https://doi.org/10.1128/CVI.00248-16</u>
831	64	Harro, C. et al. Live attenuated enterotoxigenic Escherichia coli (ETEC) vaccine with
832		dmLT adjuvant protects human volunteers against virulent experimental ETEC
833		challenge. Vaccine (2019). <u>https://doi.org/10.1016/j.vaccine.2019.02.025</u>
834		

835 Figures

837 figure 1. CEACAM expression alters kinetics of ETEC intestinal colonization A. ETEC

shed in stool following challenge of either C57BL/6NCrl control mice (n=8) or CEABAC10

839 CEACAM-expressing mice (n=6). Dashed lines connect geometric means. *<0.05, **<0.01

840 Mann Whitney two-tailed nonparametric comparison between groups. **B.** Proportion of mice

remaining colonized (≥ 1 CFU/mg stool) based on fecal shedding data. Shown are

842 combined results of two independent experiments with total of n=17 control (C57BL/6NCrl)

and n=21 CEABAC10 mice. p=0.0004 Log-rank (Mantel-Cox) comparison of survival curves.

844

845

846 figure 2. ETEC-CEACAM interactions in the intestinal lumen of CEACAM-expressing

847 transgenic mice. Shown are confocal microscopy images of (A) ETEC H10407 attached to

- small intestinal villus enterocytes (arrows) and to CEACAM+ material in the lumen. (B). ETEC
- in the lumen reside in a CEACAM+ matrix. (C) Small (~100-300 nm) CEACAM+ structures
- 850 engage ETEC in the intestinal lumen. Inset shows ETEC surrounded by CEACAM + structures
- in the lumen. In each panel anti-CEA antibodies were used to identify CEACAMs (blue) and
- anti-O78 antibodies were used to identify ETEC H10407 (yellow, serotype O78). **D,E**.
- 853 CEACAM6-positive vesicle, and clusters of EV isolated from ileum of CEABAC10 mouse. **F**.
- 854 CEACAM6+ EV clustered on the surface of bacteria isolated from ileal lavage following
- 855 H10407 challenge. **G**. CEACAM6-positive EV isolated from CEABAC10 mouse feces shown
- by immunogold labeling of anti-CEACAM monoclonal (9A6). **H.** Flow cytometry of GFP+

- 857 bacteria isolated from fecal resuspension supernatants following challenge of CEABAC10
- mice with H10407(pGFPmut3.1), showing the proportion of GFP+ bacteria that co-labeled
- 859 with CEACAMs (blue) vs those which remain unlabeled with CEACAMs (yellow). I. Majority of
- 860 ETEC shed in feces are eliminated in large clusters of CEACAMs. Panel represents individual
- 861 Z-stack confocal image of fecal resuspension. (GFP+ bacteria pseudo-colored yellow).

864

Figure 3 CEACAM-laden EVs block ETEC enterocyte engagement

866 **A**. clusters of CEACAM+ extracellular vesicles (EVs) are interposed between the brush

867 border of small intestinal enterocytes and ETEC. **B**. CEACAM+ EVs emerging at the surface of

- 868 microvilli engage ETEC. (Arrows in A,B indicate immunogold labeling of CEACAM6) C.
- 869 Concentrated supernatants (sn) from polarized small intestinal enteroid monolayers impair
- 870 ETEC pathogen-host interaction. Columns at left, middle and right of graph indicate no
- 871 treatment (sn-), treatment with concentrated supernatant (sn+, CEACAM+), and after

872	supernatant absorption of CEACAMs (sn+, CEACAM-). Shown are the results of two
873	independent experiments. ****=p<0.0001 (Kruskall-Wallis). Horizontal lines indicate median
874	and quartiles. Inset immunoblot indicates CEACAM6 before and after absorption. D. EVs
875	purified from small intestinal enteroids inhibit attachment of ETEC to target small intestinal
876	epithelia. Shown are the results of 2 replicate experiments. "-" = untreated ileal enteroids
877	(n=50, total); Data reflect bacteria per region of interest (ROI) for wells without (-) and with (+)
878	exogenously added purified EV (n=55 total). ****<0.0001 Mann-Whitney two-tailed
879	nonparametric comparisons. E. LT treatment of enteroids enhances CEACAM production on
880	EVs and EV-mediated inhibition of ETEC adhesion to target Caco-2 cells **** <0.0001, *0.02
881	(Kruskal-Wallis). Inset immunoblot shows impact of LT treatment on CEACAM6 expression on
882	EV isolated after treatment for 24, 72 hours. Intestinal alkaline phosphatase (IAP) is shown as
883	a loading control. F . EV isolated from murine intestine inhibit ETEC adhesion. Shown are
884	confocal imaging data of ETEC adherent to Caco-2 cells in the absence of EV, EV isolated
885	from CEABAC10 mice (CEACAM+), and parental C57BL6 mice (CEACAM-). ****<0.0001
886	(Kruskal-Wallis). Total of n=100 fields from 2 independent experiments.
007	

888

889 figure 4. EV scavenge and neutralize ETEC toxins. A. EV contain ganglioside receptors for 890 heat-labile toxin (LT). Shown are anti-LT dot immunoblots demonstrating LT-binding to 891 increasing amounts of immobilized BSA (negative control, top) GM-1 ganglioside (positive 892 control, bottom) and EV. B. Immobilized EV bind LT. Shown are kinetic ELISA in which EV 893 bound to ELISA plates capture increasing amounts of LT. Summary of three independent 894 experiments, ***0.0008, **0.0014 by Kruskal-Wallis comparisons to no LT control. C. 895 Molecular pulldown study using anti-CEACAM antibody coated protein G beads (bait) to pull 896 down EV (prey), and bound heat-labile toxin. Following incubation with biotinylated LT-B (LT-897 B*), immunoblot was developed with avidin-HRP to detect bound toxin subunit. Immunoblots 898 (left panel) verify presence of intestinal alkaline phosphatase (IAP) and CEACAM6 in EV input 899 prey. Biotinylated LT-B is indicated in blots of pulldown and controls. D. EV block LT-

900	mediated activation of cAMP in target Caco-2 cells. Data reflect baseline-corrected values
901	(raw data-baseline/baseline) and are from two independent experiments (n=10 total
902	replicates). Analysis by Kruskal-Wallis. E. EV impede toxin delivery by ETEC. Caco-2 cAMP
903	levels following infection with ETEC H10407 \pm EV. Data are from two independent
904	experiments (n=8 total replicates). Analysis by Kruskal-Wallis. F. Fractionation of GST-STh/EV
905	complexes by size exclusion chromatography (SEC). Shown below the chromatogram are dot
906	immunoblots for CEACAM6 and GST corresponding to individual fractions. Control fractions
907	from GST-EV interactions are shown below. G. Western immunoblot of EV-containing
908	fractions from SEC demonstrating co-elution of CEACAM6 and GST-STh. \mathbf{H} . EV compete with
909	T84 intestinal epithelial cells for ST binding. Shown are the results of two independent
910	confocal microscopy experiments, with symbols representing mean fluorescence intensity of
911	GST-STh binding in individual fields. Vertical lines represent geometric means. *p=0.02
912	(Mann-Whitney). I. EV neutralize STh activation of cGMP. Shown are results of 3 independent
913	experiments (n=15 technical replicates). ****<0.0001, and ***n=0.0004 by Kruskal-Wallis.
914	

915

917 figure 5. Comparative tandem mass tag spectrometry of EVs from LT-treated (127C label)
918 and control (ø, 126C) enteroids. Subset of proteins identified in EVs: which were increased
919 (left) and unchanged or decreased (right) following exposure of enteroids to LT (100 ng/ml
920 overnight ~18 hours).
921

924 Figure 6. human ETEC infection is associated with increases in fecal CEACAMs.

925 A. CEACAM-laden EV are shed in stool of children with acute ETEC diarrheal illness. 926 Immunogold-labeled TEM image of EV isolated from diarrheal stool demonstrates detection 927 of CD9 (larger 18 nm particles, white arrows), and CEACAMs (12 nm, black arrow). B. 928 Schematic of kinetic ELISA strategy to capture and detect CEACAM+ EV from human stool. 929 **C**. Graph depicts summary of two independent experiments performed on samples from 5 930 patients naturally-infected with ETEC and 5 healthy controls (icddr,b in Dhaka), each with 931 three technical replicates (total of n=30 data points for each day). Day 1 = day of presentation 932 to icddr,b. Negative control wells contain only buffer used in sample extraction. **D**. Summary 933 of two technical replicates in 2 separate experiments with samples obtained from human 934 volunteers on the day prior to infection (d-1) and on days 7, 28 following challenge with ETEC 935 H10407 (n=17; 3 with mild-moderate diarrhea, 8 with severe diarrhea and 6 with no diarrhea

- 936 following challenge). Statistical analyses by Kruskal-Wallis nonparametric comparisons:
- 937 ****p<0.0001, ***p=0.0002, **p=0.002, *p=0.0127.

938