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Abstract

Ikaros encodes a transcription factor that functions as a tumor suppressor in T-cell acute 

lymphoblastic leukemia (T-ALL). The mechanisms through which Ikaros regulates gene 

expression and cellular proliferation in T-ALL are unknown. Re-introduction of Ikaros into Ikaros-

null T-ALL cells resulted in cessation of cellular proliferation and induction of T-cell 

differentiation. We performed dynamic, global, epigenomic and gene expression analyses to 

determine the mechanisms of Ikaros tumor suppressor activity. Our results identified novel Ikaros 

functions in the epigenetic regulation of gene expression: Ikaros directly regulates de novo 
formation and depletion of enhancers, de novo formation of active enhancers and activation of 

poised enhancers; Ikaros directly induces the formation of super-enhancers; and Ikaros 

demonstrates pioneering activity by directly regulating chromatin accessibility. Dynamic analyses 

demonstrate the long-lasting effects of Ikaros DNA binding on enhancer activation, de novo 
formation of enhancers and super-enhancers, and chromatin accessibility. Our results establish that 

Ikaros’ tumor suppressor function occurs via global regulation of the enhancer and super-enhancer 

landscape and through pioneering activity. Expression analysis identified a large number of novel 

signaling pathways that are directly regulated by Ikaros and Ikaros-induced enhancers, and that are 

responsible for the cessation of proliferation and induction of T-cell differentiation in T-ALL cells.
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Introduction

The IKZF1 gene encodes the Ikaros protein, which acts as a tumor suppressor and master 

regulator of hematopoiesis (1–3). Impaired Ikaros function is associated with the 

development of high-risk B-ALL, primary immunodeficiency (4–9), as well as 5-8% of T-

ALL and 11% of early T-cell precursor (ETP) leukemia (10). The Ikaros protein is a 

transcription factor that regulates expression of its target genes via chromatin remodeling 

(11–20).

The role of Ikaros in the epigenetic regulation of gene expression has been extensively 

studied in normal hematopoiesis and B-ALL, but much less so in T-ALL (21–26). Ikaros 

haplo-knockout mice develop T-ALL with 100% penetrance with T-cell differentiation 

arrested at the CD4– CD8– double negative 3 (DN3) stage of development (27). During the 

process of malignant transformation to T-ALL, Ikaros haploinsufficient thymocytes lose 

their remaining wildtype Ikaros allele; thus, T-ALL cells in these mice have an Ikaros-null 

genotype (27). Re-introduction of Ikaros into Ikaros-null T-ALL cells from these mice 

results in the cessation of cellular proliferation, and induction of T-cell differentiation (28). 

These data demonstrate that Ikaros is a critical tumor suppressor in T-ALL. Re-introduction 

of Ikaros into Ikaros-null T-ALL captures the role of Ikaros in transition from the malignant 

state (Ikaros-null T-ALL) to the non-malignant state (following Ikaros re-introduction). 

Thus, this is an optimal system for studying Ikaros tumor suppressor function and its role in 

the cessation of cell growth and the induction of differentiation.

In this report, we use Ikaros-null T-ALL cells to study the role of Ikaros as an epigenetic 

regulator of gene expression, cellular proliferation, and T-cell differentiation. To understand 

Ikaros activity over time, we performed extensive analyses at several time points following 

the re-introduction of Ikaros in Ikaros-null, T-ALL cells. Results revealed previously-

unknown Ikaros roles in regulating chromatin accessibility, as well as enhancer and super-

enhancer activation. These data led to a new model of Ikaros function as a regulator of gene 

expression and the epigenetic landscape in leukemia.

Materials and methods

Cell culture and viral transduction

The JE131 cell line (referred to here as DN3) is an early T-ALL cell line derived from Ikaros 

knock-out mice that spontaneously develop T-ALL (28). DN3 cells were transduced using 

an MSCV-based bicistronic retroviral vector that expresses Ikaros and GFP. Wild-type cells 

as well as retrovirally-transduced cells were collected at 1-, 2-, and 3-day timepoints for 

experiments.

Microarray

Total RNA was extracted using QIAGEN RNeasy Mini Kit (Qiagen, 74104, Hilden 

Germany). cDNA was hybridized to the mouse 430 2.0 array.
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ChIP-seq

ChIP-seq assays for Ikaros and histone modifications were performed using antibodies and 

methods in Supplemental data and as previously described (29, 30).

ATAC-seq

ATAC-seq was performed as previously described (31) with minor changes, described in 

Supplemental Data. Samples were sequenced using the Illumina HiSeq 2500 at the 

sequencing core facility at Pennsylvania State University College of Medicine.

Results

Ikaros regulates diverse cellular pathways by binding to upstream regulatory sequences

The tumor suppressor function of Ikaros was studied using an optimal system: Ikaros re-

introduction into Ikaros-null mouse T-ALL cells (DN3 cells) (28). DN3 cells were 

transduced with retrovirus that contains HA-tagged wild-type murine Ikaros or empty vector 

(as a negative control). Gene expression, chromatin accessibility, Ikaros occupancy, and 

global epigenomic signature was compared prior to, and during the 3 days following, Ikaros 

re-introduction (Fig. S1–S3). The level of Ikaros protein in DN3 cells following retroviral 

transduction was similar to its physiological levels in wild-type thymocytes (Fig. S4). This 

assures that the observed effects of Ikaros are not the result of excessive overexpression. Re-

introduction of Ikaros into DN3 cells resulted in cessation of cellular proliferation (Fig. S5a) 

and induction of T-cell differentiation (Fig. S5b). These results support previously reported 

effects following Ikaros re-introduction into Ikaros-null T-ALL (28).

Analysis of genome-wide occupancy revealed dynamic, Ikaros-mediated changes in the 

regulation of gene expression. To better characterize the interactions between Ikaros and 

DNA elements, we divided the genome into four categories: Gene Body (GENCODE 

annotated gene body regions), Promoter (≤3kb up and down stream of TSS regions for each 

annotated gene), Enhancer (>3kb away from TSS with overlapping H3K4me1 peak signal 

regions), and Gene Desert (the remainder of the genome). Ikaros binds genome-wide to all 

four categories of DNA elements and, despite similar Ikaros expression at days 1, 2, and 3, 

the number of binding sites in each class is significantly larger at day 1 as compared to day 2 

and day 3 (Fig. 1a) Ikaros primarily binds to promoter/enhancer regions at day 1 and day 2, 

but predominantly binds to gene desert regions at day 3 (Fig. 1b). Interestingly, Ikaros 

occupancy at the promoters of its target genes is quite diverse during the 3 days following its 

re-introduction (Fig. 1c). This suggests that Ikaros transiently and sequentially regulates 

diverse sets of its target genes. Motif analysis of ChIP-seq peak regions shows enrichment 

for Ikaros consensus binding sequences (–GGAA– and –GGGA–) (Fig. 1d, Fig. S6). Ikaros 

binding to the promoters of its target genes on day 1 can result in either transcriptional 

repression or activation (Fig. 1e).

Gene Ontology (GO) term (Fig. S7) and Pathway Enrichment analysis (Fig. S8) as well as 

GSEA (Gene Set Enrichment Analysis) (Fig. S9–S10) showed Ikaros regulating stem cell 

pluripotency, multiple cancer pathways, and T-cell differentiation. Together, these data 

demonstrate that Ikaros has the strongest effect immediately after re-introduction into 
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leukemia cells. This suggests that alterations in gene expression and the epigenetic 

landscape (described below) following Ikaros re-introduction are a result of its tumor 

suppressor activity. Results show that Ikaros can regulate different sets of genes depending 

on the stage of differentiation.

Ikaros has pioneering activity

A “typical” transcription factor (TF) binds to open chromatin resulting in altered expression 

of its target genes (32, 33). However, a few TFs are able to bind to condensed chromatin, 

and induce chromatin de-condensation and increased accessibility (34, 35). This is often 

associated with the induction of chromatin modifications that lead to the early activation 

process, or “gene priming”, which is characterized by de novo formation of the H3K4me1 

mark (32, 36, 37). Such TFs are called Pioneer TFs and usually function as master regulators 

of tissue differentiation (e.g. Gata and FoxA factors) (32, 38–40). Because Ikaros functions 

as a master regulator of hematopoiesis, we tested the hypothesis that Ikaros functions as a 

Pioneer TF to produce de novo open chromatin. Chromatin accessibility was measured using 

ATAC-seq (31, 41). To determine if a transcription factor has pioneer activity, it is essential 

to determine the chromatin state before and after the factor is expressed in a cell (32). 

Binding of a transcription factor to closed chromatin that results in the formation of open 

chromatin is the critical test for pioneer activity (34–36). Our data show that Ikaros binding 

at day 1 following its re-introduction in Ikaros-null T-ALL cells induces de novo open 

chromatin (positive ATAC-seq signal) in over 3400 regions with previously closed chromatin 

(negative ATAC-seq signal) at day 0 (prior to Ikaros re-introduction) (Fig. 2a). Induction of 

open chromatin via Ikaros binding was associated with de novo formation of H3K4me1, 

H3K4me3, and, to a lesser extent, H3K27ac marks (Fig. 2a-b). Motif analysis showed 

enrichment of Ikaros’ core binding motif in the de novo ATAC-seq peak regions (Fig. 2c). 

Most of the Ikaros-induced de novo open chromatin regions are located within promoters or 

enhancers (Fig. 2d). Ikaros-induced de novo open chromatin at distal regulatory regions 

regulates genes involved in cellular differentiation and signaling pathways that control 

cellular proliferation (Fig. 2e-f).

We analyzed whether Ikaros binding that produces de novo open chromatin has a lasting 

effect. Results showed that Ikaros binding at day 1 is transient, and that over 90% of Ikaros-

induced de novo open chromatin sites are not occupied by Ikaros at day 2 and day 3 (Fig. 

S11). However, despite a lack of Ikaros occupancy, open chromatin induced by Ikaros 

binding at Day 1 continued to persist at over 600 sites at day 2, and at over 200 sites at day 3 

(Fig. S11). Overall, the data in Fig. 2 demonstrate that Ikaros binds to closed chromatin 

which results in de novo chromatin accessibility at promoters and distal regulatory regions 

and the priming of these elements by induction of H3K4me1. The transient Ikaros binding at 

day 1 has a long-lasting effect on chromatin accessibility during induction of differentiation 

and cessation of cellular proliferation. These data, support Ikaros’ role as a Pioneer TF. The 

long-lasting effect of Ikaros pioneering activity suggests that Ikaros sets the stage for the 

continuation of T cell differentiation.
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Ikaros regulates de novo formation and depletion of enhancers

Ikaros re-introduction into Ikaros-null T-ALL, results in the formation of a large number of 

de novo enhancers as evidenced by de novo H3K4me1 enriched sites, as compared to wild-

type DN3 cells (Fig. 3a). The de novo-formed enhancers showed enrichment of Ikaros’ core 

binding motif (Fig. 3b). Analysis revealed over 6000 de novo enhancers with Ikaros 

occupancy and H3K4me1 enrichment (Fig. 3c-d). De novo enhancer regions are significantly 

enriched with Ikaros peaks, as compared to random genomic regions (Fig. S12). These data 

strongly suggest that Ikaros DNA binding at day 1 directly induces formation of de novo 
enhancers, and directly determines the enhancer landscape during induction of T-cell 

differentiation.

Further analyses showed that re-introduction of Ikaros into DN3 cells can produce the 

opposite effect — a depletion of a large number of existing enhancers, as evidenced by the 

loss of H3K4me1 enrichment (Fig. 3e). Depleted enhancers showed enrichment of the 

Ikaros’ consensus DNA-binding motif (Fig. 3f). Over 800 depleted enhancers showed a loss 

of H3K4me1 enrichment concomitant with direct Ikaros binding (Fig. 3g, S13). A 

permutation assay confirmed significantly higher enrichment for Ikaros’ occupancy at 

depleted enhancers as compared to random genomic regions (Fig. S14). Together, these 

results indicate a direct role for Ikaros in enhancer depletion.

A dynamic analysis of the epigenetic signature and Ikaros occupancy of de novo and 

depleted enhancers showed that Ikaros binding to these regions is transient. Most of the de 
novo and depleted enhancers showed no Ikaros binding at day 2 (Figures S15–S16). 

However, the epigenetic changes induced by Ikaros binding at day 1 were preserved at day 2 

in 37% and 42 % of de novo and depleted enhancers, respectively. At day 3—two days after 

the loss of Ikaros binding—over 20% of Ikaros-induced de novo enhancers and 12% of 

Ikaros-depleted enhancers maintained the epigenetic signature that was induced by Ikaros 

binding to these regions at day 1. These data demonstrate the long-lasting effect of Ikaros 

binding on the de novo formation and depletion of enhancers.

Ikaros binding induces de novo formation of active enhancers

Enhancers can be in a “poised” state (enriched for H3K4me1 but not H3K27ac) or an 

“active” state (enriched for both H3K4me1 and H3K27ac) (33, 42). Poised enhancers do not 

affect gene expression, while active enhancers positively regulate transcription of target 

genes. We analyzed the effect of Ikaros on the de novo formation of active (de novo-

activated) enhancers and on the activation of previously poised (poised-activated) enhancers. 

Re-introduction of Ikaros into DN3 cells results in the formation of over 13000 de novo-

activated enhancers (Fig. 4a). De novo-activated enhancers have a positive effect on 

expression of genes near their location (Fig. 4b) and have enrichment for the Ikaros core 

binding motif (Fig. 4c). Over 3000 de novo-activated enhancers had de novo enrichment of 

both H3K4me1 and H3K27ac concomitant with Ikaros occupancy (Fig. 4d-e). This 

represents 22% of all de novo-activated enhancers and is consistent with significantly higher 

enrichment for Ikaros occupancy at these regions (Fig. S17). This shows that Ikaros binding 

directly induced the de novo formation of a very large number of active enhancers as a part 

of its tumor suppressor/differentiation function.
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Ikaros induces activation of “poised” enhancers

The re-introduction of Ikaros resulted in the activation of 5541 enhancers that were 

previously in a “poised” state (H3K4me1+/H3K27ac–) (Fig. 5a). Activation of poised 

enhancers positively regulates expression of the genes near these enhancers (Fig. 5b). A 

motif analysis revealed a strong enrichment for the core Ikaros binding motif (Fig. 5c). 

Ikaros binding directly resulted in the activation of 942 enhancers that were previously in a 

“poised” state (Fig. 5d-e, S18). This represents 18% of all activated enhancers and indicates 

that Ikaros plays a critical role in the direct activation of poised enhancers.

We analyzed the dynamic effect of Ikaros binding on de novo-activated and poised-activated 

enhancers. Ikaros binding at day 1, which results in enhancer activation, is transient, because 

most Ikaros-induced active enhancers at day 1 showed no Ikaros binding at day 2 (Fig. S19–

S20). However, the epigenetic changes induced by Ikaros binding at day 1 were strongly 

preserved at day 2 in 42% and 74.5 % of de novo-activated and poised-activated enhancers, 

respectively. At day 3, two days after the loss of Ikaros binding, over 10% of Ikaros-induced 

de novo-activated and 39.5% of Ikaros-induced poised-to-activated enhancers maintained the 

epigenetic signature that was induced by Ikaros binding. These data demonstrate the long-

lasting effect of Ikaros binding on enhancer activation, which is particularly pronounced on 

poised-to-activated enhancers (Fig. S20). Because enhancer activation has a strong positive 

effect on target gene expression, these results reveal a novel mechanism by which Ikaros 

binding regulates the expression of a very large number of genes as part of its tumor 

suppressor function in T-ALL.

Ikaros binding induces de novo formation of super-enhancers

Super-enhancers are potent DNA regulatory regions that contain clusters of enhancers that 

regulate expression of large numbers of cell-specific genes (43–45). Ikaros re-introduction in 

DN3 cells results in de novo formation of a very large number (609) of super-enhancers at 

day 1, as compared to only 29 super-enhancers present in Ikaros-null DN3 leukemia cells 

(Fig. 6a). Over 90% of the newly-formed super-enhancers showed enrichment for Ikaros 

occupancy (Fig. 6b-c). Gene expression analysis demonstrated higher expression levels of 

the genes in close proximity to super-enhancers as compared to genes near all enhancers 

(super-enhancers and regular enhancers combined) (Fig. 6d), which suggests that Ikaros-

induced formation of super-enhancers has a profound, positive effect on expression of genes 

that are regulated by super-enhancers. Ikaros-induced super-enhancers regulate genes 

involved in both T-cell differentiation as well as chromatin organization and regulation (Fig. 

6e-f).

Analysis of the dynamic effects of Ikaros on the formation of super-enhancers showed that 

Ikaros binding that results in the de novo formation of super-enhancers is longer-lasting than 

Ikaros binding that results in the activation of “classic” enhancers. Over 90% of Ikaros-

induced super-enhancers show Ikaros occupancy at day 2 and have preserved super-enhancer 

activity. This is in striking contrast to Ikaros occupancy of “regular” enhancers, which is 

mostly present at day 1 (Fig. S21 vs. Fig. S19–S20). At day 3, Ikaros binding to the super-

enhancer regions is lost, although 55% of the regions continue to maintain an epigenetic 

signature characteristic of super-enhancers (Fig. S21). These data demonstrate that Ikaros 
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binding produces a strong, long-lasting effect on the formation and maintenance of super-

enhancers and suggest that super-enhancers have a critical role in tumor suppression in T-

ALL.

Comparative analysis of the enhancer and super-enhancer landscape showed remarkable 

preservation between mouse and human T-ALL (Fig S22). There is also a high similarity in 

the enhancer/super-enhancer landscape between DN3 cells, following Ikaros re-introduction, 

and mouse thymocytes, indicating Ikaros’ role in thymocyte differentiation.

Discussion

Re-introduction of Ikaros into Ikaros-null mouse T-ALL (DN3) cells provided an 

opportunity to analyze dynamic changes in Ikaros tumor suppressor activity in T-ALL. This 

approach identified previously-unknown Ikaros functions in epigenetic regulation of gene 

expression:

A) Pioneer activity:

Pioneer TFs initiate the coordination of regulatory mechanisms by opening previously-

closed chromatin and by inducing histone modifications that allow the formation of putative 

enhancers (H3K4me1) or promoters (H3K4me3) (32). Ikaros binding at day 1 resulted in the 

opening of over 3400 previously-inaccessible chromatin sites. This is accompanied by de 
novo enrichment of H3K4me1 and H3K4me3 modifications, and formation of de novo 
enhancers and promoters. These data strongly support the conclusion that Ikaros has pioneer 

activity, and triggers coordinated regulation of gene expression resulting in tumor 

suppression and induction of T-cell differentiation. Ikaros thus joins PU.1, C/EBPa, and 

EBF1 as a pioneer factor in hematopoiesis (32, 46–52).

B) Activation of enhancers:

Putative enhancers are characterized by the presence of H3K4me1 histone modifications. In 

the absence of H3K27ac, these enhancers are termed “poised” or “primed” enhancers (36, 

53). The presence of H3K27ac modifications defines “active” enhancers that positively 

regulate transcription of their target genes (36, 53, 54). Our data showed that Ikaros binding 

to DNA can either induce de novo formation of active enhancers (transforming H3K4me1–/

H3K27ac– DNA sites into H3K4me1+/H3K27ac+ sites) or activate “poised” enhancers 

(H3K4me1+/H3K27ac–). This is a novel mechanism by which Ikaros regulates gene 

expression. Ikaros binding to active enhancers has been observed in the past (55, 56), but our 

results demonstrate for the first time that Ikaros DNA-binding directly induces the formation 

of active enhancers.

C) Formation of super-enhancers:

Super-enhancers are clusters of enhancers with very high levels of H3K27ac (57–59). The 

role of super-enhancers in T-ALL and the targeting of super-enhancers as a treatment for T-

ALL have been proposed (44, 45). Our data demonstrated that Ikaros induces the formation 

of super-enhancers as a part of its tumor suppressor function and induction of T-cell 

differentiation. Because super-enhancers regulate target genes more strongly than “regular” 
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enhancers (Fig. 6d) (26), the role of Ikaros in the formation of super-enhancers is an 

important, novel aspect of its function.

Our data also demonstrate a role for Ikaros in de novo enhancer formation and depletion, but 

this was less pronounced than the above-outlined Ikaros activities.

In conclusion, our results identify novel Ikaros functions in the epigenetic regulation of gene 

expression (Fig. 7). These include Ikaros’ ability to induce formation of activated enhancers 

and super-enhancers, and thus act as a positive regulator of gene expression when associated 

with enhancer and super-enhancer regions. It is likely that Ikaros regulates the enhancer/

super-enhancer landscape by recruiting chromatin remodeling complexes. One possible 

candidate is the SWI/SNF complex, which is reported to associate with Ikaros. Further 

experiments will be directed toward identification of such complex(es). The dynamic 

approach used to study Ikaros’ effect on epigenetic signature, chromatin accessibility, and 

gene expression over several time points was crucial in uncovering these previously-

unknown Ikaros functions. This suggests that the optimal method for determining the 

function of tumor suppressors and/or oncogenes is to perform dynamic analyses of their 

effect in gain-of-function and/or loss-of-function experiments. Future analyses in different 

hematopoietic malignancies will help to provide a more complete picture of Ikaros’ role in 

tumor suppression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dynamic regulation of gene expression by Ikaros following re-introduction into Ikaros-
null T-ALL cells.
(a-b) Dynamic changes in Ikaros binding to different genome regions. Number of Ikaros 

binding peaks within Promoters, Enhancers, Gene Body and Gene Desert regions following 

Ikaros re-introduction. (c) Ikaros binds the regulatory elements of different target genes 

during each of the days following its re-introduction into DN3 cells. The number of Ikaros 

target genes during each day is shown. (d) Motif analysis of Ikaros binding sites at day 1. (e) 
Differentially expressed gene analysis at day 1 vs. day 0.
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Figure 2. Ikaros functions as a pioneer transcription factor.
(a) Heat maps of Ikaros ChIP-seq, ATAC-seq, H3K4me1and H3K27Ac ChIP-seq signals at 

open chromatin regions gained at day 1 vs. day 0. (b) Examples of de novo open chromatin 

regions and associated genes. Ikaros-induced epigenetic changes are shaded in grey. (c) 
Motif analysis for de novo open chromatin regions. (d) De novo open chromatin regions 

classified by function of the DNA element. (e-f) Gene ontology and pathway enrichment 

analysis of genes associated with de novo open chromatin regions.
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Figure 3. Ikaros binding induces de novo formation and depletion of enhancers.
(a) Heatmaps of H3K4me1 ChIP-seq signals at genome wide de novo enhancer regions at 

day 1, after Ikaros introduction, vs. day 0. Signals are centered on H3K4me1 peaks at day 1. 

(b) Motif enrichment analysis for de novo enhancer regions. (c) Heatmaps of Ikaros and 

H3K4me1 ChIP-seq signals at de novo-formed enhancers with Ikaros direct binding regions 

at day 0 vs. day 1. Signals are centered on Ikaros peaks at day 1. (d) Examples of de novo-

formed enhancers that are induced by Ikaros binding. Ikaros-induced epigenetic changes are 

shaded in grey. (e) Heatmaps of H3K4me1 ChIP-seq signals at genome wide depleted 
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enhancer regions at day 1, after Ikaros introduction, vs. day 0. Signals are centered on 

H3K4me1 peaks at day 0. (f) Motif enrichment analysis for depleted enhancer regions. (g) 
Heatmaps of Ikaros and H3K4me1 ChIP-seq signals at depleted enhancers with Ikaros direct 

binding regions on day 1 vs. day 0. Signals are centered on Ikaros peaks at day 1.
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Figure 4. Ikaros binding induces de novo formation of active enhancers
(a) Heatmaps of H3K4me1 and H3K27Ac signals at genome wide de novo formed activated 

enhancer regions at day 1, after Ikaros introduction, vs. day 0. Signals are centered on 

H3K4me1 peak at day 1. (b) Expression values for genes associated with activated enhancer 

regions at day 1 (red) vs. day 0 (black). (c) Motif analysis for activated enhancer regions. (d) 
Heatmaps of Ikaros, H3K4me1 and H3K27Ac ChIP-seq signals at de novo formed activated 

enhancers with Ikaros direct binding regions at day 1 vs. day 0. Signals are centered on 

Ikaros peaks at day 1. (e) Examples of de novo-formed active enhancers that are induced by 

Ikaros binding and associated genes.

Ding et al. Page 16

Leukemia. Author manuscript; available in PMC 2019 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Ikaros binding induces activation of “poised” enhancers
(a) Heatmaps of H3K4me1 and H3K27Ac ChIP-seq signals at genome wide activated 

enhancer regions (from previously “poised state”) at day 1, after Ikaros introduction, vs. day 

0. Signals are centered on H3K4me1 peaks at day 1. (b) Increased expression of genes 

associated with activated enhancer regions at day 1 (red) vs. day 0 (black). (c) Motif analysis 

for activated enhancer regions. (d) Heatmaps of Ikaros, H3K4me1 and H3K27Ac ChIP-seq 

signals at activated enhancer regions (from the previously “poised” state at day 0) with 

Ikaros direct binding at day 0 vs. day 1 after induction of Ikaros. Signals are centered on 

Ikaros peaks at day 1. (e) Examples of activated enhancers (from the previously “poised” 

state at day 0) that are activated by Ikaros binding and associated genes.
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Figure 6. Ikaros induces de novo formation of super-enhancers.
(a) Super-enhancers at day 0 (black) and day 1 (red). Enhancer regions are plotted in 

increasing order based on their input-normalized H3K4me1 ChIP-Seq signal. Super-

enhancers are defined as the population of enhancers above the inflection point of the curve. 

(b) The number of super-enhancers at day 0 (black) and day 1 (red). The number of super-

enhancers at day 1, with Ikaros binding (orange) or not (blue). (c) Examples of newly-

formed, Ikaros-bound, super-enhancers. (d) Higher expression of the genes in close 

proximity to super-enhancers vs. the genes near total enhancers–including both super 
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enhancers and regular enhancers. (e-f) Gene ontology and pathway enrichment analysis of 

genes associated with super-enhancers.
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Figure 7. Novel Ikaros functions in the epigenetic regulation of gene expression.
Results presented here reveal novel functions of Ikaros: de novo formation or depletion of 

enhancers; de novo formation of active enhancers; activation of previously “poised” 

enhancers; and formation of super-enhancers. Ikaros shows pioneering factor activity while 

binding to promoter and/or enhancer regions.
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