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Abstract

Background: Spurious associations between single nucleotide polymorphisms and phenotypes are a major issue in
genome-wide association studies and have led to underestimation of type 1 error rate and overestimation of the
number of quantitative trait loci found. Many authors have investigated the influence of population structure on
the robustness of methods by simulation. This paper is aimed at developing further the algebraic formalization of
power and type 1 error rate for some of the classical statistical methods used: simple regression, two approximate
methods of mixed models involving the effect of a single nucleotide polymorphism (SNP) and a random polygenic
effect (GRAMMAR and FASTA) and the transmission/disequilibrium test for quantitative traits and nuclear families.
Analytical formulae were derived using matrix algebra for the first and second moments of the statistical tests,
assuming a true mixed model with a polygenic effect and SNP effects.

Results: The expectation and variance of the test statistics and their marginal expectations and variances according
to the distribution of genotypes and estimators of variance components are given as a function of the relationship
matrix and of the heritability of the polygenic effect. These formulae were used to compute type 1 error rate
and power for any kind of relationship matrix between phenotyped and genotyped individuals for any level of
heritability. For the regression method, type 1 error rate increased with the variability of relationships and with
heritability, but decreased with the GRAMMAR method and was not affected with the FASTA and quantitative
transmission/disequilibrium test methods.

Conclusions: The formulae can be easily used to provide the correct threshold of type 1 error rate and to
calculate the power when designing experiments or data collection protocols. The results concerning the efficacy
of each method agree with simulation results in the literature but were generalized in this work. The power of
the GRAMMAR method was equal to the power of the FASTA method at the same type 1 error rate. The power of
the quantitative transmission/disequilibrium test was low. In conclusion, the FASTA method, which is very close
to the full mixed model, is recommended in association mapping studies.
Background
Single Nucleotide Polymorphism (SNP) information has
enabled the use of linkage disequilibrium to detect and
localize loci affecting phenotypes. The first methods
developed searched for disequilibrium between one or a
few marker loci and loci responsible for disease suscepti-
bility. Case–control designs were used [1]. Typically,
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data were analyzed to compare the frequency of marker
alleles between healthy and diseased individuals, for
instance using the relative risk criterion [2]. A similar
approach for quantitative traits (including production
traits in animals or plants) was to model the expectation
of their distribution as a linear combination of marker
genotype, allele or haplotype effects. Grapes et al. [3]
and Zhao et al. [4] demonstrated that the single marker
regression model is as powerful and precise as other
more sophisticated techniques, such as multiple regres-
sion, regression on haplotypes, or the IBD method
proposed by Meuwissen and Goddard [5].
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Detection of spurious associations is a major issue that
has been investigated by many authors. Such errors
occur when population classification based on marker
information is confounded with another source of het-
erogeneity that affects the trait being analyzed. The
problem of genetic heterogeneity has been the most
widely studied. Two non-exclusive situations can occur:
(i) the population consists of genetically different subpo-
pulations and (ii) the population consists of related indi-
viduals, which may be recorded through pedigree or not.
Several studies have clearly shown that neither relative
risk nor simple regression is robust to genetic stratifica-
tion of the population resulting from the mixture of dif-
ferent groups (breeds, lines, etc.) or families [6-9].
Many approaches have been proposed to avoid the

effects of spurious associations. The first was to restrict
the analysis to within-family comparisons, linking asso-
ciation analysis to transmission studies. Within this
framework, samples have to be carefully organized and
ad hoc families have to be recruited. They are based on
the association, within heterozygous parents family, of
segregation distortion at a marker locus and progeny
phenotypes. This idea was first implemented in the tran-
smission disequilibrium test (tdt) designed by Spielman
et al. [10] and then further developed by others. Ewans
and Spielman [11], when comparing tdt and a “within-
family contingency statistic” that is similar to the haplo-
type relative risk developed by Falk and Rubinstein [12],
demonstrated the robustness of tdt in various subdiv-
ision and admixture scenarios.
Two widely represented families of methods extend

these within-family comparisons to quantitative traits: the
“quantitative tdt” or QTDT by Abecassis et al. ([13-16])
and the family-based association tests or fbat [17-20]. All
these methods are robust to population stratifications,
have similar power [21,22], and are more powerful
than the first tests developed for family-based association
studies [14].
Although limiting spurious associations by using

within-family analyses was very successful, case–control
association studies in populations consisting of indivi-
duals assumed to be unrelated were nevertheless fre-
quently performed, in particular because the recruitment
of the corresponding samples is much easier [23]. A
number of techniques were derived to limit false posi-
tives: “genomic control” corrects the test statistic
[24,25], a structure effect can be added to the model of
analysis [26-31], and marker transmission used in
family-based tests can be generalized and used between
generations [5,32].
Concerning quantitative traits, known or hidden popu-

lation structures can be modeled in mixed models where
the phenotype expectation is modeled as the sum of
fixed effects, including the effect of the genetic marker
being tested, and a random individual polygenic effect.
Covariances between the individual polygenic effects are
proportional to the polygenic variance and coancestry
coefficients, which can be estimated from pedigree
or marker information [33-36]. This mixed model is a
standard that has been used in animal breeding and gen-
etics for many years [37,38] and more recently in human
genetics [39,40].
In these mixed models, polygenic and residual var-

iances have to be estimated separately for each marker
fitted before its significance is tested. This estimation
phase, to be repeated for each marker tested, can be a
limiting factor in large designs and simpler approaches
have been proposed. The GRAMMAR method was
developed by Aulchenko et al. [41,42] and by Amin et al.
[43] to test marker effects on phenotypes that have been
corrected for an estimate of the individual’s polygenic
effect in a restricted model that is free of the polygenic
effect. The FASTA approach described by Chen and
Abecasis [44] is a score test, derived from the general-
ized FBAT [18]. In a first step, environmental fixed
effects and polygenic and residual variances are esti-
mated from a mixed model excluding the marker effect.
Then, corrected phenotypes are successively correlated
to each marker’s genotypes using these estimations,
giving FBAT type scores. A similar approach can be con-
sidered in which the second step would be based on a
simple fixed effect model as in GRAMMAR.
Other approaches have been proposed, with the

aim of accelerating computations (emma for efficient
mixed-model association, [45], emmax for eXpedited,
[46] and P3D for Population Parameters Previously
Determined, [40]). Finally, a few models deal with spuri-
ous associations arising from subpopulations and family
structures [39,43,47-49].
The above methods have been evaluated by simula-

tions. Aulchenko et al. [41] compared GRAMMAR to
the full mixed model, to the regression model without a
polygenic effect, to the QTDT method, and to a simple
fbat by using simulated datasets that corresponded to
typical pedigrees. Genomic control was compared in
[43] using GRAMMAR and GRAMMAR-GC. Price
et al. [39] compared Pca (eigenstrat), Armitage test,
emmax with or without pca and roadtrips proposed by
Thornton and McPeek [50], in which genomic data are
modeled as random variables. Pca-based approaches
([26], eigenstrat; [51], pca-based logistic regression; [52],
lapstruct (which makes use of spectral graph theory to
build principal components) were compared in [53] to
the genomic control described by Devlin and Roeder
[24] and to roadtrips. Three GWAS (genome-wide asso-
ciation studies) techniques were compared in [54]: sim-
ple regression, GRAMMAR and a “mtdt”, which is a
QTDT applied to Mendelian sampling terms.
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On the whole, these numerical studies have shown
that within-family approaches are less powerful than
case control analyses in populations of unrelated indivi-
duals [41,48] and that there are no major differences
between the latter [3]. These studies have clearly demon-
strated the non-robustness of the simplest methods such
as the Armitage test or simple regression [47,53-55] and
that more elaborate models are robust to any type of
stratification [39,47,49]. Furthermore, these studies have
shown that approximate techniques such as GRAM-
MAR and emmax are very efficient in terms of error
control when family structures exist, as well as in com-
puting speed, but are less powerful in certain situations
e.g. [41,46].
One of the main limits of comparing methods based

on simulations is that the simulation results cannot be
generalized and only a few studies have provided alge-
braic results but for simple situations. For instance, Fan
and Xiong [56] formalized single- or bi-marker associ-
ation analyses by regression, deriving their power as a
function of the non-centrality parameter of the test stat-
istic, which depends on the linkage disequilibrium (LD)
between the markers and the quantitative trait locus
(QTL). In [11], the relative risk, the within-family con-
tingency statistic and the tdt were compared algebraic-
ally using a few admixture scenarios. The Cochran
Armitage test was studied by different authors [57-59].
The power of ANOVA or regression-based association
analyses was derived by Ambrosius et al. [60] as a func-
tion of allelic or genotypic frequencies, and recently
completed by Kozlitina et al. [61]. Abecacis et al. [13]
obtained results for the QTDT in population mixture
situations, by deriving within- and between-family
expectations with and without parental information.
Boitard et al. [62] generalized the corresponding formu-
lae for variances and tests. In [21], Lange et al. provided
algebraic formulae representing the power of fbat, de-
pending on parental and progeny genotypes.
The aim of the work presented here was to further

develop the algebraic formulation of power and type 1
error rate for four of the aforementioned methods: sim-
ple regression, the approximate methods GRAMMAR
[41,43] and FASTA [44], and the QTDT described by
[13]. Our goal was to explore the effect of population
structure but focusing on hidden familial relationships
rather than on population mixtures. In such situations,
phenotypes are both under the influence of the QTL
that is linked to tested markers and the polygenic back-
ground. The model of reference used in this study
was the standard mixed model which includes the coan-
cestry coefficients as parameters. Results show in which
situations the methods studied here can be considered
as appropriate and provides some guidance for popula-
tion sampling.
Methods
Statistical concepts
The statistics compared in this paper are testing
whether, or not, the variability of a quantitative trait, y, is
associated with the genotype at a SNP considered one by
one. Trait y is assumed to be polygenic, i.e. under the in-
fluence of many QTL. When testing a particular SNP-
phenotype association, the random variable y can be
described as the sum of the putative fixed effect β of a
QTL linked to this SNP, a random polygenic effect u
that represents the collective effect of all other
(unlinked) QTL, and random noise e (y = 1μ + xβ + u + e).
Hereafter, this model is designated as the “true model”.
The approximate methods, mentioned in the introduc-
tion, estimate β using simplified models. Generally, for
each of these simplified models (i), the regression coeffi-
cient of the SNP effect (fitted as a covariate according to
the number of reference alleles in the genotype, i.e. 0, 1
or 2) is estimated by the general least squares estimator

β̂
ið Þ
. A standard Student’s test is then constructed to test

the null hypothesis that the SNP effect is zero. Let

E ið Þ β̂
ið Þ� �

and V ið Þ β̂
ið Þ� �

be the expectation and variance

of the estimator β̂
ið Þ
, and σ̂ 2

eðiÞ and E ið Þ σ̂ 2
e ið Þ

� �
be an estima-

tor of the residual variance and its expectation, all assum-
ing model (i). The t-tests can then be formulated as:

τ ið Þ ¼
β̂

ið Þ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ið Þ β̂

ið Þ� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂

p
e ið Þ
2 =E ið Þ σ̂ 2

e0 iÞ
� �

As the ratio of a normal distribution with unit variance
and an independent square root χ2 distribution, these
tests are assumed to follow non-central t-distributions

with non-centrality parameter E ið Þ β̂
ið Þ� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ið Þ β̂

ið Þ� �r
.

However, these tests do not follow these distributions
because y does not follow the simplified model (i); only
if the tests are computed with expectations and variance

of β̂
ið Þ

corresponding to the true model for y, do the

tests follow a t-distribution. Let E β̂
ið Þ� �

and V β̂
ið Þ� �

be

the expectation and variance of the estimator β̂
ið Þ

and
E σ̂ 2

e ið Þ
� �

the expectation of the estimator of residual vari-
ance assuming y follows the true model. Then, the valid
Student’s tests are:

t ið Þ ¼
β̂

ið Þ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V β̂

ið Þ� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂

p
e

ið Þ
2 =E σ̂ 2

e ið Þ
� �:

These Student’s distributions tend to normal distri-
butions when the number of animals involved in the
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analysis is sufficiently high (100 animals). These normal

distributions have mean
E β̂

ið Þ� �ffiffiffiffiffiffiffiffiffiffiffiffi
V β̂

ið Þ� �q and variance 1 [63].

The test τ(i) that is used instead of t(i) can be expressed

as τ ið Þ ¼ t ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V β̂

ið Þ� �
V ið Þ β̂

ið Þ� �
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E ið Þ σ̂ 2

e ið Þ

� �
E σ̂ 2

e ið Þ

� �
vuuut . Thus, the test τ(i) will

have a normal distribution with mean:

E τ ið Þ
� �

¼ E β̂
ið Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

V ið Þ β̂
ið Þ� �

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ið Þ σ̂ 2

e ið Þ
� �

E σ̂ 2
e ið Þ

� �
s

and variance:

V τ ið Þ
� �

¼
V β̂

ið Þ� �
V ið Þ β̂

ið Þ� � E ið Þ σ̂ 2
e ið Þ

� �
E σ̂ 2

e ið Þ
� � :

The aim of the present study was to express these
moments as a function of the parameters of the true
model for y, i.e. the matrix of relationships among indi-
viduals and the polygenic variance. The true type 1 error
rate and power of the tests of model (i) were analytically
determined. Under the null hypothesis (H0, β = 0),
the tests τ(i) were assumed to have expectation 0
and variance 1. For a given expected type 1 error
rate α, the threshold for rejecting the null hypothesis
was set at tα/2 =Φ− 1(1 − α/2), where Φ is the standar-
dized cumulative normal distribution. With the same
threshold, knowledge of the true variance and expect-
ation of the tests τ(i) allowed us to compute the actual

true type 1 error rate α ið Þ ¼ 2 1�Φ
tα=2�Eβ¼0 τ ið Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vβ¼0 τ ið Þð Þ
p

� �	 

,

where Eβ = 0(τ
(i)) is the expectation of the test statistic

and Vβ = 0(τ
(i)) the variance of the test statistic under

the null hypothesis. Under the alternative hypothesis

(H1, β = b), the statistical power was computed as P ið Þ
α;b ¼

1�Φ
tα=2�Eβ¼b τ ið Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vβ¼b τ ið Þð Þ
p Þ

� �
, using the same definition for the

threshold and the true regression coefficient b. The bias
of the estimator of the regression coefficient of the SNP

effect was computed as Eβ¼b β̂
ið Þ� �

� b
� �

=b:

In the following, the true model and the simple mod-
els (i) used for analysis are defined. The expectation and
variance of the test τ(i) used are expressed as a function
of the parameters conditional on genotypes and on the
variance of polygenic effects. Finally, the marginal type 1
error rate and power are given by integrating the SNP
genotypes and polygenic variance estimators given the
relationship matrix and the true variance parameters. It
should be noted that power was calculated based on the
SNP effect, not based on the effect of a QTL linked
to the SNP. To calculate the power to detect a QTL,
assuming LD r2 between the SNP and the QTL, the
regression coefficient of the QTL effect is equal to the
SNP effect divided by r.

Statistical models
The true model was assumed to be the following
mixed model:

y¼1μþ xβþuþ e;

where y is the vector of the observed trait (one pheno-
type per animal), μ is the vector of the overall mean, β
the regression coefficient of the fixed SNP effect, u the
vector of random additive genetic effects of the ani-
mals and e the vector of random residuals. Let E(u) = 0,
V(u) =Aσu

2 with A being the relationship matrix and σu
2 the

additive polygenic variance, and V(e) = Iσe
2 with σe

2 the re-
sidual variance. Heritability was defined as the ratio be-
tween the polygenic genetic variance and the sum of

polygenic variance and residual variance: h2 ¼ σ2u
σ2uþσ2e

and

we defined the phenotypic variance as σy
2 = σu

2 + σe
2. The vec-

tor x is the incidence vector of the SNP effect, defined as
x ¼ w � 1�w (see for example [64]), where w is �2p=

ffiffiffiffiffiffiffiffi
2pq

p
for genotype 11, 1� 2pð Þ= ffiffiffiffiffiffiffiffi

2pq
p

for genotype 12, and
2q=

ffiffiffiffiffiffiffiffi
2pq

p
for genotype 22, with p being the frequency of al-

lele 2 and q the frequency of allele 1, so that E(w) = 0 and
V(w) = 1. Based on the definition of x, the relationship be-
tween the regression coefficient of the true model and the
allele substitution effect (the difference between genotype
11 and 12 or 12 and 22) is:

βallele ¼ β=
ffiffiffiffiffiffiffiffi
2pq

p
:

So, the same statistical power was obtained for differ-
ent allele substitution effects, depending on the allele
frequencies. For the sake of simplicity, no other fixed
effect was added to the model.
We analyzed four simpler models that were used to

estimate the SNP effect instead of the true model. The
first three models were association analyses and the
fourth was a linkage and association analysis. The super-
script (i), i = 1,. . .,4 was added to identify the effects
specific to each of the four models.

1) The first model was a simple regression model with
no polygenic effect:

y¼1μ 1ð Þ þ xβ 1ð Þþe 1ð Þ: ð1Þ

2) The second model was the GRAMMAR method
developed by [41] and [43]. GRAMMAR is a
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two-step method in which first the following model
is fitted:

y¼1μ 2að Þ þ u 2að Þþe 2að Þ; ð2aÞ
then the estimates of residuals are used to estimate
the SNP effect:

ê 2að Þ¼1μ 2bð Þ þ xβ 2bð Þ þ e 2bð Þ: ð2bÞ
3) The third model was derived from the FASTA

approach from [44]. To homogenize comparisons,
we did not use the score as formalized by the
authors but simply considered the marker effect
t-test from the following model:

y¼1μ 3ð Þ þ xβ 3ð Þþu 3ð Þ þ e 3ð Þ; ð3Þ
but with variance components estimated from
the same random model like in the first step of
GRAMMAR (y = 1μ(2a) + u(2a) + e(2a)), i.e. with
V u 3ð Þ� � ¼ Aσ̂ 2

u 3ð Þ instead of V u 3ð Þ� � ¼ Aσ2u 3ð Þ
and V e 3ð Þ� � ¼ Iσ̂ 2

eð2aÞ :
4) The fourth model was the linkage analysis and

association method, QTDT, developed by [13].
Let z ¼ xsþxd

2 , where xs and xd denote the genotype
of the sire and dam of the animal. Then:

y¼1μ 4ð Þ þ z�1�zð Þβ 4ð Þ
b þ x�zð Þβ 4ð Þ

w þ e 4ð Þ; ð4Þ

where βb
(4) is the regression coefficient between

families and βw
(4) the regression coefficient within

families.

Validation of the derivations
Details on the algebra used to obtain the results are pro-
vided in Additional file 1 [See Additional file 1]. Several
approximations were used in the derivations, notably:

– ignoring the variance of the estimator of the SNP
effect caused by estimation of the variance
component instead of using true variance [65],

– replacing quadratic forms by their expectations in
products and ratios.

Therefore, simulations were first performed to validate
the formulae for each method. Validation was restricted
to the family structures and heritability values used in
the “Comparison of methods” section of the paper. The
population used for the simulations therefore consisted
of 600 genotyped individuals, offspring of 120, 20 and 10
sires that produced 5, 30 and 60 offspring, respectively.
To do this, the genotypes for a SNP were simulated for
sires and dams with allele frequencies of 0.5, and the
genotypes of the offspring were extrapolated from their
parents’ genotypes. Next, the polygenic values of the
sires and offspring and the phenotypes of the offspring
were computed with and without the effect of a corre-
sponding QTL with an allele substitution effect of 0.20
(equivalent to a regression coefficient of 0.141 pheno-
typic standard deviations or a QTL explaining 2% of the
phenotypic variance). The robustness and power of each
method were then evaluated using these two phenotypes
(with or without a QTL) with a significance threshold of
5% (which is different from the 1% threshold used in the
application section). The simulations were performed
with heritabilities ranging from 0 to 1 by 0.1 steps. 10 000
replicates were simulated for each scenario. In total,
1 320 000 simulations were performed. For the GRAM-
MAR and FASTA methods, the ASREML software [66]
was used to estimate variance components. The relation-
ship matrix used for these two methods was derived from
pedigree data and not from genomic data. Details are pro-
vided in Additional file 2 [See Additional file 2].
An R program (see Additional file 3) was written to

compute the type 1 error rate and the power of the four
methods under any relationship matrix and heritability.

Results
Expectation and variance of the estimator of the SNP
effect and of the test statistics
This section only considers the formulae for the expect-
ation and variance of the estimator, the expectation of
the sum of the squares of residuals and the expectation
and variance of the test statistics. Details are provided in
Additional file 1.

Model 1: regression model
Assuming model (1), the SNP effect was estimated by:

β̂
1ð Þ ¼ x0xð Þ�x0y:

If the vector y followed model (1), E 1ð Þ β̂
1ð Þ� �

¼ β ,

V 1ð Þ β̂
1ð Þ� �

¼ x0xÞ�σ2e 1ð Þ
�

and the residual variance is esti-

mated from the sum of the squares of residuals assum-

ing, E 1ð Þ ê 1ð Þ0ê 1ð Þ
� �

¼ n� 2ð Þσ2e 1ð Þ . But in fact, when

considering that y follows the true model, the true
expressions are as follows.
The expectation of this estimator is:

E β̂
1ð Þ� �

¼ β:

The variance of the estimator is:

V β̂
1ð Þ� �

¼σ2e x0xð Þ� þ h2

1� h2
x0xð Þ�x0Ax x0xÞ�ð �:

	

So the variance of the estimator of the SNP effect was
a function of heritability and of the relationship matrix,
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in addition to the usual factor involving residual vari-
ance. The residual variance was estimated using the sum
of squares of residuals. The expectation is:

E ê 1ð Þ0ê 1ð Þ
� �

¼ σ2e n� 2ð Þ þ h2

1� h2ð Þ tr Að Þð
	

� x0xð Þ�x0Ax� 101ð Þ�10A1Þ


;

where n is the number of animals analyzed.
Finally, the mean and variance of the test statistic that

was actually used are:

E τ 1ð Þ� � ¼
β=σy
� � ffiffiffiffiffiffiffiffiffiffi

x0xð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

tr Að Þ � x0xð Þ�x0Ax� 101ð Þ�110A1� n� 2ð Þ
n� 2ð Þ

s

V τ 1ð Þ� � ¼
1þ h2 x0Axðx0xÞ� � 1ð Þ

1þ h2
tr Að Þ � x0xð Þ�x0Ax� 101ð Þ�110A1� n� 2ð Þ

n� 2

:

Model 2: GRAMMAR model
Assuming model (2b), the SNP effect was estimated by:

β̂
2bð Þ ¼ x0xð Þ�x0ê 2að Þ ¼ x0xð Þ�x0 y � 1μ̂ 2að Þ � û 2að Þ

� �
:

Assuming y followed model (2b), V 2ð Þ β̂
2bð Þ� �

¼
x0xÞ�σ2e 2bð Þ
�

and E 2ð Þ ê 2bð Þ0ê 2bð Þ
� �

¼ n� 2ð Þσ2
e 2bð Þ . To de-

velop the correct formulae, we need to know the expect-
ation and variance of estimators of the polygenic effects
in the random model (2a). The mixed model equation of
model (2a) can be denoted as:

101 10

1 Iþλ 2að ÞA�1

	 

μ̂

2að Þ

û 2að Þ

	 

¼ 10y

y

	 

;

where

λ 2að Þ ¼ σ2e 2að Þ

σ2
u 2að Þ

and μ̂
2að Þ

û 2að Þ

	 

¼ C 2að Þ

11 C 2að Þ
1u

C 2að Þ
u1 C 2að Þ

uu

" #
10y
y

	 

:

Then, assuming that y followed the true model:

E û 2að Þ
� �

¼ C 2að Þ
uu xβ:
The estimates of the polygenic effects were biased, and:

V û 2að Þ
� �

¼ σ2u A� λ 2að ÞC 2að Þ
uu

� �
þ σ2e � λ 2að Þσ2

u

� �
C 2að Þ

uu I� λ 2að ÞA�1C 2að Þ
uu

� �
Thus, when computing the expectation of estimator of

the SNP effect:

E β̂
2bð Þ� �

¼ β� x0xð Þ�x0C 2að Þ
uu xβ;

the estimator of the SNP effect was biased,

V β̂
2bð Þ� �

¼ σ2e x0xð Þ� � x0xð Þ�x0C 2að Þ
uu xðx0xÞ�

h i

� σ2
e � λ 2að Þσ2u

� �
λ 2að Þ x0xð Þ�x0C 2að Þ

uu A�1C 2að Þ
uu x x0xÞ�;ð

and the residual variance was estimated using the sum
of squares of residuals:

E ê 2bð Þ0ê 2bð Þ
� �

¼ σ2e n� 2� tr C 2að Þ
uu

� �
þ x0xð Þ�x0C 2að Þ

uu xþ 101ð Þ�10C 2að Þ
uu 1

� �

þβ2x0C 2að Þ
uu

�
I� xðx0xÞ�x0 � 1 101ð Þ�10

�
C 2að Þ
uu x

� σ2e � λ 2að Þσ2
u

� �
λ 2að Þ

tr
��

I� xðx0xÞ�x0 � 1 101ð Þ�10
�
C 2að Þ

uu A�1C 2að Þ
uu Þ:

Hence,

E τ 2bð Þ
� �

¼ β� x0xð Þ�x0C 2að Þ
uu xβ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þx0xp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ê 2bð Þ0ê 2bð Þ
� �r

V τ 2bð Þ
� �

¼ n� 2ð Þ
E ê 2bð Þ0ê 2bð Þ
� � σ2e 1� x0C 2að Þ

uu xðx0xÞ�
h i�

� σ2e � λ 2að Þσ2u
� �

λ 2að Þx0C 2að Þ
uu A�1C 2að Þ

uu xðx0xÞ�
�
:

Model 3: FASTA model
The only difference between this model and the
true model was the variance components used, which
were the same as in the GRAMMAR model. The
mixed model equation for model (3) is:

101 10x 10

x01 x0x x0

1 x Iþλ 2að ÞA�1

2
4

3
5 μ̂ 3ð Þ

β̂ 3ð Þ

û 3ð Þ

2
664

3
775 ¼

10y
x0y
y

2
4

3
5 with λ 2að Þ ¼

σ2
e 2að Þ

σ2
u 2að Þ

, from the first model (2a) used in GRAMMAR.
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If:

C 3ð Þ
11 C 3ð Þ

1β C 3ð Þ
1u

C 3ð Þ
β1 C 3ð Þ

ββ C 3ð Þ
βu

C 3ð Þ
u1 C 3ð Þ

uβ C 3ð Þ
uu

2
664

3
775

101 10x 10

x01 x0x x0

1 x Iþλ 2að ÞA�1

2
4

3
5

¼
1 0 0
0 1 0
0 0 I

2
4

3
5

the estimator of the SNP effect is:

β̂
3ð Þ ¼ C 3ð Þ

β1 1
0 þ C 3ð Þ

ββ x
0 þ C 3ð Þ

βu

� �
y:

Assuming y follows model (3), V 3ð Þ β̂
3ð Þ� �

¼C 3ð Þ
ββ σ

2
e 3ð Þ

and the sum of products between phenotypes and resi-
duals were used to estimate the residual variance, as is
customary in mixed models, so that E 3ð Þ y0ê 3ð Þ� � ¼
n� 2ð Þσ2e 3ð Þ . Then, the expectation and variance of the
estimator of the SNP effect, assuming a true model
for y, are

E β̂
3ð Þ� �

¼β

V β̂
3ð Þ� �

¼ σ2e x0x� x0C 2að Þ
uu x

� ��1
� σ2

e � λ 2að Þσ2u
� �

x0x� x0C 2að Þ
uu x

� ��1
� �2

x0C 2að Þ
uu x� x0C 2að Þ

uu C 2að Þ
uu x

� �

E ê 3ð Þ0y
� �

¼ n� 2ð Þσ2e � σ2e � σ2uλ
2að Þ

� �
tr C 2að Þ

uu

� �� 1
n
10C 2að Þ

uu 1

�
x0C 2að Þ

uu xþ 1
n
x0C 2að Þ

uu 110C 2að Þ
uu x� x0C 2að Þ

uu C 2að Þ
uu x

� �
x0x� x0C 2að Þ

uu x
� �

0
BBBB@

1
CCCCA:

Hence,

E τ 3ð Þ
� �

¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0x� x0C 2að Þ

uu x
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 2ð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ê 3ð Þ0y
� �r

V τ 3ð Þ
� �

¼ σ2e � σ2
e � λ 2að Þσ2

u

� � x0C 2að Þ
uu x� x0C 2að Þ

uu C 2að Þ
uu x

� �
x0x� x0C 2að Þ

uu x
� �

 !

� n� 2
3ð Þ0

� �
0
@

1
A:
E ê y
Model 4: QTDT model
Assuming model (4), two regression coefficients had to
be estimated:

μ̂ 4ð Þ
^

β 4ð Þ
b

β̂w
4ð Þ

2
664

3
775 ¼

101 10 z� 1�zð Þ 10 x� zð Þ
z� 1�zð Þ01 z� 1�zð Þ0 z� 1�zð Þ z� 1�zð Þ0 x� zð Þ
x� zð Þ01 x� zð Þ0 z� 1�zð Þ x� zð Þ0 x� zð Þ

2
4

3
5
� 10y

z� 1�zð Þ0y
x� zð Þ0y

2
4

3
5:

If θ̂ ¼
μ̂ 4ð Þ
^

β 4ð Þ
b

β̂w
4ð Þ

2
664

3
775¼ Q0Qð Þ�Q0y with Q ¼ 1 z� 1�zð Þ x� zð Þ½ �,

assuming model (4), the variance and expectation of
the estimators are:

V 4ð Þ θ̂
� �

¼ Q0Qð Þ�σ2e 4ð Þ and E 4ð Þ ê 4ð Þ0ê 4ð Þ
� �

¼ n� 3ð Þσ2e 4ð Þ ;

and assuming the true model, the expectation and vari-
ance of estimates of the regression coefficients are
in fact:

E θ̂
� �

¼ Q0Qð Þ�Q0 xβþ 1μð Þ

V θ̂
� �

¼ Q0Qð Þ�Q0AQ Q0QÞ�σ2
u þ Q0Qð Þ�σ2e;

�
and the sum of the squares of residuals:

E ê 4ð Þ0ê 4ð Þ
� �

¼ n� 3ð Þσ2
e þ tr Að Þ � tr Q Q0Qð Þ�Q0Að Þð Þσ2u

þ μ2 n� 10Q Q0Qð Þ�Q01ð Þ
þ β2 x0x� x0Q Q0Qð Þ�Q0xð Þ
� μβ 10Q Q0Qð Þ�Q0xþ x0Q Q0Qð Þ�Q01ð Þ:

Thus, the expectation and variance of the test on

β̂w 4ð Þ (the within-family regression) is:

E τ 4ð Þ
� �

¼ Q0Qð Þ�Q0 xβþ 1μð Þ½ �3;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0Qð Þ�½ �3;3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3ð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ê 4ð Þ0ê 4ð Þ
� �r

V τ 4ð Þ� � ¼
Q0Qð Þ�Q0AQ Q0QÞ�σ2u þ Q0Qð Þ�σ2e

� �
3;3

Q0Qð Þ�½ �3;3
n� 3ð Þ

E ê 4ð Þ0ê 4ð Þ
� � ;

2
4
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where [M]3,3 denotes the coefficient of line 3 and
column 3 that of matrix M.

True model
With the true model, the classical formulae are:

E β̂
� �

¼β;

V β̂
� �

¼ σ2
eCββ;

E ê0yð Þ ¼ n� 2ð Þσ2e ;
E τð Þ ¼ β

σe
ffiffiffiffiffiffiffiffi
Cββ

p ;

V τð Þ ¼ 1:

Marginal expectation and variance of test statistics
The above formulae give the conditional expectation
of the estimators of the SNP effects and the condi-
tional expectation and variance of test statistics based
on specific data, i.e., given w, the marker genotypes
(or x, the centered genotypes defined in the true
model) and the known variance component of the
polygenic effects. These formulae can be applied to
any kind of data.
The aim of this section is to derive the marginal

expectation and variance of the test statistics, by integrat-
ing over the distribution of genotypes and the variance
components of the random polygenetic effects, given the
relationship matrix and variance components of the true
model. For this purpose, the quadratic forms involving x
and z and the variance components of the random model
(2) were replaced by their expectation. If Ex denotes these
expectations and aij is the relationship coefficient between
animals i and j, then the relationship coefficient for the
Mendelian sampling variance dii can be defined as:

dii ¼ aii � 1
4
asisi þ

1
4
adidi þ

1
2
asidi

� �
;

where si is the sire of animal i and di the dam.
D is the diagonal matrix with elements dii. Assuming

Hardy Weinberg equilibrium, we know that [67]:Ex
(wiwj) = aij, Ex(wiwi) = aii, Ex(wizi) = Ex(zizi) = aii − dii, and
Ex(zizj) = aij,when the genotype, w, is expressed in a stan-
dardized form, as shown in the introduction. Thus:

Ex x0xð Þ ¼ tr Að Þ � 1
n
10A1

Ex x0Axð Þ ¼ tr AAð Þ � 2
n
10AA1þ 1

n2
10A110A1

Ex x0C 2að Þ
uu x

� �
¼ tr Að Þ � λ 2að Þtr C 2að Þ

uu

� �
þ 1
n2

10A110C 2að Þ
uu 1� 1

n
10AC 2að Þ

uu 1
Ex x0C 2ð Þ
uuC

2ð Þ
uu x

� �
¼

tr Að Þ � λ 2ð Þtr C 2að Þ
uu

� �
� λ 2að Þtr C 2að Þ

uu C 2að Þ
uu

� �

þ 1
n
10AC 2að Þ

uu 1� 1
n
10AC 2að Þ

uu C 2að Þ
uu 1þ 1

n2
10A110C 2að Þ

uu C 2að Þ
uu 1

Ex x0C 2að Þ
uu 110C 2að Þ

uu x
� �

¼ 10A1� λ 2að Þ10C 2að Þ
uu 1

�λ 2að Þ10C 2að Þ
uu C 2að Þ

uu 1 þ 1
n
λ 2að Þ10C 2að Þ

uu 110C 2að Þ
uu 1;

and for the sums involved in the QTDT (as in [13]):

Ex Q0Qð Þ ¼
n 0 0

0 tr Að Þ � 1
n
10A1� tr Dð Þ n� 1

n
0

0 0 tr Dð Þ

2
64

3
75

Ex Q0xð Þ ¼
0

tr Að Þ � 1
n
10A1� tr Dð Þ n� 1

n

tr Dð Þ n� 1
n

2
664

3
775

Ex Q01ð Þ ¼
n
0
0

2
4
3
5

Ex Q0AQð Þ ¼
10A1 0 0

0
tr A0Að Þ � tr ADð Þ � 2

n
10A0A1� 10AD1ð Þ

þ 1
n2

10A110A1� 10A1tr Dð Þð Þ
0

0 0 tr ADð Þ

2
666664

3
777775:

These expectations replace their corresponding terms
in the preceding formulae in order to express all expec-
tations and variances of the tests used for detection of
the SNP effect as a function of heritability and the rela-
tionship matrix. To this end, the following approxima-
tions were made: expectations of ratios and products
were replaced by ratios and products of expectations.
For the expectation of variance components given the
relationships, the following expectations were used:

Ex σ2
u 2ð Þ

� � ¼ σ2u þ β2;

Ex σ2
e 2ð Þ

� � ¼ σ2e ;

Ex λ 2ð Þ
� �

¼ σ2
e

σ2
u þ β2

:
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Validation of deterministic formulae
As pointed out in the Methods section, simulations were
performed in order to validate the previous analytical
results. Table 1 summarizes these results as absolute
deviations of type 1 error rate and power from analytical
results. Details and standard errors of these simulations
are provided in Additional file 2 [See Additional file 2].
The average deviation of simulation results from analyt-
ical results were in general of the same order as the
standard deviation of the simulation results (0.22% for 5%
estimated) for type 1 error rate and slightly higher for
power (0.36% for example for 85% estimated). Thus,
simulations were in very good agreement with analytical
results and make a general discussion possible. The only
exception may be for extremely high values of heritability.

Comparison of methods
The above formulae can be applied to any data without
simulation when the relationship matrix is known. The
results presented here are an illustration based on 600
recorded and genotyped progenies belonging to 120, 20
and 10 families of respectively nd = 5, 30 and 60 half-
sibs, which is typical for animal breeding data. The
power was calculated for a SNP with a regression coeffi-
cient of 0.14 in phenotypic standard deviations (or 2% of
phenotypic variance, which is equivalent to an allele sub-
stitution effect of 0.20 for a minor allele frequency (MAF)
of 50% or an effect of 0.33 for a MAF of 10%. The effect
of changes in the total number of animals, and estimates
of variance components used in GRAMMAR and FASTA
was also analyzed.
For families of half-sibs, the preceding formulae

concerning expectation and variance of the tests
throughout the Results section were calculated using:

cii ¼ h2 16þh2 3nd�7ð Þ½ �
4�h2ð Þ 4þh2 nd�1ð Þð Þ þ h2 ndþ3ð Þð Þ2

4n 1�h2ð Þ 4þh2 nd�1ð Þð Þ , the diagonal

term of Cuu
(2), cij ¼ 4 1�h2ð Þh2

4�h2ð Þ 4þh2 nd�1ð Þð Þ þ h2 ndþ3ð Þð Þ2
4n 1�h2ð Þ 4þh2 nd�1ð Þð Þ ,
Table 1 Average and maximum absolute differences for
type 1 error rate and power between simulated* and
theoretical results

Model

Regression GRAMMAR FASTA QTDT

Type 1 error (%)

Average difference 0.26 0.22 0.18 0.28

Maximum difference 1.09 0.70 0.50 0.74

Power (%)

Average difference 0.37 0.58 0.90 1.12

Maximum difference 0.76 2.97 1.74 2.19

*see text: total population size = 600 with 120, 20 and 10 sires that
respectively produced 5, 30 and 60 offspring, MAF of SNP 0.5, QTL effect 2%
of phenotypic variance, assumed type 1 error rate 5%, heritability from 0 to
1 in steps of 0.1.
the off-diagonal term of Cuu
(2) between half-sibs, cij ¼

h2 ndþ3ð Þð Þ2
4n 1�h2ð Þ 4þh2 nd�1ð Þð Þ the off diagonal term of Cuu

(2) between

animals from different families. Diagonal coefficients of
the relationship matrix A were 1 and off-diagonal coeffi-
cients were ¼ between half-sibs and 0 elsewhere. Matrix
D was diagonal with coefficients ½. It should be noted
that with families of equal sizes:

λ 2ð ÞC 2ð Þ
uuA

�1C 2ð Þ
uu ¼ C 2ð Þ

uu � C 2ð Þ
uuC

2ð Þ
uu þ 1

n
C 2ð Þ

uu 11
0C 2ð Þ

uu

¼ C 2ð Þ
uu � C 2ð Þ

uuC
2ð Þ
uu :

For an assumed type 1 error rate of 1%, the expected
true type 1 error rate is plotted in Figures 1a to 1d
according to the heritability of the polygenic effect and
the number of half-sibs per family, for the same overall
number of genotyped animals (600). For the regression
model, there was a marked increase in type 1 error rate
with heritability and family size; the type 1 error rate
was equal to 12% with h2 = 0.50 and families of 60 half-
sibs. With the GRAMMAR model, the type 1 error rate
decreased with heritability and family size. FASTA and
QTDT models were practically not affected by polygenic
variance and relationships.
Figures 2a to 2d show the power of the methods. With

the regression method, the power decreased with herit-
ability and family size. With both the FASTA and
GRAMMAR methods, the power first decreased to a
minimum at a heritability of about 0.30 and then
increased with heritability towards a value equal to the
power obtained with a heritability of 0. The power was
always higher with smaller families. The power of the
QTDT method was not affected by population structure
or by the polygenic effect but was very low compared to
the other models.
The power was also calculated for the same true

type 1 error rate (Figure 3). In that case, the power of
the regression model was always lower than that of the
FASTA model, which was equal to the power of the
GRAMMAR model. The power of the true mixed model
is not shown in Figure 3 because it was almost the same
as the power of the FASTA model, except for very low
heritabilities and large families (for example, for h2 =
0.10 and a family size of 60 half-sibs, the power of the
FASTA model and the true mixed model were 73.2%
and 73.3%, respectively).
Only the GRAMMAR model resulted in biased esti-

mators of the SNP effect and this is plotted in Figure 4.
The value of the SNP effect was underestimated and the
bias increased sharply as heritability increased (−56% for
h2 = 0.50 and families of 60 half-sibs).
Robustness did not deviate greatly with total sample

size. For example, with the regression method and for
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Figure 1 True type 1 error rate for an assumed type 1 error rate of 1% with equal half-sib families in a sample of 600 animals for
different models. a: regression model; b: GRAMMAR model; c: FASTA model; d: QTDT model
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h2 = 0.50, families of 60 half-sibs and an assumed type 1
error rate of 1%, true type 1 error rate was 11.9% with a
total sample of 600 animals and 12.6% with 6000 ani-
mals. With the same data structure and the GRAMMAR
method, type 1 error rate was 0.38% with 600 animals
and 0.35% with 6000 animals.
For both the GRAMMAR and FASTA methods, the

final models use variance components that are estimated
with the same simple random model. Results presented
in the previous section were marginal expectations using
the distribution of the estimator of the variance compo-
nents. However, one question is: what happens if the
variance components are not estimated using the same
sample as that used to estimate the SNP effect? Herit-
ability can be introduced in the model if the user consid-
ers that a better estimate of heritability was obtained
using other data. Figure 5 shows type 1 error rate for the
GRAMMAR and FASTA methods assuming that true
heritability was 0.30 but that the heritability used in
models (2b) and (3) was under- or overestimated by 0.05
to 0.55. In the case of underestimated heritability, the
type 1 error rate increased with decreasing heritability.
For example, consider a large family (60 half-sibs) and a
much smaller heritability than the true value (0.05 vs.
0.30). In that case, assuming a 1% type 1 error rate, the
expected true type 1 error rate reached 1.9% for the
GRAMMAR model, and 2.5% for the FASTA model.
Our algebraic results can be used as a tool to design

populations or estimate the success of a given design
before starting the genotyping process. FASTA statistics,
which are not subject to type 1 error rate due to popula-
tion stratification, should be used for this purpose.
As shown in Figure 6, the power of the method mainly

depends on the total number of individuals included in
the analysis. Although power is only marginally affected
by the family structure of the data and by the heritability
of the trait, the experimenter may be limited (e.g., for
budgetary reasons) to a fixed total size and may conse-
quently only be able to adjust family structure. Figure 7
shows how the total population size should be adjusted
to obtain a power of 80% for a given family structure for
a SNP with a moderate effect of 2% of the phenotypic
variance. Results show a difference of 183 individuals
between the least and most favorable situations. Although
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Figure 2 Power with an assumed type 1 error rate of 1% in the case of equal half-sib families in a sample of 600 animals. The following
conditions were tested i.e. true regression coefficient of 0.20 phenotypic standard deviation (σy) with minimum allele frequency (MAF) of 50%,
which is equivalent to 0.33 σywith MAF 10% or equivalent to 2% of phenotypic variance for a: regression model; b: GRAMMAR model; c: FASTA
model; d: QTDT model
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this difference may appear reasonable, 183 individuals
represented one fifth of the genotyping costs.
The genomic control (GC) inflation factor developped

by Delvin and Roeder [24] is a very common measure of
the deviation of a test’s empirical distribution from its
theoretical distribution in association studies. As pointed
out by Bacanu et al. [25], in the case of multiple Student
t tests for quantitative traits, the GC inflation factor may
be interpreted as the variance of the normal distribution
approximately followed by the Student t distribution.
Even if, as presented here, the expectation of the test’s
distribution is influenced by population structure under
the alternate hypothesis, its variance is closely related to
the GC inflation factor. Figure 8 presents the GC infla-
tion factor, as approximated by this variance as a func-
tion of heritability and family structure. It clearly shows
that inflation is very limited with the GRAMMAR
method but may be considerable with the regression
method when families are large and heritability is high.
Discussion
The formulae presented in the Methods section of this
paper are not easy to interpret. In the following, we
explain the behavior of each method in common terms.

Regression method
The high type 1 error rate with high heritability for this
method was caused by the probability of two half-sibs
sharing the same SNP because of their relationship,
rather than the effect of a common QTL genotype. If a
polygenic effect is present, this local similarity in SNP is
confounded with the similarity of relatives in phenotype
due to the polygenic effect. The expectation of polygenic
effect is null. Thus, the expectation of the estimate of
SNP effect is not affected by this confusion between
SNP and polygenes: the test is unbiased. However, the
variance of the test increases according to the variability
of the relationship level in the data. If all animals in the
sample share the same level of relationship (e.g. all
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sample are half-sibs of the same family), they would all
have a similar phenotype and the same probability of
sharing the same SNP. Therefore, the increase in type 1
error rate was not caused by close relationships between
genotyped animals but by the presence of a mixture of
close and more distant relationships. This occurs when
independent large families (half-sibs, full-sibs) are
present in the data. The effect of this family structure on
the variance of the test was proportional to the ratio of
the polygenic variance and residual variance and hence
increased exponentially with heritability. However, the
increase in type 1 error rate with heritability and family
size did not systematically result in an increase in power.
Under the alternate hypothesis (β = b), the variance of
the test was still higher than 1 and increased with herit-
ability, while the expectation of the test did not vary
greatly with heritability. So when the threshold chosen
for type 1 error rate (tα/2) was lower than the expect-
ation of the test (power greater than 50%), a smaller pro-
portion of the normal distribution is expected to be
greater than tα/2 as heritability increases. This explains
why the power for the regression method decreased with
heritability and the variance of relationships.
GRAMMAR model
In the GRAMMAR model, differences in the type 1
error rate and power with respect to heritability were
due to the relationships between animals that were used
to simultaneously estimate the polygenic effects and the
SNP effect. In this case, the variance of the new pheno-
type, i.e. the residual of model (2a), used to test the SNP
effect was approximately equal to the residual variance
of the true model minus the genetic variance times
(1 minus the reliability of estimates of polygenic effects).
Reliability is defined as the square correlation between
estimate of polygenic effect and true effect. However,
due to the covariance between estimates of the polygenic
effect of relatives, which are also likely to share the same

SNP genotype, the variance of β̂ was proportional to the
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residual variance of the true model times (1 minus the
reliability of estimates of polygenic effects). The differ-
ence in these evolutions of the variance of the new

phenotype and variance of β̂ as a function of heritability
explained the decrease in the variance of the test for a
medium value of heritability and hence the decrease in
type 1 error rate. The fact that the GRAMMAR estimate
effect was greatly biased (and the only one to be so in
this comparison of models) did not play a role in the
changes in power with heritability, compared to these
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FASTA model
The only difference between the FASTA model and the
true mixed model is the error in variance components
since they were estimated with a pure random model.
Therefore, under the null hypothesis, i.e. without a SNP
effect, the variance components were the same and the
type 1 error rate was not affected by heritability of the
trait or relationships within the sample. Under the alter-
nate hypothesis, the influence of heritability on power
was only moderate and affected only with low to
medium heritabilities. This is caused by the variance of

β̂ , which depends on the reliability of the estimates of

polygenic effects, due to the mixed model (V 3ð Þ β̂
3ð Þ� �

¼
σ2e 3ð Þ= n 1� reliabilityð Þ½ �). This was particularly important
when reliability differed from heritability and thus when

V β̂
� �

decreased more rapidly than residual variance as

a function of heritability. This was the case when half-
sibs affected the reliability of estimates of polygenic
effects, i.e. when heritability was low. As heritability
increased, the reliability tended to heritability so the
power became less sensitive to changes in heritability
and equaled the power observed without a polygenic
effect. These differences were observed both with the
true mixed model and the FASTA model. The error
in the estimation of heritability via the two-step pro-
cedure in FASTA had only a very small effect on these
differences and was noticeable only for low heritabil-
ities, in which case estimation errors for heritability
were higher.
QTDT method
As the QTDT method uses information within families,

the variance of β̂w was not affected by the relationships
that exist between phenotyped animals in the dataset.

The variance of β̂w depended only on the trace of
Mendelian sampling variance matrix and thus possibly
on inbreeding within the data but not on relationships
between phenotyped animals (regardless of the type
of family, assuming the genotypes of the parents are

known). The expectation of V β̂
4ð Þ
w

� �
integrating a given

relationship matrix over SNP genotypes [See Additional
file 1] without inbreeding, is 1

n=2 σ2u þ σ2e
� � ¼ 2

n σ
2
y . So, the

polygenic effect has no influence on this variance. For
the same reason, power was not affected by heritability
or by the relationship matrix. However, power of the
qdtd method was much lower than that of the other
models because the test uses only half the genetic vari-
ance (only the Mendelian sampling variance). This

reduced the expectation of the test by a factor
ffiffiffi
2

p
:

E τ 4ð Þ� �
≃

ffiffiffiffiffiffiffiffi
n=2

p
β=σy and consequently decreased power.

Comparison between methods
Type 1 error rate increased with relationships and herit-
ability with the regression method, decreased with the
GRAMMAR method, and was not affected by heritabil-
ity with the FASTA and QTDT methods. The power
calculated with an assumed type 1 error rate (not the
real type 1 error rate) was higher with the regression
method than with the FASTA method for low (large
families) to moderate (small families) heritability values.
Power was always lower with the GRAMMAR method
than with the fasta METHOD. However, for the same
true type 1 error rate (i.e. with the threshold chosen to
reach the same true type 1 error rate), power was always
lower with the regression method than with the FASTA
method and decreased very rapidly with heritability and
family size. In this situation, powers of the GRAMMAR
and FASTA methods were identical. Thus, using the true
type 1 error rate, these two methods have the same
power. The power of the two methods was also almost
identical to that of the true mixed model, except for very
low heritabilities, for which a very slight difference was
observed between the FASTA and true mixed models.
These results are in general agreement with the few

papers on the subject that are present in the literature.
Using a simple example with three pedigrees, [41]
demonstrated that the type 1 error rate of the regression
method increased with heritability and family size (from
unrelated small nuclear families to a mixture of half-
and full-sib families in pig-type pedigrees), while the
opposite was observed with the GRAMMAR method,
which is fully consistent with our Figures 1a and 1b. The
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authors also ranked the methods in order of decreasing
empirical power: FASTA > GRAMMAR > regression >
TDT, and found very little difference in power between
the true model and the FASTA method. Using a limited
range of family sizes from 1 to 4, Zhang et al. [48] found
that the power of the QTDT method increased with
family size, a result that is in agreement with the slight
increase we observed for increases in family size from 5
to 60. Erbe et al. [54] confirmed that the GRAMMAR
method allowed for better control of the type 1 error
rate than the regression method, and found that in a
population of 500 progenies, the type 1 error rate was
greater when the progeny came from 25 rather than
from 250 sires.
Therefore, as a general result, we do not recommend

the regression and GRAMMAR models but do recom-
mend the FASTA method. The FASTA method is very
close to the full mixed model but is expected to be com-
putationally faster. However, situations do exist for
which the first two methods are preferred and using the
FASTA method could be dangerous. The advantage of
the regression model is that no heritability is required,
so it could be useful when heritability is unknown or
when the number of animals is too low to estimate herit-
ability based on the data. The regression method may
also be useful in situations in which having a large type
1 error rate is not a problem, for example if the objective
is to first select markers before performing another type
of analysis, since here the aim is to select only good
markers, regardless of the number of bad ones. The
advantage of the GRAMMAR method is that it has the
same power as the FASTA method when corrected for
underestimation of the type 1 error rate and that it
allows derivation of empirical p-values, as residuals can
be permuted. Correcting for underestimation of the type
1 error rate can be performed easily using analytical
formulae or by analyzing the QQ plot [43], which would
allow for a faster analysis than with the FASTA model.
Moreover, if the GRAMMAR method uses an estimate
of the polygenic heritability from another experiment
and from animals that have no relationships with other
genotyped animals, the GRAMMAR method is as robust
and powerful as the FASTA method. Concerning the
situations in which use of FASTA could be dangerous,
the FASTA (and GRAMMAR) method depends on the
variance components that are introduced. The difference
between the expected heritability estimated in the pure
random model and the true one was small when the
fixed SNP effect was small, so the final effect of this
error in the heritability used was not significant (the low
performance of the GRAMMAR method was due to the
use of residuals, not to the error on heritability). This
explains why the FASTA method is close to the full
mixed model (in type 1 error rate and power). However,
what would happen if a variance component other than
the one estimated in the sample was used or if fortuit-
ously, the variance component given by the sample was
very different from the true one? What happens to the
conditional distribution of the test when using an incor-
rect heritability? In this case, the coefficient in the
GRAMMAR method involving the difference in herit-
ability is important and increases the variance of the test.
The difference between true and used heritabilities
produces a high coefficient for low values of used herit-
abilities and increases the variance of the test and then
type 1 error rates. Since GRAMMAR is supposed to be
a very conservative method, the difference observed
between expected and obtained type 1 error rates may
be surprising. The FASTA method behaved similarly but
only a considerably underestimated heritability produced
moderate increases in type 1 error rates. In this case, the
true power (for true type 1 error rate) was reduced when
heritability was underestimated (−4% when heritability
was 0.10 instead of the true value of 0.30) but the
decrease remained limited. Therefore, it appears that the
fasta method works regardless of which estimate of
heritability is used. When using the FASTA method,
underestimating heritability was actually more risky (in
terms of type 1 error rate and power) than overestimat-
ing it. However, it should be kept in mind that the power
of even the true mixed model is lower for moderate
heritabilities than for heritabilities of 0 or 1, regardless
of the method used.
It should be noted that this discussion concerned only

the first and second moments of the test statistics and
did not compare higher moments such as skewness and
kurtosis, which could also be of interest.

Conclusions
Analytical formulae of the first and second moments of
the distribution of the test statistics used to detect the
SNP effect in four of the most common models are
given in the case of structured populations due to rela-
tionships between individuals. These formulae were
used to compute the type 1 error rate and power of
these methods for any type of genetic relationships
between phenotyped and genotyped individuals in any
situation of heritability for a polygenic effect. The ob-
jective was to determine if these formulae can be easily
used to obtain the correct type 1 error rate and to calcu-
late the power in order to design data collection. An R
program is provided in Additional file 3 [See Additional
file 3]. This paper also gives general results concerning
the efficacy of each method. The type 1 error rate
increased with the variability of relationships among
phenotyped and genotyped individuals and with herit-
ability for the regression method, decreased for the
GRAMMAR method and was not affected for the
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FASTA and QTDT methods. For the same true type 1
error rate, powers of the GRAMMAR and FASTA
methods were the same but that of the QTDT method
was low. In conclusion, we do not recommend the re-
gression and GRAMMAR models but do recommend
the FASTA method, which gives results very close to the
full mixed model.

Additional files

Additional file 1: Details on the algebraic formulae used to obtain
the results. Details of matrix algebra used to construct the formulae in
the main text.

Additional file 2: Simulations. Details and standard errors of the
simulations used to confirm the analytical results.

Additional file 3: RobPower. This is the directory including Rpackage
and documentation. This package computes all type 1 errors and the
power of any kind of design with: 1. The A matrix obtained either from
the pedigree file or from a known matrix. 2. The D matrix obtained either
from the pedigree file or from a known matrix. 3. A value of heritability
(can be a single value or a vector). 4. A threshold (for example the
nominal 5% threshold, 0.05). 5. The phenotypic variance explained by the
QTL (can be a single value or a vector). 6. The methods to compute (can
be a single value or a vector of characters). Methods are “reg” for
regression model, “GRAMMAR”, “QTDT” and “FASTA”. 7. Genomic control
(GC). If GC = TRUE then the GC value is computed (available for “reg” and
“GRAMMAR” only). 8. Linkage disequilibrium (r2) between the marker
tested and the QTL.
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