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a b s t r a c t

For the agroecosystems of the dairy cow industry, dietary carbohydrate (starch, neutral detergent fiber
[NDF]) and fat could directly affect rumen methane emissions and host energy utilization. However, the
relationships among diet, lactation performance, and methane emissions need to be further determined to
assist dairy farms to adjust diet formulations and feeding strategies for environmental and production
management. Ameta-analysis was conducted in the current study to explore quantitative patterns of dietary
fat and carbohydrate at different levels in balancing lactationperformance and environment sustainability of
dairy cows, and to establish a methane emission prediction model using the artificial neural network (ANN)
model. The results showed that the regression relationship between dietary fat, carbohydrate and methane
emissions could be shown by the following models: methane ¼ 106.78 þ (14.86 � DMI), R2 ¼ 0.80;
methane¼ 443.17 e (46.41� starch/NDF), R2 ¼ 0.76; and methane ¼ 388.91 þ (31.40� fat)e (5.42� fat2),
R2¼ 0.80. The regression relationships between dietary fat, carbohydrate and lactationperformance could be
shown by the following models: milk fat yield ¼ 1.08 þ (0.43 � starch/NDF) e [0.34 � (starch/NDF)2],
R2 ¼ 0.79; milk protein yield ¼ 0.68 þ (0.15 � fat) e (0.016 � fat2), R2 ¼ 0.82. In the structural equation
model, we found that when formulating dietary carbohydrates and fats, it was necessary to balance the
relationship between methane emissions and lactation performance. Specifically, dietary starch/NDF was
lower than 0.63 (extremum point) and dietary fat was between 2.89% and 4.69% (extremum point), it could
ensure that the aim of methane emission reduction (methane emissions decrease with increasing dietary
starch/NDFand fat) was achievedwithout losing lactation performance of dairy cows (lactation performance
increase with increasing dietary starch/NDF and fat). Finally, we established the ANN model to predict
methane emissions (training set: R2 ¼ 0.62; validation set: R2 ¼ 0.61).
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

The global warming potential of methane is 28 times higher
than CO2. Hence it is mentioned in the ‘United Nations Framework
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Convention on Climate Change’ that methane is one of the six
gases, which should be taken international measures (Maasakkers
et al., 2019). Therein, livestock farming contributes markedly to
global methane emissions. Global methane emissions from agri-
cultural livestock had a 1.9-fold increase from 1961 to 2017 (Eshel
et al., 2014). Moreover, methane emissions also seriously reduce
the feed conversion efficiency of dairy cows. It has been found that
in comparison to dairy cows with low milk yield, dairy cows with
high milk yield exhibit a significant decrease in rumen metha-
nogens (Xue et al., 2020). Therefore, it is necessary to adopt
strategies to optimize dietary formula to reduce methane
emissions.

Since methane emission of rumen microorganisms needs
energy support, optimizing the type and proportion of dietary
energy sources is a direct and effective way to alleviate methane
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lizongjun@nwafu.edu.cn
mailto:yaojunhu2004@sohu.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aninu.2024.02.004&domain=pdf
www.sciencedirect.com/science/journal/24056545
http://www.keaipublishing.com/en/journals/aninu/
https://doi.org/10.1016/j.aninu.2024.02.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aninu.2024.02.004
https://doi.org/10.1016/j.aninu.2024.02.004


C. Zhang, X. Jiang, S. Wu et al. Animal Nutrition 17 (2024) 347e357
emissions. The dietary energy supply to dairy cows mainly comes
from carbohydrates (starch, neutral detergent fiber [NDF]) and
fats (Aschenbach et al., 2010). Meanwhile, methane emission of
rumen microbiota mainly follows a hydrogenotrophic methano-
genesis pathway (Tapio et al., 2017). Hence, dietary carbohy-
drates and fats, which are closely related to hydrogen
metabolism, are considered as the main factors to affect methane
emissions (Hristov et al., 2013). Specifically, starch-rich diets
could promote propionate fermentation in the rumen, which can
compete with methanogens for hydrogen to inhibit methane
emission. By comparison, fiber-rich diets could promote acetate
fermentation, which can produce more hydrogen for metha-
nogens to utilize (Li et al., 2018; Moss et al., 2000). However,
starch-rich diets could increase feed costs and the risk of rumen
acidosis (Benchaar et al., 2001). Dietary fat reduced methane
production in the rumen by reducing hydrogen accumulation
through fatty acid biohydrogenation, and by inhibiting the ac-
tivity of ruminal methanogens (Pragna et al., 2018). Meanwhile,
some studies attributed the methane emission reduction of di-
etary fat to reduced dry matter intake (DMI), because, high fat
could inhibit DMI, which reduces methane emissions by reducing
energy intake. Eugene et al. (2008) reported a 9 percent reduc-
tion in methane production in dairy cows due to supplemental
fat, but this was accompanied by a 6.4 percent reduction in DMI,
which resulted in no difference in methane per unit of DMI
(Eug�ene et al., 2008). Thus, dietary carbohydrate and fat can
affect methane emissions by regulating the fermentation mode
of rumen microbiota. However, the relationships between dietary
carbohydrate, fat and methane emissions are not well estab-
lished. Similarly, the impact of the dietary carbohydrate and fat
on the lactation performance of dairy cows also needs further
evaluation.

Comparedwith qualitative literature reviews, meta-analysis as a
quantitative alternative can provide objective evidence to resolve
mixed results in research and evaluate the effect of treatments
(Viechtbauer, 2010). For dairy cows, the effect of essential oil
(Belanche et al., 2020) and lipid supplementation (Eug�ene, et al.,
2008) on methane emissions and lactation performance was
studied by meta-analysis. However, few models have integrated
multiple variables to hierarchically explain the relationships among
dietary nutrientselactation performanceemethane emissions.
Here, we used structural equation models (SEM) to explore the role
of dietary carbohydrate and fat in balancing lactation performance
and methane emission of dairy cows. Moreover, as the integration
of the information science and other disciplines in recent years,
artificial neural networks (ANN) were drawn into agriculture sys-
tem, given that its ability to handle complex and flexible nonlinear
relationships without prior assumptions (Mendez et al., 2019).
Here, we will also further access feasibility of ANN model in
methane prediction.

Therefore, the objective of this study was to 1) illustrate the
quantitative patterns of methane emissions from dairy cows fed
dietary carbohydrate and fat at different levels by mixed model, 2)
explain the role of dietary carbohydrate and fat in balancing
lactation performance andmethane emission of dairy cows by SEM,
3) evaluate the feasibility of ANNmodel in methane prediction, and
4) systematically summarize the pros and cons of dietary nutrients
on balanced production performance and farm environment sus-
tainability in the dairy cow industry. Overall, this manuscript pro-
vides a comprehensive insight on how to use dietary nutrients
effectively to promote lactation performance and reduce methane
emissions from dairy cows. Meanwhile, this manuscript provides
basis for dairy farm management to formulate reasonable dietary
formula to promote environmental sustainability and improve
economic benefits in the dairy cow industry.
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2. Materials and methods

2.1. Data preparation

The main research question of the study was how dietary car-
bohydrate and fat affected lactation performances and methane
emissions in dairy cows. The keywords were used for literature
research as follows: “methane” and “dairy cows” following the
PRISMA statement guidelines (Moher et al., 2009). The studies in
the “PubMed”, “Web of Science”, and “ScienceDirect” online data-
bases were collected from peer-reviewed journal articles published
from January 2000 to December 2022. According to this study
objective, we set the PICO principle (participant, intervention,
comparison, outcome) (Moher et al., 2009). Finally, a total of 75
articles were included in this study (Table S1). The detailed articles
retrieval process, please see Fig. 1.

2.2. Information extraction

According to the aim of this study, we included publications (the
first author, year of publication, and publishing journal), sample
size, method of methane detection (GreenFeed system, chambers,
and sulfur hexafluoride (SF6)), actual measured value of methane
(g/d), DMI (kg/d), lactation performance (milk yield [kg/d], milk fat
[%], milk protein [%]), dietary fat (% DM), NDF (% DM), and starch (%
DM). The descriptive statistics of data are shown in Table S2. We
used pooled SD, which was calculated by multiplying the standard
error of the mean (S.E.M.) by the square root of the number of trials
(Xu et al., 2020), as the within-group SD.

2.3. Data calculation and analysis

2.3.1. Mixed regression model
In order to quantify the relationships between dietary nutrients,

lactation performance and methane emissions, the data obtained
were subjected to mixed modeling analysis using the lme4 package
in R (Version 4.1.2, https://cran.r-project.org/package¼lme4) (Bates
et al., 2015). Accordingly, different studies were treated as a random
effect whereas dietary carbohydrate (starch and NDF) and fat or the
ratio of methane emission to DMI (methane/DMI, g/kg) was
considered as a fixed effect. The following model was used (St-
Pierre, 2001):

Yij ¼ B0 þ B1Xij þ B2X
2
ij þ si þ biXij þ eij;

where Yij ¼ dependent variable of methane emission (g/d) or
lactation performance (4% milk fat correction milk [4% FCM, kg/d],
the ratio of 4% FCM to DMI [4% FCM/DMI, kg/kg], milk fat propor-
tion [%] and yield [kg/d], protein proportion [%] and yield [kg/d]),
B0 ¼ overall intercept across all studies, B1 ¼ linear regression co-
efficient of Yon X (fixed effect), B2¼ quadratic regression coefficient
of Y on X (fixed effect), Xij ¼ value of the predictor variable (dietary
starch [% DM], NDF [% DM], the ratio of dietary starch to NDF
[starch/NDF], fat [% DM]) or methane/DMI (g/kg), si¼ random effect
of study i, bi ¼ random effect of study i on the regression coefficient
of Y on X in study i, and eij ¼ the unexplained residual error. The
linear or quadratic model that had lower P-values and higher R2

was used in the following analysis.

2.3.2. Meta-analysis
For studies of fat supplementation, we performed the meta-

analysis of the included data to explore the impact of fat process-
ing methods on methane emissions using the StataSE 14 (Stata
Statistical Software: Release 12; StataCorp LLC, College Station, TX,

https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=lme4


Fig. 1. The flowchart showing the literature retrieval process. The PICO principle included participant, intervention, comparison, and outcome. NDF ¼ neutral detergent fiber.
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USA). The Chi-square (c2) test and the I2 statistic were used to
measure heterogeneity (Higgins et al., 2002). It was calculated as
follows:

I2 ¼
�
c2 � ðk� 1Þ

c2

�
� 100;

where c2 is the heterogeneity statistic with Chi-square test and k is
the number of studies. And significant heterogeneity was declared
at I2 > 50% and/or Pheterogeneity < 0.10 (Deeks et al., 2019).

The effect sizes included in our study were all continuous var-
iables, hence the standardized mean difference (SMD) was selected
as the effect magnitude.

SMD ¼ m1 � m2
SP

; SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞSD2

1 þ ðn2 � 1ÞSD2
2

n1 þ n2 � 2

s
;

where m1 ¼ the mean of fat supplementation group, m2 ¼ the mean
of control group, SP ¼ combined standard deviation, SD1 ¼ the
standard deviation of fat supplementation group, SD2 ¼ the stan-
dard deviation of control group, n1 ¼ the sample size of fat sup-
plementation group, n2 ¼ the sample size of control group (Deeks
et al., 2019).

Due to the heterogeneity (I2 > 50%) for the data about fat sup-
plementation included in our study, the random-effects model was
selected as the pooling model. The 95% confidence interval (CI) was
calculated and the inverse-variance approach calculates aweighted
average as follows:

generic inverse� variance weighted average ¼
P

Yi
�
1
.
SE2i

�
P�

1
.
SE2i

� ;
349
where Yi¼ the intervention effect estimated in the i study, SEi¼ the
standard error of that estimate, and the summation is across all
studies (Deeks et al., 2019).

2.3.3. Structural equation model
SEMwas constructed to evaluate the relationship among dietary

nutrients, methane emissions and lactation performance. The
goodness-of-fit of the SEM was checked using the c2 test, root
mean square error (RMSE), and the comparative fit index (CFI). The
model had a good fit when the CFI value was close to 1 and the P-
values of the statistics were high (traditionally, >0.05)
(Schermelleh-Engel et al., 2003). SEM was conducted using the
Lavaan package in R (Version 4.1.2, https://cran.r-project.org/
package¼lavaan) (Cheung, 2015).

2.3.4. Artificial neural network model
ANN consists of three main components: an input layer, a series

of hidden layers and an output layer (Li et al., 2019). Therein, the
hidden layers are composed by neurons (nodes) (Margenot et al.,
2020). The number of hidden layers in ANN is dependent on the
complexity of the relationships between inputs and target outputs.

The Neural Network procedure in JMP Pro version 14.0 (SAS
Institute Inc., Cary NC, USA) was used to develop a series of ANN
models. In the current study, the three-layer ANN, using scaled
conjugate gradient algorithm, including one input layer, one hidden
layer and one output layer. The training data set was normalized
using the minemax approach as follows (Nyachoti et al., 2004):

x
0
i ¼

xi �min ðxÞ
maxðxÞ �min ðxÞ;

where xi was the observed value of the ith input data and x0i was the
ith normalized data.

https://cran.r-project.org/package=lavaan
https://cran.r-project.org/package=lavaan
https://cran.r-project.org/package=lavaan
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The output layer was methane emission (g/d). Because the input
variables were normalized, the predicted output values were re-
scaled using the minimal and maximal values of the training data
as follows:

yi ¼ y
0
i � ðmaxðyÞ �minðyÞ Þ þmin ðyÞ;

where yi was the predicted value of the ith output and y0i was the ith
normalized output data predicted using the ANN model.

The training conditions including a learning rate of 0.1, training
epochs of 1000, and the squared penalty method, were adopted in
the current study. To increase the reproducibility of the model, the
random seed was set as 500. We used hyperbolic tangent function

(tanhðxÞ ¼ e2x�1
e2xþ1) and radial basis function neural networks

(RBðxÞ ¼ e�x2 ) (Karlik et al., 2011; Poggio et al., 2001) as activation
functions. Moreover, in order to identify the optimal number of
neurons (Liu et al., 1996), we compared 1 to 20 neurons of hidden
layer. Models with different nodes and activation functions were
selected by the R2 and RMSE and the model with the maximal R2

and minimal RMSE was considered as the best-fitted ANN model.
3. Results and discussion

3.1. The relationships between dietary carbohydrate, fat and
methane emissions in dairy cows

The effects of DMI, carbohydrate (starch and NDF) and fat con-
tents on methane emissions of dairy cow are shown in Table 1.
Animal DMI and methane emissions presented a linear relation-
ship, methane ¼ 106.78 þ (14.86 � DMI), (R2 ¼ 0.80, RMSE ¼ 47.69,
Fig. 2A). Some emission reduction strategies, such as fat (Rabiee
et al., 2012), nitrate (van Wyngaard et al., 2018) or tannin (Alves
et al., 2017) supplementation are partly responsible for the
decreased DMI.

The rumen fermentation of dietary carbohydrate, mainly starch
and NDF, was the main energy supply mode for dairy cows (Abbas
et al., 2020). Therein, fiber could increase the number of fibrolytic
bacteria, which resulted in increased NDF utilization and elevated
hydrogen level for utilization by methanogens (Abbas, et al., 2020;
Flint, 2004). By comparison, starch could increase the population of
amylolytic bacteria and lactate utilizers, which compete with
methanogens for hydrogen (Mohammed et al., 2010). In the mixed
model used in our study, methane emission presented a linear
relationship with starch content, methane ¼ 441.80 e

(1.32 � starch), (R2 ¼ 0.76, RMSE ¼ 52.74, Fig. 2B) and with starch/
NDF, methane ¼ 443.17 e (46.41 � starch/NDF), (R2 ¼ 0.76,
Table 1
Best-fit models of methane emissions in response to dietary fat and carbohydrate levels

Response
variable (Y)

Predictor
variable (X)

n Model Intercept X

Coefficient S.E.M. P-value C

Methane, g/d DMI, kg/d 292 L 106.78 39.18 <0.001 1
292 Q �298.78 166.12 <0.001 5
292 Q 133.20 240.88 <0.001 3

Fat, % 292 L 494.96 15.71 <0.001 �
292 Q 388.91 35.44 <0.001 3

Starch, % 292 L 441.80 16.37 <0.001 �
292 Q 447.45 24.87 <0.001 �

NDF, % 292 L 355.26 38.57 <0.001 1
292 Q 49.78 170.74 <0.001 1

Starch/NDF 292 L 443.17 15.18 <0.001 �
292 Q 437.52 21.30 <0.001 �

RMSE ¼ root mean square error; S.E.M.¼ standard error of the mean; DMI¼ dry matter in
NDF ¼ the ratio of dietary starch to NDF.
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RMSE¼ 52.34, Fig. 2C). However, therewas no relationship between
dietary NDF and methane emissions (P > 0.05) (Table 1), which in-
dicates that there may not be a positive correlation between dietary
fiber and methane emissions. Interestingly, in vitro experiment
(72 h) using rice straw (fiber) as the sole substrate indicated that
inoculation of the microorganisms growing on a fiber-rich feed
mixture resulted in lowermethane and greater acetate and butyrate
production compared with the microorganisms growing on a
starch-rich feed mixture (Li et al., 2022). There was a greater com-
munity of hydrogenotrophic acetogens in the microorganisms
growing on a fiber-rich feed mixture might perhaps compete for H2
with methanogens. Hence increased dietary NDF did not necessarily
mean an increased methane emission; rather it depended on the
rumenmicrobial community. In this study, starch/NDF andmethane
emissions presented a linear relationship, methane ¼ 443.17 e

(46.41 � starch/NDF), (R2 ¼ 0.76, RMSE ¼ 52.34, Fig. 2C), which
suggested that starch/NDF selected for the rumen microbiota
determined the rumen fermentation mode and methane emissions.
It is noteworthy that starch/NDF was a rough indicator to assess
rumen metabolism. We suggested that the further studies use the
refined rumen health index (rumen degradable starch [RDS]/phys-
ically effective NDF [peNDF]) (Li et al., 2014) to assess rumen
methane emissions.

For dietary fat, there was a significant quadratic effect with
methane emissions, methane ¼ 388.91 þ (31.40 � fat) e

(5.42 � fat2), (R2 ¼ 0.80, RMSE ¼ 47.58, Fig. 2D). The dietary fat
supplementationwas considered as a commonmethod of methane
emission reduction in the dairy cow industry. On the one hand,
dietary fatty acids, in particular medium fatty acids (C12 and C14),
have certain toxicity to fiber-degrading microorganisms (such as
protozoa), which promote rumen propionate fermentation and
inhibit methane emissions (Min et al., 2020). On the other hand,
unsaturated fatty acids can compete with methaneogens for
hydrogen, thereby inhibiting methane emissions (Min et al., 2020).
It could be seen that dietary fat supplementation was an effective
emission reduction measure. However, the quadratic curve be-
tween dietary fat and methane emissions indicates that the emis-
sion reduction effect of fat supplementation may only become
obvious when the supplemental fat level exceeds 2.89% (extremum
point). Several studies with supplemental level being lower than
2.89% showed that dietary fat supplementation reduced methane
emissions per kilogram milk or per kilogram DMI, but had no
impact on the methane emissions per day (Aguerre et al., 2011;
Benchaar, 2020; Børsting et al., 2020). Moreover, the effect of fat
supplementation on emission reduction depended on the dietary
fatty acid profile, which was closely related to the processing
method of dietary fat (Martin et al., 2008). Hence, a subgroup
of dairy cows.

X2 R2 RMSE

oefficient S.E.M. P-value Coefficient S.E.M. P-value

4.86 1.84 <0.001 e e e 0.80 47.69
5.34 16.21 <0.001 �0.98 0.39 0.112 0.79 47.96
2.66 26.83 0.217 �0.93 0.74 0.213 0.65 63.35
19.91 3.15 <0.001 e e e 0.79 49.25
1.40 15.65 0.046 �5.42 1.61 <0.001 0.80 47.58
1.32 0.65 0.044 e e e 0.76 52.74
1.98 2.28 0.393 0.017 0.056 0.756 0.76 52.83
.71 1.07 0.107 e e e 0.66 62.36
8.07 9.00 0.046 �0.21 0.12 0.069 0.67 61.94
46.41 19.27 0.017 e e e 0.76 52.34
24.27 61.71 0.685 �18.24 48.39 0.714 0.76 52.43

take; L¼ linear model; Q¼ quadratic model; NDF¼ neutral detergent fiber; Starch/



Fig. 2. The relationships between dietary carbohydrate, fat and methane emissions in dairy cows. (A) The regression curve between DMI and methane emissions. (B) The regression
curve between dietary starch and methane emissions. (C) The regression curve between dietary starch/NDF and methane emissions. (D) The regression curve between dietary fat
and methane emissions. (E) The forest plot of the effects of dietary fat processing methods on methane emissions. RMSE ¼ root mean square error; DMI ¼ dry matter intake; starch/
NDF ¼ the ratio of dietary starch to neutral detergent fiber; CI ¼ confidence interval.
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analysis is often carried to demonstrate this. For instance, oilseed
meal, oil, and fatty acids all had mitigation effects on methane
emissions (oilseed meal: P < 0.001; oil: P < 0.001; fatty acids:
P ¼ 0.015; Overall: P < 0.001), which was consistent with the
findings of Martin et al. (2008). However, processing method was
not the heterogeneous source of fat supplementation (seed meal:
I2 ¼ 78.4%, P < 0.001; oil: I2 ¼ 66.6%, P < 0.001; fatty acids:
I2 ¼ 74.2%, P < 0.001; Overall: I2 ¼ 75.4%, P < 0.001) (Fig. 2E).

3.2. The relationships between dietary carbohydrate, fat and
lactation performances in dairy cows

It could be seen that the methane emission reduction effects of
starch/NDF and fat were significant. Hence, we used dietary starch/
351
NDF and fat contents as predictive factors to evaluate the re-
lationships between dietary nutrients and lactation performance
(Table 2). For dietary starch/NDF, there was a quadratic relationship
between starch/NDF and 4% FCM, 4% FCM ¼ 28.19 þ (6.92 � starch/
NDF) e [4.81 � (starch/NDF)2], (R2 ¼ 0.90, RMSE ¼ 2.27, Fig. 3A). As
starch/NDF increased, so was the energy supply used for lactation
of dairy cows, leading to an increase in 4% FCM. But when starch/
NDF was greater than 0.72 (the extremum point), 4% FCM was
decreased, likely because excessive lactic acid cannot be absorbed
by the rumen epithelium, causing the decrease of rumen pH and
diminishing the number of fiber-degrading bacteria (Shen et al.,
2020). Moreover, there was a quadratic relationship between
starch/NDF andmilk fat yield, milk fat yield¼ 1.08þ (0.43� starch/
NDF) e [0.34 � (starch/NDF)2], (R2 ¼ 0.79, RMSE ¼ 51.22, Fig. 3B).



Table 2
Best-fit models of milk performance in response to dietary fat and carbohydrate levels of dairy cows.

Response
variable (Y)

Predictor
variable (X)

n Model Intercept X X2 R2 RMSE

Coefficient S.E.M. P-value Coefficient S.E.M. P-value Coefficient S.E.M. P-value

4% FCM, kg/d Starch/NDF 292 L 29.66 0.92 <0.001 1.12 0.89 0.211 e e e 0.90 2.29
292 Q 28.19 1.13 <0.001 6.92 2.77 0.013 �4.81 2.18 0.028 0.90 2.27

MPY, kg/d 292 L 0.96 0.035 <0.001 0.042 0.049 0.388 e e e 0.57 73.15
292 Q 0.97 0.052 <0.001 0.0092 0.16 0.949 0.027 0.13 0.831 0.57 73.15

MFY, kg/d 292 L 1.19 0.041 <0.001 0.0071 0.062 0.912 e e e 0.78 54.68
292 Q 1.08 0.067 <0.001 0.43 0.21 0.046 �0.34 0.16 0.040 0.79 51.22

MY, kg/d Fat, % 292 L 30.48 1.02 <0.001 �0.00089 0.15 0.993 e e e 0.31 102.31
292 Q 24.10 1.80 <0.001 3.06 0.73 <0.001 �0.32 0.075 <0.001 0.94 2.09

MPY, kg/d 292 L 0.99 0.038 <0.001 �0.0012 0.0083 0.881 e e e 0.58 72.14
292 Q 0.68 0.091 <0.001 0.15 0.041 0.004 �0.016 0.0043 0.003 0.82 45.14

MFY, kg/d 292 L 1.25 0.052 <0.001 �0.012 0.011 0.297 e e e 0.58 76.45
292 Q 0.76 0.12 <0.001 0.23 0.055 <0.001 �0.026 0.0058 <0.001 0.77 49.88

RMSE¼ root mean square error; S.E.M.¼ standard error of the mean; 4% FCM¼ 4%milk fat correction milk; Starch/NDF¼ the ratio of dietary starch to neutral detergent fiber;
L ¼ linear model, Q ¼ quadratic model; MPY ¼ milk protein yield; MFY ¼ milk fat yield; MY ¼ milk yield.

Fig. 3. The relationships between dietary carbohydrate, fat and lactation performances in dairy cows. (A) The regression curve between dietary starch/NDF and 4% FCM. (B) The
regression curve between dietary starch/NDF and milk fat yield. (C) The regression curve between dietary fat and milk protein yield. (D) The regression curve between dietary fat
and milk fat yield. 4% FCM ¼ 4% milk fat correction milk; starch/NDF ¼ the ratio of dietary starch to neutral detergent fiber; RMSE ¼ root mean square error.
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When starch/NDF was greater than 0.63 (extreme point), milk fat
yield decreased with increasing starch/NDF levels. High starch/NDF
levels would inhibit rumen bacterial growth (Butyrivibrio fibri-
solvens and Pseudobutyrvibrio), which changed the hydrogenation
pathway of rumen fatty acids and produced an inhibitory effect on
milk fat synthesis trans-10, cis-12 conjugated linoleic acid (CLA),
thereby reducing milk fat yield (Zheng et al., 2020).

There was a quadratic relationship between dietary fat and milk
protein yield, milk protein yield ¼ 0.68 þ (0.15 � fat) e

(0.016 � fat2), (R2 ¼ 0.82, RMSE ¼ 45.14, Fig. 3C). When dietary fat
level was greater than 4.69% (extremum point), milk protein yield
decreased with increasing dietary fat level. Although dietary fat has
a high energy concentration, high concentrations of poly-
unsaturated fatty acids can reduce DMI, fiber digestibility, and
inhibit rumen fermentation, which may lead to reduced synthesis
of microbial proteins and result in reduced milk protein yield
(Patra, 2013). There was a quadratic relationship between dietary
fat and milk fat yield, milk fat yield ¼ 0.76 þ (0.23 � fat) e
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(0.026 � fat2), (R2 ¼ 0.77, RMSE ¼ 49.88, Fig. 3D). When dietary fat
was greater than 4.42% (extremum point), milk fat yield decreased
with increasing levels of dietary fat. The combination of unsatu-
rated fat acid with hydrogen in the rumenwill promote propionate
type fermentation, thus inhibiting the production of acetate, which
was the precursor of de novo synthesis of fatty acid in the mam-
mary gland (Palmquist et al., 2017).

3.3. The relationship between methane emissions and lactation
performances in dairy cows

We used methane/DMI as a predictive factor to explore the
relationship between methane emissions and lactation perfor-
mance (Table 3). There was a linear relationship between methane/
DMI and 4% FCM or 4% FCM/DMI, 4% FCM ¼ 40.82 e

(0.53 � methane/DMI), (R2 ¼ 0.90, RMSE ¼ 2.29, Fig. 4A); 4% FCM/
DMI ¼ 1.64 e (0.010 � methane/DMI), (R2 ¼ 0.90, RMSE ¼ 2.79,
Fig. 4B). Dairy cow lactation is a process that requires a large



Table 3
Best-fit models of lactation performance in response to methane emissions of dairy cows.

Response variable (Y) Predictor variable (X) n Model Intercept X R2 RMSE

Coefficient S.E.M. P-value Coefficient S.E.M. P-value

4% FCM, kg/d Methane/DMI, g/kg 292 L 40.82 1.72 <0.001 �0.53 0.082 <0.001 0.90 2.29
4% FCM/DMI, kg/kg 292 L 1.64 0.06 <0.001 �0.010 0.0030 <0.001 0.90 2.79
MF, % 292 L 2.86 0.71 <0.001 0.058 0.0080 <0.001 0.78 52.33
MFY, kg/d 292 L 1.31 0.088 <0.001 �0.0050 0.0042 0.238 0.57 70.20
MP, % 292 L 3.23 0.077 <0.001 0.0030 0.0030 0.416 0.55 71.13
MPY, kg/d 292 L 1.21 0.063 <0.001 �0.011 0.0030 <0.001 0.87 41.43

RMSE¼ root mean square error; S.E.M.¼ standard error of the mean; 4% FCM¼ 4%milk fat correction milk; L¼ linear model; 4% FCM/DMI¼ the ratio of 4% FCM to dry matter
intake; MF¼milk fat proportion; MFY¼milk fat yield; MP¼milk protein proportion; MPY ¼milk protein yield; Methane/DMI¼ the ratio of methane emission to dry matter
intake.

Fig. 4. The relationships between methane emissions and lactation performances in dairy cows. (A) The regression curve between dietary methane/DMI and 4% FCM. (B) The
regression curve between dietary methane/DMI and 4% FCM/DMI. (C) The regression curve between methane/DMI and milk fat proportion. (D) The regression curve between
methane/DMI and milk protein yield. 4% FCM ¼ 4% milk fat correction milk; Methane/DMI ¼ the ratio of methane emission to dry matter intake; 4% FCM/DMI ¼ the ratio of 4% FCM
to dry matter intake; RMSE ¼ root mean square error.
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amount of energy supply, and methane emissions inhibits the en-
ergy supply to lactation. Energy loss of methane emissions accounts
for 2% to 12% of dietary digestible energy (Johnson et al., 1995) and
6.5% to 18.7% of dietarymetabolic energy (Appuhamy et al., 2016). If
methane emissions per kilogram of standard milk is reduced by
2.5 g, an additional 300 mL of standard milk can be produced per
kilogram of DMI (Knapp et al., 2014).

The methane/DMI and milk fat proportion represented a linear
relationship, milk fat proportion ¼ 2.86 þ (0.058 � methane/DMI),
(R2 ¼ 0.78, RMSE ¼ 52.33, Fig. 4C), which may be attributed to the
negative correlation between milk yield and methane emissions.
Hence, we further observed the relationship between methane/
DMI and milk fat yield. The mixed model showed no relationship
between methane/DMI and milk fat yield (P > 0.05) (Table 3). For
milk protein, there was no relationship between milk protein
proportion with methane/DMI (P > 0.05) (Table 3) and a linear
relationship between methane/DMI and milk protein yield, milk
protein yield ¼ 1.21 e (0.011 � methane/DMI), (R2 ¼ 0.87,
RMSE ¼ 41.43, Fig. 4D). Milk protein synthesis is closely related to
the rumen energy-nitrogen balance principle (Hall et al., 2008).
When energy is wasted in the form of methane, rumen microbial
protein synthesis decreases, thereby reducing the substrate for
milk protein synthesis.
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3.4. The role of dietary carbohydrate and fat in balancing methane
emissions and lactation performance in the SEM

We established the SEM based on the dietary elements (fat,
starch/NDF), methane emission elements (methane/DMI), and
lactation elements (milk yield, milk protein yield, milk fat yield)
(Fig. 5A). The elements included in the SEM were all filtered
through the mixed model.

In the SEM (Fig. 5A), we found that dietary fat and carbohydrate
could positively impact the lactation performance of dairy cows
through impacting methane emissions (CFI ¼ 0.100,
RMSE¼ 0.000). Meanwhile, dietary starch/NDF affects bothmilk fat
yield and methane emissions in the SEM. According to the mixed
model, when dietary starch/NDF was lower than 0.63 (extremum
point), methane emissions decreased while milk fat yield increased
(Fig. 5B). Similarly, dietary fat affects both milk protein yield and
methane emissions in the SEM. According to the mixed model,
when dietary fat was between 2.89% and 4.69% (extremum point),
methane emissions decreased while milk protein yield increased
(Fig. 5C). Overall, according to SEM, we suggest that when formu-
lating dietary formulas, it is necessary to maximize the effect of
methane emission reduction while ensuring that lactation perfor-
mance of cows is not lost. Meanwhile, we also outline the range of



Fig. 5. Balancing dietary carbohydrate, fat between methane emissions and lactation performances in the structural equation models (SEM). (A) The elements included dietary fat,
dietary starch/NDF, methane/DMI, milk fat, milk protein, and 4% FCM in SEM. Numbers adjacent to arrows are indicative of the effect size of the relationship. Green arrows represent
positive paths and red arrows represent negative paths. Significance levels are as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. (B) The regression curves between dietary starch/
NDF and methane emissions (green), and between dietary starch/NDF and milk fat yield (orange). (C) The regression curves between dietary fat and methane emissions (green), and
between dietary fat and milk protein yield (orange). RMSE ¼ root mean square error; CFI ¼ comparative fit index; starch/NDF ¼ the ratio of dietary starch to neutral detergent fiber;
methane/DMI ¼ the ratio of methane emission to dry matter intake; 4% FCM ¼ 4% milk fat correction milk.

Table 4
The performance of artificial neural network (ANN) models with different numbers
of nodes and activation functions to predict the methane emissions of dairy cows.1

Number
of nodes

Hyperbolic tangent function Radial basis function

Training
data set

Validation
data set

Training
data set

Validation
data set

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 0.33 78.81 0.56 57.82 0.32 79.37 0.58 57.02
2 0.39 75.50 0.57 57.40 0.38 76.10 0.57 57.75
3 0.41 74.05 0.59 55.98 0.42 73.20 0.57 57.40
4 0.51 67.53 0.59 56.41 0.42 73.56 0.56 58.06
5 0.46 70.96 0.62 54.26 0.61 60.68 0.57 57.04
6 0.40 75.03 0.61 54.93 0.49 68.80 0.56 58.29
7 0.54 65.36 0.61 54.88 0.52 67.15 0.58 56.48
8 0.44 72.69 0.63 53.35 0.54 65.54 0.56 57.98
9 0.46 70.94 0.60 55.53 0.63 59.17 0.58 56.57
10 0.47 70.41 0.61 54.42 0.53 66.39 0.61 54.47
11 0.48 69.73 0.61 54.98 0.60 60.89 0.56 58.02
12 0.622 60.012 0.612 54.522 0.53 65.73 0.56 58.20
13 0.57 63.58 0.61 54.98 0.59 61.71 0.57 57.74
14 0.51 67.40 0.62 53.90 0.62 59.51 0.57 57.27
15 0.41 74.44 0.61 54.51 0.35 77.74 0.55 58.76
16 0.60 60.96 0.62 53.66 0.35 77.96 0.57 58.35
17 0.60 61.40 0.62 53.91 0.56 64.48 0.56 58.20
18 0.45 71.58 0.60 55.45 0.63 58.15 0.57 57.68
19 0.42 73.85 0.61 54.50 0.72 51.14 0.56 58.18
20 0.59 61.87 0.61 54.62 0.65 56.76 0.58 56.82

RMSE ¼ root mean square error.
1 All the ANN models were generated using the data set (n ¼ 292).
2 Means the best performance of ANN models with different numbers of nodes

and activation functions to predict methane emissions.
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dietary fat and starch/NDF as an approximate guideline. As we used
the dietary starch and NDF to establish the model (Fig. S1), only
starch/NDF had a significant impact on methane emissions, not
starch or NDF alone.

3.5. Establishment of methane emission ANN prediction model

We established a methane emission ANN prediction model us-
ing the filtered indicators (dietary fat, starch/NDF, DMI, milk fat
proportion, milk protein yield, milk yield and their square) from the
mixed models and SEM as mentioned earlier. We used the single
hidden layer to establish the ANN model and selected the best
model based on R2 and RMSE (Table 4). The methane emission ANN
predictionmodel contains 12 prediction factors with a hidden layer
of 12 nodes (training set: R2 ¼ 0.62, RMSE ¼ 60.01; validation set:
R2 ¼ 0.61, RMSE ¼ 54.52; Fig. 6).

With the emphasis on environmental sustainability, carbon
taxes and subsidies have gradually become an internationally
recognized and typical methane emission reduction constraint and
incentive mechanism (Fan et al., 2018). Hence, in order tomaximize
profit while running a sustainable dairy cow operation, the farmer
needs to adjust diet formulation, feeding strategies, and even
breeding program based on their understanding of the relationship
between methane emissions and lactation performance. However,
the measurement of methane emissions requires elaborate in-
struments (respiration chambers, SF6 technique, Greenfeed) and a
high level of expertise, which is not feasible for large farms (Hristov
et al., 2013). Therefore, it is urgent to predict methane emissions
based on available indicators. As a supervised learning process,
ANN models usually have stronger ability to fit complex nonlinear
relationships and higher fault tolerance than linear regression
models (Jain et al., 1996). Although the optimal model uses a single
hidden layer and a large number of nodes, there is no “over-fitting”
according to the difference value of R2 and RMSE between Training
set and Validation set. We believe the ANN model we have estab-
lished will work in practice. It is worth noting that the construction
of the ANN model requires a large sample size. Other researchers
(Wang et al., 2022) set up an ANN model using 287 samples to
predict daily weight gain and feed conversion ratios. We used 292
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samples in our model to predict methane emissions of dairy cows.
However, the data in the current study were from previous studies.
Unlike the mixed model (the study as random effect), ANN models
are unable exclude inter-study influences. But our ANNmodel used
data obtained from farms that had the same methane detection
method for animals grazed on a single pasture type to predict
methane emissions. Thus, we believe our ANN model will offer a
better andmore accurate prediction for methane emissions in dairy
cows.



Fig. 6. The best performance of artificial neural network (ANN) models to predict methane emissions. The best ANN model was formed by input layer, hidden layer, and output
layer. Input layer included DMI, FAT, MY, MF, S/N, MPY and their square. The hidden layer included 12 nodes and hyperbolic tangent function. Output layer was the methane
emissions. DMI ¼ dry matter intake; FAT ¼ dietary fat; S/N ¼ the ratio of dietary starch to neutral detergent fiber; MY ¼ milk yield; MF ¼ milk fat proportion; MPY ¼ milk protein
yield.
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4. Conclusions

We used a relatively large sample size (n ¼ 292) from 75 ar-
ticles to explore the effect of dietary carbohydrate and fat on
balancing the methane emissions and lactation performance. In
the mixed model, DMI, starch and starch/NDF have a linear
relationship with methane emissions, with methane ¼
106.78 þ (14.86 � DMI), methane ¼ 441.80 e (1.32 � starch), and
methane ¼ 443.17 e (46.41 � starch/NDF), respectively. More-
over, we found that only starch/NDF had a significant impact on
methane emissions, not starch or NDF in the SEM. Dietary fat and
methane emissions presented a quadratic relationship,
methane ¼ 388.91 þ (31.40 � fat) e (5.42 � fat2). When daily
dietary fat level was greater than 2.89% (extremum point), there
was an obvious reduction of methane emissions. In addition,
different processing methods for dietary fat had marked effects
on methane emission reduction in the subgroup meta-analysis.
Meanwhile, Dietary starch/NDF and milk fat yield presented a
quadratic relationship, milk fat yield ¼ 1.08 þ (0.43 � starch/
NDF) e [0.34 � (starch/NDF)2], when starch/NDF was greater
than 0.63 (extremum point), it would have an adverse impact on
milk fat. Dietary fat and milk protein yield represented quadratic
relationship, milk protein yield ¼ 0.68 þ (0.15 � fat) e

(0.016 � fat2). When dietary fat was greater than 4.69%
(extremum point), it would have an adverse impact on milk
protein. Methane emissions had a negative relationship with
lactation performance, i.e., 4% FCM/DMI (kg/kg) ¼ 1.64 e

(0.010 � methane/DMI), milk fat proportion ¼
2.86 þ (0.058 � methane/DMI), and milk protein yield ¼ 1.21 e

(0.011 � methane/DMI). The SEM suggested that when formu-
lating dairy cow rations, it is necessary to consider the role of
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dietary energy sources in the balance between methane emis-
sions and lactation performance. We suggest that when dietary
starch/NDF is lower than 0.63 (extremum point) and dietary fat
between 2.89% and 4.69% (extremum point), methane emissions
may be achieved without losing lactation performance. Finally,
given the difficulty of large-scale methane detection, we estab-
lished the methane emission ANN prediction model (input layer:
dietary fat, starch/NDF, DMI, milk fat proportion, milk protein
yield, milk yield and their square; hidden layer: 12; output layer:
methane; R2 ¼ 0.62; RMSE ¼ 60.01, n ¼ 292), which would
provide predictive methane emission indicators for adjusting
diet formulations, feeding strategies, and even breeding program
in large-scale dairy farms.
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