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Abstract

Amine oxidase, which participates in the metabolic processing of biogenic amines, is widely

found in organisms, including higher organisms and various microorganisms. In this study,

the full-length cDNA of a novel amine oxidase gene was cloned from the mud crab, Scylla

paramamosain, and termed SpAMO. The cDNA sequence was 2,599 bp in length, including

an open reading frame of 1,521 bp encoding 506 amino acids. Two amino acid sequence

motifs, a flavin adenine dinucleotide-binding domain and a flavin-containing amine oxidore-

ductase, were highly conserved in SpAMO. A quantitative real-time polymerase chain reac-

tion analysis showed that the expression level of SpAMO after quercetin treatment was

time- and concentration-dependent. The expression of SpAMO tended to decrease and

then increase in the brain and haemolymph after treatment with 5 mg/kg/d quercetin; after

treatment with 50 mg/kg/d quercetin, the expression of SpAMO declined rapidly and

remained low in the brain and haemolymph. These results indicated that quercetin could

inhibit the transcription of SpAMO, and the high dose (50 mg/kg/d) had a relatively signifi-

cant inhibitory effect. SpAMO showed the highest catalytic activity on serotonin, followed by

dopamine, β-phenylethylamine, and spermine, suggesting that the specific substrates of

SpAMO are serotonin and dopamine. A bioinformatics analysis of SpAMO showed that it

has molecular characteristics of spermine oxidase, but a quercetin test and enzyme activity

study indicated that it also functions like monoamine oxidase. It is speculated that SpAMO

might be a novel amine oxidase in S. paramamosain that has the functions of both spermine

oxidase and monoamine oxidase.
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1. Introduction

Mud crab, Scylla paramamosain are economically important crustaceans cultured in brackish

coastal waters of the Southwest Pacific Ocean and North Indian Ocean [1]. The total output is

more than 110,000 tons per year, but the supply of seeds mainly depends on catching them

from the wild, as cultivated seeds cannot meet quantity and quality requirements [2]. Canni-

balism is deemed to be one of the limited factors for aquaculture expansion. The more canni-

balistic, the higher-value species they’ve got [3–5]. The crabs’ aggressive behaviour is a

bottleneck problem during crab culturing and has caused severe economic losses. Molt is cru-

cial in development and reproduction of crustaceans. This can be deduced from two main

aspects: crustaceans are highly vulnerable to cannibalism during the molting process because

their new shell is incompletely calcified; the potential victim can then become the attacker on

smaller conspecifics after successful molting because substantial size increases [6–7]. There are

six metamorphoses from the zoea I to the juvenile crab I stage, and cannibalism among indi-

viduals from the megalopa stage to the juvenile crab I stage often leads to massive die-offs. The

traditional breeding method can only reduce the cannibalize rate by increasing bait quantity,

reducing the crab density and setting up shelters, among other measures. There are few studies

on the crabs’ aggressive behaviour; we hope to discover the genes related to aggressive behav-

iour in S. paramamosain, and to explore the molecular foundation behind the aggressive

behaviour.

Amine oxidases catalyse the oxidative deamination of aliphatic monoamines and aromatic

amines [8]. These enzymes are classified into two classes based on their prosthetic groups: cop-

per/topaquinone-containing amine oxidases (EC 1.4.3.6) and flavin-containing amine oxi-

dases (EC 1.4.3.4) [9]. The main copper-containing amine oxidases are primary amine oxidase

and diamine oxidase, which are widely found in nature [10–11]. The main flavin-containing

amine oxidase is monoamine oxidase (MAO), which is found in most living things. Spermine

oxidase (SMO), which has recently been successfully cloned and identified, is primarily

involved in polyamine degradation but is also a flavoprotein [12]. Polyamines (such as putres-

cine, spermidine, and spermine) are small organic molecules that are essential for the growth

and differentiation of mammalian cells and that widely participate in chromosomal formation,

gene transcription activation, signal transduction, apoptosis and other important physiological

and pathological processes [13–14]. MAO is a flavoenzyme in which the flavin adenine dinu-

cleotide (FAD) is covalently anchored to a cysteine residue by an 8α-(S-cysteinyl)-riboflavin

linkage [15]. According to previous studies [16–17], MAO is usually anchored to the mito-

chondrial outer membrane of neuronal, glial and several other cell types, and it can catalyse

the oxidative deamination of biogenic and xenobiotic amines into aldehydes and ammonia in

the peripheral and the central nervous system. In mammals, MAO exists in two isoforms

(MAO-A and MAO-B) that are dimeric in their membrane-bound forms [18]. By cloning

MAO cDNA, it was subsequently demonstrated that MAO-A and MAO-B were two distinct

proteins with a high degree of sequence identity, encoded by different genes having identical

exon-intron organization and regulated by different gene regulators [19–20]. The X-ray crystal

structures of the two human isoforms show that the active site amino acid residues and their

relative geometries are highly conserved, and only six of the 16 active site residues differ

between the two isozymes [16,21–22]. Despite their similarities, MAO-A and MAO-B differ in

their tissue distributions and substrate/inhibitor specificities. MAO-A catalyses the deamina-

tion of serotonin (5-hydroxytryptamine, 5-HT), adrenaline and noradrenaline and is selec-

tively inhibited by clorgyline, moclobemide and quercetin; in contrast, MAO-B catalyses the

deamination of β-phenylethylamine (PEA) and benzylamine and is irreversibly inhibited by

selegiline [23]. It is interesting that both dopamine (DA) and tyramine are deaminated by the
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two isoforms in vitro, but dopamine is primarily metabolized by MAO-B in the human body.

Because of their ability to promote the catabolism of neurotransmitter amines, MAO-A and

MAO-B are considered attractive drug targets in therapies for neurological disorders. For

example, MAO-A inhibitors are prescribed for the treatment of depression and anxiety disor-

ders, and MAO-B inhibitors are used as L-DOPA and/or dopamine agonists in the symptom-

atic treatment of Parkinson’s disease.

Biogenic amines can transmit various information as neurotransmitters or hormones, and

participate in physiological processes of osmoregulation [24–25], behavioral regulation [26],

immunological stress [27], and neuroendocrine [28] in crustaceans. DA is a kind of biogenic

amine which has the effect of gonadotropin releasing factor [29]. Chen et al. [30] speculated

that DA may participate in pathological aggressive behavior and other abnormal behaviors.

DA synthesis, degradation, and transitive processes may affect each individual’s behavior [31].

5-HT, also known as serotonin, is an inhibitory neurotransmitter in biogenic amines. 5-HT is

the most important neurotransmitter affecting aggressive behavior [32–34]. Other neurotrans-

mitters may work by first affecting 5-HT [35]. Wei et al. [36] and Kravitz [26] considered that

5-HT was an important monoamine neurotransmitter and was closely related to the fighting

behavior of aquatic animals. Zhao et al. [37] compared with effects of injection of DA and

5-HT on the fighting behavior of Penaeus japonicus, Litopenaeus vannamei and Fennerope-
naeus chinensis, and found that the average number of fight of three kinds of shrimps signifi-

cantly increased after being injected with dopamine, and high DA was more likely to stimulate

competition among shrimps than low DA. However, the average number of fighting shrimps

decreased with the 5-HT concentration increasing. Similar conclusion appeared in crayfish

Procambarus clarkii. When crayfish were placed in a space-limited aquarium, there was con-

stantly fighting behavior until one side was defeated and clearly expressed a submissive behav-

ior. These findings suggested the role of 5-HT, whose brain concentrations increased much

more in losers than in winners [38]. As a key enzyme in the 5-HT and DA degradation path-

ways, MAO-A plays an important role in emotional regulation and is related to the severity of

aggressive and antisocial traits [39–42]. For example, Brunner syndrome, a genetic condition

characterized by a nonsense point mutation in the MAO-A gene, results in marked increases

in urinary 5-HT levels, antisocial behaviour, reactive aggression and mild cognitive

impairment [41]. While there has been considerable research on MAO in mammals and other

vertebrates, such as reptiles [43], birds [44] and teleosts [45–46], there are no reports on MAO

in crustaceans. Furthermore, although research has shown that MAO-A deficiency is related

to reactive aggression in humans [41,47] and mice [42,48], the relationship between this

enzyme and aggressive behaviour in crabs is still unclear. This study seeks to characterize the

SpAMO gene in S. paramamosain and determine its biological function and its relationship

with MAO-A.

2. Materials and methods

2.1 Ethics statement

All animal experiments in this study were conducted in accordance with the relevant national

and international guidelines. Our project was approved by the East China Sea Fisheries

Research Institute. In China, catching wild mud crabs from seawater does not require specific

permits. Our study did not involve endangered or protected species.

2.2 Materials, reagents and total RNA extraction

Mud crabs, with uniform size (200±20 g), well-characterized and good vibrancy, were collected

from Hainan Island, China. Different organs and tissues, including thoracic ganglia, brain and
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haemolymph, were immediately collected and preserved in liquid nitrogen for RNA extrac-

tion. Three biological replicated samples from different individuals were collected. Total RNA

was isolated from the thoracic ganglia using Unizol reagent (Biostar, Shanghai, China) follow-

ing the manufacturer’s instructions. The total RNA was treated with RNase-free DNase I

(Sigma, St. Louis, USA) to eliminate possible contamination by genomic DNA and then stored

at -80 ˚C for follow-up experiments. The quality and concentration were checked by agarose

gel electrophoresis and spectrophotometry (DU 800, Beckman Coulter, USA).

First-strand cDNA synthesis was performed from poly(A) mRNA template using M-MLV

reverse transcriptase (Promega Corporation, Madison, WI, USA) with Oligo-dT and random

6-mer primers. The reaction conditions were as recommended by the manufacturer.

2.3 cDNA library construction and cloning of full-length SpAMO cDNA

The S. paramamosain cDNA library was successfully constructed by using a SMARTTM cDNA

Library Construction Kit (Clontech, Palo Alto, CA, USA), and all the EST sequences were sub-

jected to BLAST analysis. BLAST analysis showed that one EST sequence was highly similar to

the previously identified amine oxidases, and therefore that sequence was selected for cloning

of SpAMO cDNA.

A fragment of SpAMOwas identified in the cDNA library constructed in our laboratory from

the S. paramamosain thoracic ganglia. The full-length SpAMO cDNA was obtained by the rapid

amplification of cDNA ends (RACE) method, which was performed using a SMARTTM RACE

cDNA Amplification Kit (Clontech) according to the manufacturer’s instructions. The primers

for 3’ and 5’ RACE were termed SpAMO-3’race (5’-TCGCCGTGAAGTGGAGGT-3’) and

SpAMO-5’race (5’-ACGAGTGTTGTGGGTATGCT-3’), respectively. The PCR fragments were

analysed by electrophoresis on 1.5% agarose gels to determine length differences. Amplified

cDNA fragments were cloned into the pMD18-T vector (TaKaRa, Beijing, China) following the

manufacturer’s instructions. Recombinant bacteria were identified by blue/white screening and

confirmed by PCR. Plasmids containing the inserted SpAMO fragment were used as templates for

DNA sequencing.

2.4 Sequence analysis of SpAMO
The identity searches for the nucleotide and protein sequences were performed using the BLAST

algorithm of NCBI (http://www.ncbi.nlm.nih.gov/). The deduced amino acid sequence was ana-

lysed with the Expert Protein Analysis System (http://www.expasy.org/). Amino acid sequences

from various species were retrieved from the NCBI GenBank database and analysed using the

Vector NTI Suite 11.0 and the Clustal W multiple alignment program (http://www.ebi.ac.uk/

clustalw). A neighbour-joining phylogenetic tree was constructed using MEGA 5.1, and the confi-

dence level in the tree was generated using 1000 bootstraps. The secondary structure was pre-

dicted by the application of a hierarchical neural network (http://www.expasy.org/). The 3D

structure of SpAMOwas simulated using the SWISS-MODEL long-distance server.

2.5 Expression analysis of SpAMO under quercetin treatment

Mud crabs, with uniform size (300±20 g), well-characterized and good vibrancy, were collected

from Qionghai, Hainan province, China. Sixty crabs (female-male ratio: 1:1) were temporarily

kept in cement pools to acclimate for seven days before experiments under the same environ-

mental conditions. Two gradients of quercetin, i.e., 5 and 50 mg/kg/d were set up in this exper-

iment, and the two experimental groups were placed under the same experimental conditions

of dissolved oxygen, light and feeding. The experimental period was 5 days, and the experi-

mental water was changed every day. Both experimental groups had the same trend of
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temperature (26–30˚C) and salinity (27–30 ppt) during the experimental period. In order to

keep the concentrations of quercetin at the initial level, corresponding concentrations were

injected daily, as required. Then, 24 h after injection, hemolymph and brain tissues were col-

lected at 0h, 24h, 3d, and 5d for analysis of the expression as a response towards quercetin.

Three biological replicated samples from different individuals were collected. It should be

noted that the tissues sampled at 0 h were not injected with quercetin in vivo. The other indi-

viduals were injected with quercetin in vivo. RNAfixer RNA stabilization reagent (Biosharp,

Hefei, China) was added to the samples of haemolymph and brain, and samples were stored at

-20 ˚C [49].

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to study the

expression of SpAMO in S. paramamosain. Total RNA (1 μg) was reverse transcribed into first-

strand cDNA with the ReverTra Ace qPCR RT Kit (Toyobo Co., Ltd., Osaka, Japan). A pair of

18S rRNA primers, 18s-RT-F (5’-GGGGTTTGCAATTGTCTCCC-3’) and 18s-RT-R (5’-GG
TGTGTACAAAGGGCAGGG-3’), were used to amplify the internal control. Expression levels

were calculated by the standard curve method [50]. A SYBR Green qRT-PCR assay (Power

SYBR Green PCR Master Mix, Applied Biosystems, Foster City, CA, USA) was carried out in

an ABI StepOnePlus detection system (Applied Biosystems). Amplifications were performed

in a 96-well plate with a 20 μL reaction volume containing 10 μL of SYBR Premix Ex Taq,

0.8 μL of PCR forward primer (10 mM), 0.8 μL of PCR reverse primer (10 mM), 0.4 μL of

ROX reference dye, 2.0 μL of cDNA template and 6.0 μL of diethylpyrocarbonate (DEPC)-

treated water. The cycling parameters for SYBR Green qRT-PCR were 10 min at 94 ˚C; 45

cycles of 94 ˚C for 15 s and 60 ˚C for 1 min; and a final elongation at 72 ˚C for 10 min. Primers

used to amplify SpAMO were SpAMO-RT-F (5’-GACCAAGCCACCCTCAATCAGT-3’) and

SpAMO-RT-R (5’- CGGCGTTTAGGCGGAATAG -3’).

2.6 Determination of SpAMO activity

To construct the prokaryotic vector plasmid SpAMO/pCold I, the target fragment SpAMO was

first amplified by PCR. The PCR products were then digested by the enzymes KpnI and EcoRI

(5’-AGGCATATGGAGCTCGGTACCAACACACGTCACCCTTTCGT-3’, 5’-CAGGTCGACA
AGCTTGAATTCTCACGGCGAGGATGGCTTGA-3’; the enzyme cleavage sites of KpnI and

EcoRI, respectively, are in the boxes) and cloned into the cold shock carrier pCold I digested

by the same enzymes. The prokaryotic expression plasmid SpAMO/pCold I was transformed

into BL21 (DE3) competent Escherichia coli cells and then cultured in small tubes of fluid. SOC

liquid medium (containing ampicillin) was inoculated with the culture medium and incubated

at 37 ˚C for 1–3 h until the OD600 reached 0.4–0.6. IPTG (isopropyl β-D-thiogalactoside) was

then added to a final concentration of 0.5 mM, and culturing was continued at 15 ˚C for 24 h

in a shaker. The bacterial strains were collected by centrifugation (~2800×g for 10 min), and

then the supernatant was collected by ultrasonic crushing treatment. The recombinant protein

SpAMO contained in the supernatant was separated and purified by Ni-NTA resin affinity chro-

matography. The purified recombinant protein eluted from the chromatographic column was

dialysed, and the urea was gradually removed to restore protein activity. The dialysis buffer was

a mixture of 4 M urea buffer (100 mM NaH2PO4, 10 mM Tris, and 4 M urea, pH 6.0), refolding

buffer (20 mM Tris, pH 7.0, containing 2 mM GSH, 0.2 mM GSSG, 5 mM EDTA and 50 mM

glycine) and 2 M urea buffer (100 mM NaH2PO4, 10 mM Tris, and 2 M urea, pH 8.0). The puri-

fied protein samples were stored at -80 ˚C.

The activity of SpAMO was determined by the chemiluminescence method [51]. The quan-

tity of active H2O2 produced by SpAMO in the process of oxidizing substrate monoamines was

used to calculate enzyme activity. Glycine buffer (50 μL of 0.5 mol/L buffer, pH 8.0), 50 μL of
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horseradish peroxidase (0.4 g/L), 50 μL of luminol (100 μmol/L), 1 μL of SpAMO, and 99 μL of

water were added to the test tube (SpAMO was replaced with dialysate in the control group),

and the samples were incubated at 37 ˚C for 2 min. Then, 50 μL of serotonin, dopamine, phen-

ylethylamine, or spermine (1.5 mmol/L) was added to the test tube to measure fluorescent

counting every 20 s with a Monolight 3010 fluorescence spectrometer. Enzyme activity was

measured in pmol H2O2/mg protein�min.

2.7 Statistical analysis

Measurements were performed under quercetin treatment and enzyme assay to derive the

mean and standard deviation of testing results. All data obtained from the qRT-PCR and

enzyme assay analysis were log transformed before being subjected to data analysis with one-

way ANOVA. Differences were considered significant at P< 0.05.

3. Results

3.1 Sequence analysis

The full-length cDNA fragment of SpAMO was 2,599 bp (GenBank accession No. MG878093),

and it contained an open reading frame (ORF) of 1,521 bp with a 26 bp 5’ untranslated region

(5’-UTR) and a 1,052 bp 3’ untranslated region (3’-UTR). Multiple consensus polyadenylation

signals (AATAAA) were found 11 bp upstream of the poly (A) tails. Multiple ATTTA (G)

motifs, which are correlated with transcript stability, were found in the 3’ UTR region of the

SpAMO. The ORF encodes a putative protein of 506 amino acids (aa) with a predicted molecu-

lar weight of 56.96 kDa and a theoretical isoelectric point of 5.04. The full-length nucleotide

sequence and the deduced amino acid sequence are shown in Fig 1.

Two highly conserved regions, a FAD-binding domain and a flavin-containing amine oxi-

doreductase domain, are described in all known MAO sequences. These domains also

appeared to be highly conserved in SpAMO, where they were located at the positions of 53–89,

61–169, and 208–498 aa, respectively. In the NCBI alignment, three conserved domains—

PLN0568 (polyamine oxidase), YobN (monoamine oxidase) and proto_IX_ox (protoporphyri-

nogen oxidase)—were identified in SpAMO and were located at the positions of 64–498, 64–

502, and 77–133 aa, respectively. The flavin-containing amine oxidoreductase domain is con-

served among many amine oxidases, including maze polyamine oxidase (PAO) and various

flavin-containing MAOs. The conserved domain proto_IX_ox encodes protoporphyrinogen

oxidase; this enzyme oxidizes protoporphyrinogen IX to protoporphyrin IX, a precursor of

haeme and chlorophyll. The red asterisk in Fig 2 shows the essential amino acids for the sub-

strate-binding sites ofHomo sapiens MAO-B and Rattus sp. MAO-A[16,52]. These essential

amino acids sites are Y60, F168, V171, N172, Y188, I198, F199, Q206, T314, L326, F343, Y398

and Y435, respectively. Based on the match information of the sequences, we observed that

only residues F168 and Y398 of Homo sapiens MAO-B were coincident with SpAMO. Through

the comparison of mammals and fishes, we found that only amino acids of Y60, F168, I198,

Q206, F343, Y398, and Y435 ofHomo sapiens MAO-B and Rattus sp. MAO-B were uniform

with those of Danio rerio MAO and Oncorhynchus mykiss MAO. It was also consistent with

Homo sapiens MAO-A and Rattus sp. MAO-A.

The homology between the deduced amino acid sequence of SpAMO and the sequences of

other enzymes was analysed with the NCBI BLAST algorithm. It was found that there was rela-

tively high homology between SpAMO and SMO genes from other species. Most of the SMO

sequences were from insects; SpAMO shared 31% similarity with a Helicoverpa armigera SMO

(XP_021195874.1), 29% similarity with a Pieris rapae SMO (XP_022126040.1), 28% similarity

with a Camponotus floridanus SMO (EFN70212.1), and 27% similarity with an Anoplophora
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glabripennis SMO (XP_018567631.1). The similarities between SpAMO and SMOs from Cypri-
nus carpio (KTG11709.1) and Homo sapiens (AAH00669.1) were 19% and 17%, respectively.

The amino acid sequences of the MAO genes of multiple species were downloaded from NCBI

and compared with each other by DNAMAN software, and then the conservativeness of differ-

ent domains was compared. The deduced amino acid sequences of SpAMO and MAOs from

other species are aligned in Fig 2. Under normal circumstances, the sequence identity of nucle-

otides is lower than that of amino acids because of the existence of mutations. Thus, for an

analysis of potential protein function, a protein sequence analysis was performed. The results

of an amino acid sequence alignment showed that the SpAMO amino acid sequence was signif-

icantly different from the MAO sequences of other species. SpAMO displayed 11.8%, 12.7%,

12.0%, 12.4%, 11.1%, 11.8%, 13.0% and 10.8% identity withHomo sapiens MAO-A, Homo
sapiens MAO-B, Rattus sp. MAO-A, Rattus sp. MAO-B, Danio rerio MAO, Oncorhynchus
mykiss MAO, Crassostrea gigasMAO and Tribolium castaneum MAO, respectively. We found

that SpAMO shared lower similarity with other MAOs, and, in general, the similarity between

SpAMO and MAO was lower than that between SpAMO and SMO. Multiple sequence align-

ment showed that SpAMO shared the highest similarity with MAO of C. gigas (13.0%).

The amino acid sequences of MAO and SMO proteins in mammals, fish and insects were

downloaded from the NCBI protein database, and the predicted amino acid sequence of

SpAMO was compared with these amino acid sequences using MEGA 5.1 software. The two-

parameter model was used to establish a neighbour-joining phylogenetic tree (Fig 3). The evo-

lutionary tree of amine oxidase was divided into MAO and SMO, and the two amine oxidases

were clustered into mammalian, fish and insect groups. The phylogenetic tree further showed

two branches for vertebrates and invertebrates. It is worth noting that the mud crab SpAMO
clustered with the SMO genes and formed one invertebrate group with the insects, indicating

that the genetic distance between these genes was small.

The putative secondary structure was composed of 25.9% alpha helices, 17.0% extended

strands and 57.1% random coils, suggesting that random coils are the major component in

SpAMO. A three-dimensional SpAMO structure (Fig 4A) with 28.25% identity to the murine

peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PDB accession No. 5mbx.1.A) was

obtained by searching the Protein Data Bank (PDB) with this programme. The comparative

analysis revealed that although there were some differences between the SpAMO protein

sequence and MAO sequences of other species, the spatial structure of the FAD-binding

domain was highly conserved among the various species. The predicted 3-D model of MAO

(GenBank accession number: AAO16681.3) from Danio rerio shows the highly conserved

structure of the FAD-binding domain (Fig 4B). The FAD-binding domain is located at the

positions 53–89 and 381–452 of the amino acid sequence (Fig 4A and 4B). All FAD-binding

domains have one alpha helix and two extended strand structures in that part of the protein.

3.2 Quercetin down-regulated SpAMO mRNA expression in vivo
Temporal expression of the SpAMO gene was investigated using qRT-PCR after a quercetin

challenge (Fig 5). There was no difference in the SpAMO gene expression in haemolymph and

brain tissue in the absence of quercetin. When crabs were treated with 5 mg/kg/d quercetin,

Fig 1. The nucleotide and deduced amino acid sequences of the SpAMO gene in Scylla paramamosain. Shown are

the coding region and parts of the untranslated regions, where the upper sequence is the nucleotide sequence and the

lower sequence is the amino acid sequence. The start (ATG) and stop (TGA) codons are double underlined. The parts

in shadow indicate the FAD-binding domain (53–89 aa), the flavin-containing amine oxidoreductase (208–498 aa) and

the termination signal AATAAA. The heavy line indicates the putative conserved motif proto_IX_ox (77–133 aa). The

signal peptide is boxed.

https://doi.org/10.1371/journal.pone.0204325.g001
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the expression level of the SpAMO gene in haemolymph and brain tissues tended to fluctuate,

first being down-regulated, then up-regulated, and then down-regulated again (Fig 5A and

5B). The expression level of the SpAMO gene in haemolymph and brain tissue decreased to

50% and 20% of the original level, respectively, by 24 h after treatment. Expression was up-

Fig 2. Alignment of the amino acid sequence of SpAMO with MAO sequences of other species. The GenBank accession number for MAOs areHomo sapiens
MAO-A and MAO-B (M68840 and M69177), Rattus sp. MAO-A and MAOB (D00688 and M23601),Danio rerioMAO (AAO16681.3),Oncorhynchus mykiss MAO

(AAA64302.1), Crassostrea gigasMAO (CAD89351.1), and Tribolium castaneum MAO (XP_015839656.1). The red box represents the FAD-binding domain. The FAD-

binding pentapeptide is in the yellow box. The C-terminal putative transmembrane domain ofDanio rerio is red underlined. The amino acids lining the substrate-

binding site inHomo sapiensMAO-B are marked with a red asterisk.

https://doi.org/10.1371/journal.pone.0204325.g002
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Fig 3. Evolutionary tree of MAO and SMO. The tree was constructed using the neighbour-joining algorithm in the MEGA 5.1 program based on multiple

sequence alignment by Clustal W, and the reliability of the branching was tested using bootstrap resampling (1000 pseudo-replicates). The scale bar corresponds

to the estimated number of amino acid substitutions per site. The genes used and their GenBank accession numbers are as follows:Homo sapiensMAO-A and

MAO-B (M68840 and M69177), Rattus sp. MAO-A and MAO-B (D00688 and M23601), Drosophila navojoa MAO (XP_017966793.1),Danio rerioMAO

(AAO16681.3),Nothobranchius furzeriMAO (SBP45138.1), Aphyosemion striatum MAO (SBP07926.1), Oncorhynchus mykiss MAO (AAA64302.1), Cyprinus
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regulated in both tissues on the 3rd day. By the 5th day, the expression was down-regulated

compared to 24 h levels in haemolymph and had returned to 24 h levels in brain tissue. Fur-

thermore, the down-regulation effect of quercetin on brain tissue was approximately 2.5-fold

greater than its effect on haemolymph in the first 24 h after treatment. When the dose of quer-

cetin was 50 mg/kg/d, the down-regulation effect was more pronounced, and the expression

level of the SpAMO gene in haemolymph and brain tissues was reduced to approximately 10%

of control levels (Fig 5C and 5D). The expression profiles of SpAMO was maintained at a stable

and low level, and the down-regulation in haemolymph was more evident.

3.3 Enzymatic properties of SpAMO
To determine the specificity of the SpAMO catalysing substrate, four amines were selected for

experiments, including 5-HT, DA, spermine and PEA. In mammals and other higher animals,

5-HT and DA are primarily deaminated by MAO, and spermine is degraded by SMO. Under

the adopted experimental conditions in vitro, the results showed that SpAMO and all four sub-

strates could produce reactive oxygen species (H2O2) by oxidative deamination (Fig 6).

carpioMAO (BAH02786.1), Zootermopsis nevadensisMAO (KDR09121.1), Pieris rapae MAO (XP_022115701.1), Aedes albopictusMAO (XP_019931073.1),

Anoplophora glabripennis MAO (XP_018561137.1), Tribolium castaneum MAO (XP_015839656.1), Papilio machaon MAO (XP_014364998.1),Hyalella azteca
MAO (XP_018020258.1), Strongylocentrotus purpuratusMAO (XP_003726162.2), Crassostrea gigasMAO (CAD89351.1), Apis cerana MAO (XP_016915250.1),

Helicoverpa armigera SMO (XP_021195874.1), Pieris rapae SMO (XP_022126040.1), Camponotus floridanus SMO (EFN70212.1), Sinocyclocheilus grahami SMO

(XP_016149021.1), Cyprinus carpio SMO (KTG11709.1), Trichogramma pretiosum SMO (XP_014236465.1), Rattus norvegicus SMO (NP_001128326.1),Homo
sapiens SMO (AAH00669.1),Diuraphis noxia SMO (XP_015369715.1), andHalyomorpha halys SMO (XP_014291094.1).

https://doi.org/10.1371/journal.pone.0204325.g003

Fig 4. Three-dimensional structure models of SpAMO (A) and MAO (B) from Scylla paramamosain and Danio rerio, respectively, established based on the

SWISS-MODEL server. “N” indicates the N-terminal residue; “C” indicates the C-terminal residue. The red boxes (A and B) represent the FAD-binding domain

(located at 53–89 aa and 381–452 aa in A and B, respectively), which includes one alpha helix and two extended strands.

https://doi.org/10.1371/journal.pone.0204325.g004
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However, oxidative deamination of 5-HT and DA by SpAMO was significantly stronger than

that of spermine and PEA. The enzyme activity of SpAMO against 5-HT and DA was much

higher than its activity against spermine and PEA, and the enzyme activity against 5-HT was

slightly higher than the activity against DA in vitro. Through fluorescence counting, the

enzyme activity values of SpAMOwere measured for the four substrates. SpAMO displayed val-

ues of 18.4, 12.8, 1.3, and 1.4 for 5-HT, DA, spermine and PEA, respectively. Thus, it could be

concluded that SpAMOmainly catalyses 5-HT and DA in S. paramamosain.

4. Discussion

As mentioned above, the SpAMO nucleotide and deduced amino acid sequences showed low

identity with MAO sequences from mammals, fish, insects and molluscs. The results of multi-

ple sequence alignment revealed considerable differences in primary structure between

SpAMO and MAO. In particular, SpAMO is more similar to SMO in terms of primary struc-

tures such as nucleotides and amino acids sequences. Related studies on MAO have been

focused on mammals and other vertebrates, and MAO-A and MAO-B have been characterized

Fig 5. The relative expression levels of SpAMO from Scylla paramamosain after different doses of quercetin. Panels A and B show the results for the 5 mg/

kg/d dose, while panels C and D show the results for the 50 mg/kg/d dose. The SpAMOmRNA expression was normalized to the 18S rRNA transcript level.

Data are shown as the means ± SD (standard deviation) of three replicates. Means with the same letters are not statistically different; means with different

letters are statistically different (P<0.05). The y-axis represents the ratio of the expression levels of SpAMO/18S rRNAmRNA.

https://doi.org/10.1371/journal.pone.0204325.g005
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based on their substrate specificities and inhibitor sensitivities [53–55]. Analysis of the second-

ary and tertiary structures of these two enzymes, as well as research with chimeric enzymes

and site-directed mutagenesis, has made outstanding progress in elucidating the recognition

mechanisms of MAO-A and MAO-B for different substrates [52,56–59]. A large number of

reports on MAO mainly focus on mammals [56,60–62], not non-mammalian vertebrates such

as fish and reptiles, let alone crustaceans. The currently available evidence suggests that there is

a single and novel MAO form in teleosts that is more similar to MAO-A than to MAO-B [45].

Such single and novel forms of MAO have also been found to exist in perch [63], pike [64],

rainbow trout [65], zebrafish [45] and carp [46]. The single form of MAO in fish may be the

evolutionary precursor of both MAO forms (MAO-A and MAO-B) in mammals [46]. Interest-

ingly, a new MAO type C-like dehydratase gene (MAO-C), which supplies R-3-hydroxyacyl-

CoA from the fatty acid oxidation pathway to the polyhydroxyalkanoate (PHA) biosynthetic

pathway, was identified in Phytophthora capsici [66]. In summary, whether there is a novel

MAO with a similar crystal structure, similar substance-binding features, and similar inhibitor

sensitivity in crustaceans such as S. paramamosain needs further exploration. At the same

time, data regarding MAO genes in other crustaceans is also critical.

The deduced amino acid sequence and secondary structure prediction studies have shown

that the flavin-binding domain is highly conserved in both the carboxyl-terminal and the

amino-terminal regions of SpAMO. Overall, almost all reported MAOs have three conserved

domains: the flavin-binding domain, the substrate-binding domain and the membrane-bind-

ing domain that anchors the enzyme to the outer mitochondrial membrane [45]. It has been

reported that nine cysteine residues exist in the deduced amino acid sequence of carp MAO

and in both forms of human liver MAO [46,67]. Sugimoto et al. [46] also confirmed the pres-

ence of a pentapeptide (Ser-Gly-Gly-Cys-Tyr) in carp MAO that may bind to FAD. The cyste-

ine residues of thioether link to the flavin ring, and the cofactor FAD binds to this

pentapeptide. In addition, a corresponding region of the α-helix motif in the mitochondrial

membrane that is used to insert the protein into a fragment with 18 amino acid residues was

Fig 6. The activity values of SpAMO on four different biogenic amine substrates. SpAMO activity was measured

using 5-HT, DA, spermine and PEA as substrates (50 μL), and an enzyme activity unit was defined as pmol H2O2/mg

protein�min. Means with the same letters are not statistically different; means with different letters are statistically

different (P<0.05).

https://doi.org/10.1371/journal.pone.0204325.g006
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also found in carp and zebrafish MAO [45–46,65] but it hasn’t been found in trout MAO [65].

This C-terminal putative transmembrane domain of zebrafish MAO is also not found in

SpAMO. This transmembrane α-helix domain does not seem to be conserved between zebra-

fish and carp, neither of which is conserved with respect to mammal MAOs sequence. Studies

have found that in mammals, the sequence of C-terminal transmembrane α-helix is not con-

served between the two forms of MAO-A and MAO-B, but it is conserved among the MAO-A

or MAO-B from different species [45]. The 18 essential amino acids for substrate-binding sites

of human MAO-B listed in Fig 2 are replaced by other amino acid residues at different posi-

tions in different species. For example, leucine 171 was replaced by valine in fish MAO and

SpAMO and replaced by isoleucine in MAO-A. The effect of amino acids substitution probably

is not significant because these three amino acids have similar properties. All three amino

acids mentioned above belong to hydrophobic non-polar amino acids. Hydrophilic polar cys-

teine at position 172 and the hydrophobic non-polar aliphatic residue isoleucine at position

199 in human MAO-B were replaced in SpAMO by a non-polar, aromatic phenylalanine and

by non-polar aliphatic alanine, respectively. In fish MAO and mammal MAO-A, the amino

acids at these two positions were replaced by more similar polar aliphatic asparagine and non-

polar aromatic amino acid phenylalanine. 206 glutamine, 343 phenylalanine, and 435 tyrosine

located in human MAO-B were replaced by glutamic acid, leucine, and threonine in SpAMO,

respectively. Although there are different degrees of substitution of the amino acids at the sub-

strate-binding site in different species, in most cases the binding properties of the substrate are

not affected. One of the main reasons is the presence of properties similar to amino acids. Fur-

thermore, in addition to the residues lining the substrate-binding site, other amino acid resi-

dues could also be crucial in the molecule’s conformation [45]. Moreover, for human MAO-B

and rat MAO-A, there is a three-dimensional model based on the crystal structure [16].

Because of such research, today we can not only compare the molecular features of entire

sequences but also check the substrate and inhibitor preferences of conserved sequences. The

overall folding structures of human MAO-B and rat MAO-A appear to be very similar but

show a different conformation in the critical substrate-binding site. According to the human

MAO-B three-dimensional model, the substrate-binding domain appears to be divided into

two chambers of varying sizes, and the substrate enters the substrate-binding cavity from the

smaller channel cavity [16]. The movement of the channel cavity causes the substrate to diffuse

into a gate consisting of four residues (Y326, I199, L171, F168); the gate then enters the sub-

strate-binding chamber by transient movement. The structure of rat MAO-A does not reveal

any substrate entrance pathway like that of human MAO-B, suggesting that the rat MAO-A

substrate enters into the active site by a conformational change of the molecule [52].

Quercetin injection experiments showed that quercetin can effectively down-regulate the

transcription of SpAMO. SpAMO gene expression decreased first and then increased when the

quercetin dose was at a low concentration (5 mg/kg/d). This may be explained by a compensa-

tory mechanism which compensates for the loss of enzyme activity by producing more

enzymes. When the concentration was high (50 mg/kg/d), SpAMO remained at a stable and

low mRNA level. The reason for this may be that the effect of high concentrations of quercetin

exceeds the threshold for self-regulation of mud crabs. Quercetin is a flavonoid widely distrib-

uted in plant foods and herbal medicine and is mainly present as glycosides in plants. Cur-

rently, studies suggested that quercetin and other structurally related flavonoids exert

antidepressant-like effects in rodent models of depression, and these effects were achieved

mostly through acting as the protein inhibitor [68–70]. For example, in vitro studies have

shown that quercetin has a considerable inhibitory effect on MAO-A activity in mitochondrial

fractions obtained from mouse brain [71–72]. Quercetin exerts an inhibitory effect on the

mitochondrial MAO-A reaction in the mouse brain by reducing the deamination product of
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5-HT [72]. In a study on human neuroblastoma SH-SY5Y cells, it was also found that the fla-

vonol quercetin could localize to the outer mitochondrial membrane and attenuate MAO-A

activity directly in neuronal cells [73]. In particular, the researchers used docking simulation

studies to show that quercetin has a high affinity for the MAO-A protein and to provide the

lowest interaction energy configuration of the quercetin and MAO-A complex [71]. This inter-

esting phenomenon deserves our attention because quercetin significantly down-regulated the

expression of SpAMO in this study. What we found was different from the previous research

which regarded quercetin as a protein inhibitor. Behind this phenomenon must be a complex

regulatory network that affects the transcription level of the SpAMO gene in an indirect way.

Studies have shown that quercetin and its derivatives can use microRNA as a molecular target,

and microRNA is involved in post-transcriptional gene silencing and regulates expression of

genes involved in physiological processes such as development, proliferation, metabolism and

inflammation [74]. As a transcriptional repressor, mammalian microRNA recognizes and

binds to the 3’-UTR of the target gene by complementary pairing of complete or incomplete

sequences, which destabilizes the target mRNA to reduce protein synthesis [75–78]. In addi-

tion, small interfering RNA (siRNA) is an initiator of RNA interference, which can deactivate

the complementary target mRNA [79]. In a word, the regulatory mechanisms involved in this

phenomenon and the relation and the regularity between them are worthy of our in-depth

study.

The enzymatic activity experiment for SpAMO showed that the catalytic activity of SpAMO
on 5-HT and DA was much higher than its activity on spermine and PEA. The PAO of yeast is

called Fms1, which can oxidize spermine, N-acetyl spermine and N-acetyl spermidine [80–

81]. However, in vertebrates, two different enzymes, SMO and acetylpolyamine oxidase

(APAO), specifically catalyse the oxidation of spermine and acetylated polyamine, respectively.

The yeast PAO can catalyse the oxidation of acetylated and non-acetylated polyamines, and in

vertebrates, these two functions are undertaken by SMO and APAO, respectively, so it was

speculated that the front part of the enzyme may be the ancestor of these two enzymes, having

replicated and produced the parallel homologous genes SMO and APAO in vertebrates [82].

MAO-A and SMO belong to the flavoprotein family; the difference between them is that

MAO-A is mainly involved in monoamine neurotransmitter metabolism, while SMO mainly

participates in polyamine metabolism. Another thing which should be mentioned is the oxida-

tion of serotonin and dopamine were proved through an indirect measurement of H2O2 gen-

eration. Determination of polyamine oxidase activities using H2O2 generation was successfully

used [51]. The difference in the inhibitory effect of quercetin on MAO-A in different litera-

tures may be method bias [83]. Moreover, the effect of quercetin on SpAMO and MAO-A may

not be equal. Some researchers think that assays in which the evaluation of inhibition on MAO

is only based on oxidation of peroxidase substrates may lead to erroneous results as seen here

for some phenolic compounds. These compounds are antioxidants that may interfere with

peroxidase assays [83]. Therefore, this enzyme activity assessment should be confirmed by a

direct method like HPLC (MS) in the further studies.

In this study, we characterized a novel amine oxidase (SpAMO) in S. paramamosain. The

complete cDNA sequence encoding this flavoprotein enzyme is involved in monoamine neu-

rotransmitter metabolism. SpAMO demonstrated the molecular characteristics of SMO in bio-

informatics studies such as nucleotide and amino acid sequence analysis, multiple sequence

alignment, phylogenetic relationship determination and three-dimensional structure predic-

tion. However, the quercetin test and substrate specificity analyses suggested that SpAMO has

the activity of MAO-A. Therefore, these findings seem to support the hypothesis that SpAMO
may be a special form of amine oxidase that shares the biological functions of SMO and

MAO-A in S. paramamosain.
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S1 Fig. SDS-PAGE analysis of the recombinant protein SpAMO. M: protein marker. Lane 1:
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