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Abstract

Background: The cell adhesion molecule L1 is crucial for mammalian nervous system development. L1 acts as a mediator of
signaling events through its intracellular domain, which comprises a putative binding site for 14-3-3 proteins. These
regulators of diverse cellular processes are abundant in the brain and preferentially expressed by neurons. In this study, we
investigated whether L1 interacts with 14-3-3 proteins, how this interaction is mediated, and whether 14-3-3 proteins
influence the function of L1.

Methodology/Principal Findings: By immunoprecipitation, we demonstrated that 14-3-3 proteins are associated with L1 in
mouse brain. The site of 14-3-3 interaction in the L1 intracellular domain (L1ICD), which was identified by site-directed
mutagenesis and direct binding assays, is phosphorylated by casein kinase II (CKII), and CKII phosphorylation of the L1ICD
enhances binding of the 14-3-3 zeta isoform (14-3-3f). Interestingly, in an in vitro phosphorylation assay, 14-3-3f promoted
CKII-dependent phosphorylation of the L1ICD. Given that L1 phosphorylation by CKII has been implicated in L1-triggered
axonal elongation, we investigated the influence of 14-3-3f on L1-dependent neurite outgrowth. We found that expression
of a mutated form of 14-3-3f, which impairs interactions of 14-3-3f with its binding partners, stimulated neurite elongation
from cultured rat hippocampal neurons, supporting a functional connection between L1 and 14-3-3f.

Conclusions/Significance: Our results suggest that 14-3-3f, a novel direct binding partner of the L1ICD, promotes L1
phosphorylation by CKII in the central nervous system, and regulates neurite outgrowth, an important biological process
triggered by L1.
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Introduction

L1 is a cell adhesion molecule of the immunoglobulin

superfamily which is essential for normal development of the

mammalian nervous system. Constitutively L1-deficient mice

display severe brain malformations, in particular hydrocephalus

and agenesis of the corpus callosum [1,2]. Similar deficits have

been discovered in humans carrying mutations in their L1CAM

gene [3]. It has been demonstrated that cell recognition via L1 is

important both for axon outgrowth and for neuronal migration

(reviewed in [4,5]). These processes are likely to require dynamic

control of L1-mediated cell adhesion, for instance by internaliza-

tion of L1, regulating the availability of L1 on the cell surface. In

support of this assumption, endocytotic trafficking of L1 has

proved to be important for axon elongation [6]. Regulated L1

internalization depends on interactions of its intracellular domain

with signaling, cytoskeletal, and adaptor molecules [7]. In

particular, the tyrosine-based sorting motif Y1176RSL, which

interacts with the adaptor protein AP-2, is necessary for clathrin-

mediated endocytosis of L1 [8]. Phosphorylation of Y1176 by the

nonreceptor tyrosine kinase p60src prevents L1 binding to AP-2

[9]. This motif overlaps with the RSLE sequence, encoded by the

alternatively spliced exon 28 [10]. The RSLE sequence is present

only in L1 from neurons, but not in L1 expressed by non-neuronal

cells such as Schwann cells [11]. Ser1181, the second serine residue

of the YRSLESDNEE sequence in the L1ICD, can be

phosphorylated by CKII [12]. This posttranslational modification

most probably plays a critical role in endocytotic trafficking and

L1-stimulated axon elongation [13]. However, molecular mech-

anisms by which CKII–mediated phosphorylation could influence

L1 function have not been investigated so far. Notably, the

resulting RSLEpS sequence is a potential binding motif for 14-3-3
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proteins [14], and analysis of transgenic mice ectopically

expressing L1 in astrocytes (GFAP/L1 mice) [15] revealed an

overexpression of 14-3-3b and f (T. Tilling et al., unpublished

data).

The 14-3-3 family of protein-binding proteins was first

discovered in brain, where it comprises ,1% of total soluble

protein [16]. 14-3-3 proteins are preferentially localized in

neurons, but also expressed in a wide range of other cells and

tissues [17]. The broad spectrum of 14-3-3 functions includes

activation of tyrosine and tryptophan hydroxylases [18], regulation

of the Raf-1 oncogene [19–21], and modulation of apoptosis

[22,23]. Consistent with their abundance in the brain, several

studies point to an important role of 14-3-3 proteins in the nervous

system. Genetic knock-out of 14-3-3 in Drosophila revealed an

impairment of learning and synaptic plasticity [24]. In support of a

similar function in mammals, Simsek-Duran et al. (2004) [25] have

shown that 14-3-3 proteins are required for a presynaptic form of

long-term potentiation in the mouse cerebellum. Moreover,

members of the 14-3-3 family are involved in neuronal migration

during vertebrate development [26], regulation of cerebellar

NMDA receptor surface localization [27], and in neurotrophin-

stimulated growth of neurites [28,29].

The multitude of functions exerted by 14-3-3 proteins is

achieved through their ability to bind to phosphoserine/phospho-

threonine–containing motifs of their ligands in a sequence specific

manner. Two of the best known 14-3-3 consensus binding motifs

are RSXpSXP and RXXXpSXP (pS represents the phosphory-

lated serine residue) [30]. However, 14-3-3 proteins not only

recognize these classical motifs, but also other phosphorylated sites

and nonphosphorylated motifs [14,31]. Owing to the versatility of

binding sites in other proteins and to their ability to dimerize, 14-

3-3 proteins act as adaptor proteins, chaperones and scaffolds [22].

For a better understanding of L1-mediated cell-cell interactions,

it is crucial to elucidate the mechanisms of interaction between L1

and its intracellular binding partners [4,5]. Based on the presence

of a potential 14-3-3 binding motif in a functionally important part

of the L1ICD, we posited that 14-3-3 proteins interact with the

L1ICD and thereby play a role in L1 function. We show that 14-3-

3 is indeed associated with L1 in vivo. Moreover, our results

demonstrate that, on the one hand, CKII supports binding of 14-

3-3 to L1 and, on the other hand, 14-3-3 binding to L1 enhances

L1 phosphorylation by CKII. Finally, expression of the mutated

form of 14-3-3f, which impairs interactions of 14-3-3 with its

binding partners, stimulated neurite elongation on an L1 substrate.

Taken together, our data indicate that 14-3-3 proteins regulate

biological functions of L1.

Results

14-3-3 is associated with L1
To investigate a possible association between L1 and 14-3-3

proteins in mouse brain, immunoprecipitation experiments were

performed. L1 was immunoprecipitated from brain membrane

fractions of 3-week-old mice using an L1- specific antibody. A non-

immune rabbit IgG was used as a negative control. The presence

of 14-3-3 proteins in the resulting anti-L1 immune complex was

analyzed using an anti-pan-14-3-3 mouse monoclonal antibody.

As shown in Fig. 1A, 14-3-3 co-immunoprecipitated with L1 from

mouse brain membrane fractions, indicating that L1 and 14-3-3

proteins associate in the brain.

14-3-3f directly binds to the intracellular domain of L1
14-3-3f is one of the most abundantly expressed 14-3-3 isoform

in neurons of the mammalian brain [32,33]. Based on our finding

that 14-3-3 proteins associate with L1, we hypothesized that 14-3-

3f may bind to the L1ICD. To test this idea, an Enzyme-linked

Immunosorbent Assay (ELISA)-based direct binding assay was

performed. Recombinantly expressed L1ICD was immobilized on

microtiter plate wells, and its ability to bind 14-3-3f was measured.

Glutathione-S-transferase (GST)-14-3-3f bound in a concentra-

tion-dependent manner to the L1ICD (Fig. 1B), demonstrating

that 14-3-3f directly binds to the L1ICD. There was no binding of

GST-14-3-3f to the ICD of the 180 kDa isoform of the neural cell

adhesion molecule NCAM (Fig. 1B), showing the specificity of the

interaction between L1ICD and 14-3-3f.

Ser1181 to Ala substitution and RSLESD deletion disrupt
binding of L1 to 14-3-3f

Next, we wanted to more closely define the 14-3-3 binding site

in the L1ICD. The central part of the L1ICD contains the amino

Figure 1. 14-3-3 is associated with L1 in vivo. A. Immunoprecipitation (IP) of L1 from crude brain membrane fractions (MF) was performed using
a rabbit polyclonal antibody to L1. Proteins were resolved by SDS-PAGE and analyzed by Western blotting (WB) with the anti-14-3-3 antibody H8.
Successful immunoprecipitation of L1 was shown by Western blot analysis of the precipitates with a polyclonal anti-L1 antibody. The positions of full-
length L1 (L1-200) and of proteolytic L1 fragments (L1-140 and L1-80; [69]) are indicated by grey arrows. B. 14-3-3f directly binds to the L1ICD.
Recombinantly expressed 6xHis-tagged L1ICD was immobilized on microtiter plate wells and assayed by ELISA for its ability to bind GST-14-3-3f.
Measurement of the binding of 14-3-3f to the ICD of the unrelated neural cell adhesion molecule NCAM180 served as a negative control. Specific
absorbance values were calculated by subtracting absorbance in wells incubated with GST only. Error bars denote standard deviation based on 3
independent experiments. Note that in some cases the error bars are not visible because of small standard deviations.
doi:10.1371/journal.pone.0013462.g001
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acid sequence RSLESD. The second serine within this sequence,

Ser1181, can be phosphorylated by CKII [12] and RX2-3pS is a

potential 14-3-3-binding motif [22]. Therefore, two L1ICD

mutants were generated: L1ICD DRSLESD, in which the

RSLESD had been removed, and L1ICD S1181A, in which

Ser1181 was replaced by Ala to prevent L1 phosphorylation by

CKII (Fig. 2A). Purified L1ICD mutants were analyzed by

Western blot analysis with an anti-L1 antibody, which recognizes

the unmutated form of L1ICD. As shown in Fig. 2B the L1

antibody also recognizes L1ICD S1181A and L1ICD DRSLESD.

To assess whether 14-3-3 proteins bind the RSLEpSD sequence,

we performed pulldown assays by comparing the ability of GST-

tagged 14-3-3f to interact with in vitro CKII-phosphorylated

L1ICD and the two mutants. While the unmutated L1ICD was

specifically bound by 14-3-3f, the S1181A mutation strongly

reduced and the RSLESD deletion abolished 14-3-3f binding

(Fig. 2C, upper panel), indicating that 14-3-3 binding to L1 indeed

requires the RSLESD sequence and that this binding is critically

dependent on Ser1181. Comparable amounts of GST or GST-14-

3-3f were used in each pull-down, as shown by Western blot

analysis of pull-down eluates with a GST antibody (Fig. 2C, lower

panel).

14-3-3f binds both to CKII phosphorylated L1ICD and to
non-phosphorylated L1ICD

In the majority of cases documented so far, 14-3-3 interacts with

phosphoproteins. However, our ELISA experiments showed that

14-3-3f is able to interact with nonphosphorylated recombinant

L1ICD (cf. Fig. 1B). We therefore sought to more closely

investigate whether phosphorylation of L1ICD by CKII at the

Ser1181 residue affects its interaction with 14-3-3f. In order to

monitor the specificity of CKII phosphorylation, 4,5,6,7- tetra-

bromobenzotriazole (TBB), a specific inhibitor of CKII [34], was

utilized. We observed that 14-3-3f binds non-phosphorylated

L1ICD (Fig. 3A, upper panel, lane 1) in line with our ELISA

results, but also, even to a higher extent, phospho-L1ICD (Fig. 3A,

upper panel, lane 2). A quantitative densitometric analysis

confirmed that significantly more phospho-L1ICD bound to 14-

3-3f compared to non-phosphorylated L1ICD (Fig. 3B), support-

ing a preferential interaction of 14-3-3f with CKII-phosphorylated

L1. We also observed that inhibition of CKII activity by TBB led

to the presence of non-phosphorylated L1ICD in the GST-14-3-3f
eluate, as expected, although L1 phosphorylation was not

completely blocked (Fig. 3A, upper panel, lane 3). Western blot

analysis demonstrated that comparable amounts of GST and

GST-14-3-3f were used in the pull-down assay (Fig. 3A, lower

panel).

14-3-3f promotes CKII-catalyzed L1ICD phosphorylation
Having shown that CKII phosphorylation of the L1ICD is

important for its interaction with 14-3-3f, we asked whether 14-3-

3f binding to non-phosphorylated L1ICD influences CKII-

catalyzed L1ICD phosphorylation. L1ICD was preincubated

overnight with GST-14-3-3f (or GST only as a negative control)

and then subjected to CKII phosphorylation. At serial time points,

the reaction was stopped by adding SDS-PAGE loading buffer.

The effect of 14-3-3f on L1ICD phosphorylation was analyzed by

loading the samples directly onto an SDS gel and then performing

Western blotting using an anti-L1 monoclonal antibody. Phos-

phorylation of L1ICD was evident by the appearance of a second

protein band, presumed to be phosphorylated L1, with slightly

lower mobility in SDS-PAGE relative to non-phosphorylated

L1ICD (Fig. 4A). An increase in band intensities of phosphory-

lated L1 was observed over time (particularly from t = 0 min to

t = 60 min) when L1ICD was preincubated with GST-14-3-3f
(Fig. 4A). When L1ICD was preincubated with GST alone, there

Figure 2. Ser1181Ala substitution and RSLESD deletion disrupt binding of L1 to 14-3-3f. A. Schematic of recombinant L1ICD constructs.
The full-length L1ICD construct contains the RSLESD sequence, a potential 14-3-3 binding motif. L1ICD S1181A has a single amino acid substitution
(S1181A) of a serine residue in this motif. Ser1181 can be phosphorylated by CKII. The RSLESD sequence, a potential 14-3-3-binding motif, is deleted
in L1ICD DRSLESD. Wild-type and mutated L1ICD constructs were recombinantly expressed as 6xHis-tagged proteins, purified from bacterial lysates
and used in pull-down experiments. B. Purified mutated L1ICD constructs were analyzed by Western blot using the 74-5H7 anti-L1 antibody. C. Upper
panel: 6xHis-tagged proteins, purified from bacterial lysates, were subjected to GST-14-3-3f pull-down assays after treatment with CKII. GST was used
as a control. Pull-down eluates were analyzed by Western blot (WB) with the 74-5H7 anti-L1 antibody. Lower panel, GST and GST-14-3-3f were
detected in pull-down eluates by Western blot (WB) with an anti-GST antibody, confirming that comparable amounts of GST or GST-14-3-3f were
used in each pull-down.
doi:10.1371/journal.pone.0013462.g002
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was a less pronounced increase in the respective band intensities

from t = 0 min to t = 30 min. A densitometric comparison of band

intensities at time points 0 and 180 min indicated that at the latter

time point, L1ICD phosphorylation was ,3 times stronger in the

presence of 14-3-3f than in its absence (Fig. 4B). To confirm that

the upper band represents phospho-L1ICD, the S1181A L1ICD

mutant, in which Ser1181 is replaced by Ala to inhibit CKII–

mediated L1 phosphorylation, was investigated in the same

manner as wild-type L1ICD. In contrast to the non-mutated

protein, no second band appeared over time with the S1181A

mutant (Fig. 4C), demonstrating that the upper band observed in

the experiments with wild-type L1ICD (cf. Fig. 4A) is indeed

phosphorylated L1ICD and that the lower band represents non-

phosphorylated L1ICD. To conclusively support this interpreta-

tion, we treated CKII-phosphorylated L1ICD with lambda

protein phosphatase 1 (lPP1) (Fig. 4D). lPP1 treatment caused

a shift towards the lower band, further confirming that the upper

band represents phosphorylated L1ICD. In conclusion, these

results indicate that 14-3-3f supports phosphorylation of L1ICD

by CKII.

14-3-3f is associated with L1 in endosomes
CKII-mediated phosphorylation of L1 at Ser1181 has been

implicated in normal endocytotic trafficking of L1 [13]. Recycling

of endocytosed L1 occurs via sorting and recycling endosomes [35]

and is important for L1-based growth cone motility [6]. We thus

wished to analyze whether 14-3-3f is associated with L1 in

endosome-enriched vesicle fractions. The enrichment of certain

types of vesicles in the different fractions can be analyzed by

determination of known vesicular resident components such as the

Rab small GTPases [36,37]. Membrane preparations from

postnatal day 7 C57BL/6J mouse brains were subfractionated

utilizing a sucrose gradient to obtain vesicle fractions. From these

fractions, L1 was precipitated using the anti-L1 monoclonal

antibody 557. Western blot analysis of the L1 immunoprecipitates

showed that full length L1 (,200 kDa) and proteolytically cleaved

L1 (lower bands) were successfully precipitated, with noticeable

enrichment in fractions 3, 4 and 8 (Fig. 5A, top panel). Detection

with an isoform-specific anti-14-3-3f antibody revealed the

presence, albeit at varying amounts, of 14-3-3f (,30 kDa) in L1

immunoprecipitates (Fig. 5A, bottom panel), suggesting that 14-3-

3f is associated with L1 in vesicles. Interestingly, we observed that

the highest amount of 14-3-3 was associated with L1 in endosomal

fraction 5, which contains relatively low amounts of L1 (Fig. 5A).

In order to characterize these fractions more precisely, we

performed Western blot analyses using antibodies against Rab

marker proteins specifically expressed in two distinct endosome

populations. Both early (Rab 4; [38]) and late endosome markers

(Rab 9; [39,40]) were detected in fractions 2-5 and 7. Substantially

lower amounts of these two markers were detected in fractions 1

and 8 and none of the two markers was present in fraction 6

(Fig. 5B). These results suggest that 14-3-3 is associated with L1 in

particular types of endosomes and support an involvement of 14-3-

3 in L1 sorting and trafficking.

Expression of 14-3-3f K49E leads to an increase of neurite
length in L1-mediated neurite outgrowth

Our above-mentioned observations suggested a role for 14-3-3

in regulating L1 phosphorylation by CKII, putatively in

endosomes. Considering the importance of endosomal trafficking

for L1-mediated neurite growth [6] and the suggested involvement

of CKII in this process [12], we wanted to examine whether 14-3-

Figure 3. 14-3-3f binds to CKII-phosphorylated L1ICD more strongly than to nonphosphorylated L1ICD. A. Upper panel: Equal amounts
(15 mg each) of recombinant His-tagged L1ICD were incubated in the presence or absence of CKII. Where indicated, 5 mM TBB was included to
specifically inhibit CKII. To exclude non-specific effects of DMSO in which TBB was dissolved, one reaction took place in the presence of this solvent.
After treatment, a GST-14-3-3f pull-down was performed to investigate direct binding of L1ICD to 14-3-3. Pull-down eluates were analyzed by
Western blotting (WB) with the 74-5H7 anti-L1 antibody. Lower panel, GST and GST-14-3-3f were detected in pull-down eluates by Western blotting
(WB) with a GST antibody, confirming that comparable amounts of GST or GST-14-3-3f were used in each pull-down. B. CKII phosphorylation of
L1ICD enhances its association with 14-3-3f. Quantification of the lower L1ICD-immunoreactive band in lane 1 (L1ICD only) and the upper L1ICD-
immunoreactive band in lane 2 (L1ICD and CKII) was performed by densitometric analysis (A, upper panel shows a representative example). Data
represent mean 6SEM of four independent experiments.
doi:10.1371/journal.pone.0013462.g003
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3 influences L1-mediated neurite outgrowth. For this purpose,

either wild-type 14-3-3f or a K49E mutated form of 14-3-3f was

overexpressed in hippocampal neurons plated on L1-Fc or on Fc

control substrate. The K49E mutation replaces a crucial Lys

residue found in the amphipathic binding groove of all 14-3-3

isoforms by Glu, thus, abolishing most, if not all, interactions of

14-3-3 with its binding partners [41]. We observed that the total

length of neurites grown on the L1-Fc substrate was significantly

increased in 14-3-3f K49E expressing cells relative to wild-type

14-3-3f- and mock-transfected control cells, whereas no differ-

ences were observed between mock- and wild-type 14-3-3f-
transfected cells (Fig. 6). Given that no significant difference was

observed for mock, 14-3-3f wild-type and K49E transfected

neurons grown on the Fc substrate (Fig. 6), we conclude that the

14-3-3f K49E enhanced stimulation of neurite elongation is L1-

specific.

Discussion

In the present study 14-3-3 and L1 were found to associate in

vivo, as demonstrated by coimmunoprecipitation. ELISA and

pull-down experiments confirmed a direct interaction between

14-3-3f and the intracellular domain of L1 (L1ICD). We have

also observed binding of recombinant 14-3-3b to L1ICD in vitro

(E.M. Ramser et al., unpublished observations). However, the

binding intensity was lower, suggesting that L1 may preferen-

tially interact with specific 14-3-3 molecules. In the present

study, we focused on the interaction between 14-3-3f and

L1ICD. This interaction is enhanced by CKII-mediated

phosphorylation of L1ICD. Notably, we found that 14-3-3f
interacts not only with phosphorylated L1, but also with

nonphosphorylated L1. Although most known 14-3-3-ligands

possess phosphoserine- or phosphothreonine-based motifs,

several interactions between 14-3-3 and nonphosphorylated

motifs within ligand proteins have been described. Examples

include the sequences VTPEER of the amyloid protein precursor

(APP) ICD fragment [42], and WLDLE of the synthetic peptide

R18 [43,44]. It is generally accepted that phosphorylation-

independent interactions between 14-3-3 and its binding

partners occur in a manner similar to that of the binding partner

pS-RAF. This assumption is based on the finding that R18 was

co-crystallized with 14-3-3 in a position similar to that of

Figure 4. 14-3-3f supports CKII-catalyzed L1ICD phosphorylation. A. L1ICD was preincubated in the presence or absence of GST-14-3-3f
followed by incubation with CKII. At different time points, CKII phosphorylation was stopped by adding SDS loading buffer, and samples subjected to
SDS-PAGE. Western blot analysis with the 74-5H7 anti-L1 antibody revealed that the band intensities of phosphorylated L1 (phospho-L1ICD)
increased over time when L1ICD was preincubated with GST-14-3-3f (compare C). B. Upper panel, Comparison of L1ICD phosphorylation by CKII in
the presence of GST-14-3-3f or GST. The phospho-L1ICD and L1ICD bands at time points 0 and 180 min (representative example given in panel A)
were quantified and the ratio of phospho-L1ICD/total L1ICD at t = 0 min and t = 180 min in the presence of GST-14-3-3f or GST was calculated. Error
bars denote 6SEM based on 3 independent experiments. Lower panel, GST Western Blot analysis of phosphorylation assay samples taken at the
indicated time points confirms that equal amounts of GST or GST-14-3-3f were present in the reactions. C. L1ICD S1181A mutant was subjected to
the same CKII phosphorylation assay as described in A. No band presumably representing newly phosphorylated L1ICD could be observed. D.
Samples incubated with CKII for 180 min were subjected to subsequent treatment with l protein phosphatase 1 (lPP1). Changes in the L1ICD band
pattern were analyzed by Western Blot with the 74-5H7 antibody.
doi:10.1371/journal.pone.0013462.g004
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phosphorylated pS-RAF-259 [43]. In the complex structure of

14-3-3f with R18, the aspartate (D) and glutamate (E) side chains

generated a negative charge density comparable to that of

phosphoserine of pS-RAF-259 [43].

The RSLESD sequence in the central part of the L1ICD,

which, as discussed below, is the likely site of interaction for 14-3-

3f, contains two acidic residues. These residues might mimic a

phosphoryl group of consensus motifs and help to mediate the

interaction of 14-3-3f with non-phosphorylated L1. Mutation of

these two residues may be a suitable approach to clarify the

mechanism of phospho-independent 14-3-3 binding to L1 in the

future. The RSLESD sequence contains a RX2-3pS motif, which

is a potential 14-3-3-binding site [22]. We therefore focused on this

sequence for further analysis, particularly the second Ser residue

that is known to be phosphorylated by CKII [12]. This CKII

phosphorylation site is evolutionarily well-conserved among L1

orthologs and L1 family CAMs [45] and, therefore, is likely to be

required for subsequent interactions of L1 proteins in signaling

cascades and to serve a significant role in L1 function. Mutation

analysis showed that the RSLESD sequence is indeed the site of

14-3-3 interaction and confirmed that phosphorylation by CKII

occurs at Ser1181. Moreover, we found that Ser1181 is indispensable

for the interaction of 14-3-3f with L1, as 14-3-3 failed to bind an

S1181A L1ICD mutant in pull-down assays. This finding suggests

that Ser1181 is also crucial for the interaction between 14-3-3

proteins and non-CKII-phosphorylated L1. At present we cannot

completely exclude that additional phosphorylated or non-

phosphorylated 14-3-3 binding sites exist in the L1ICD. Based

on the ‘‘gatekeeper phosphorylation’’ concept [46], one could

speculate that high-affinity binding of one monomeric subunit of a

14-3-3f dimer to the RSLESD motif in L1 could be the

prerequisite for binding of a second 14-3-3 monomeric subunit

to a second, lower-affinity site in L1. However, our mutagenesis

data strongly indicate that the RSLESD motif identified in this

study is the principal site of interaction with 14-3-3f. Moreover,

the ‘‘gatekeeper concept’’ is based on phosphorylation of the

primary interaction site, whereas our data show that 14-3-3f also

interacts with non-phosphorylated L1.

As 14-3-3f interacts with nonphosphorylated and CKII-

phosphorylated L1ICD, the question arose whether 14-3-3f
utilizes the identified binding site (RSLESD) for phosphoryla-

tion-dependent and –independent interaction with L1. Notably,

two previous studies showed that 14-3-3f interacts with phos-

phorylated and non-phosphorylated Tau protein and that two

distinct 14-3-3 binding sites mediate these interactions [47,48].

Both of these studies also showed that phosphorylation of the Tau

protein by PKA increased its affinity for 14-3-3f. In line with this

finding, we observed that CKII phosphorylation enhances binding

of 14-3-3f to L1ICD. These observations suggest a two-step

mechanism for the 14-3-3 – L1 interaction: in a first step, 14-3-3

binds to its non-phosphorylated L1 with relatively low affinity.

Subsequent serine phosphorylation of L1, e.g. as a consequence of

a physiological stimulus, then tightens the 14-3-3 – L1 interaction.

Phosphorylation of tyrosine 1176 (Tyr1176), a residue adjacent to

the RSLESD sequence essential for 14-3-3 binding, has been

shown to prevent binding of L1 to the AP-2 adaptor protein,

thereby blocking L1 endocytosis [49]. Initial binding of 14-3-3 to

L1 prior to CKII phosphorylation might thus also be controlled by

the phosphorylation status of Tyr1176, which could act as a

regulatory signal. However, binding of L1 to CKII-phosphorylat-

ed 14-3-3f in vitro is not altered in the presence of AP-2 (E.M.

Ramser, unpublished observations).

Figure 5. 14-3-3f is associated with L1 in endosomes. A. Upper panel, Immunoprecipitation (IP) of L1 from vesicle fractions was performed
using the anti-L1 monoclonal antibody 557. Proteins were resolved by a SDS-PAGE gradient gel (4–20%) and analyzed by Western blotting (WB) with
an anti-L1 antibody (74-5H7), which recognizes full-length L1 and L1 proteolytic fragments containing the L1ICD. Full-length L1 (,200 kDa), indicated
by an arrow, was successfully precipitated. Lower panel, Western blot analysis of the L1 immunoprecipitates was also performed with an isoform-
specific anti-14-3-3f antibody, revealing the association of 14-3-3f with L1 in vesicle fractions. C: crude endosomal preparation; S: cytosolic
compounds; P: crude membrane fraction; ctrl: control IgG used for immunoprecipitation. B. To confirm that the isolated fractions are enriched in
endosomal markers, equal protein amounts from total brain homogenate and vesicle fractions were analyzed for expression of the early endosome
marker Rab 4 (upper panel) and the late endosome marker Rab 9 (lower panel). H: homogenate. In B, the bands shown for the homogenate are from
a different blot, but with the same protein amount loaded and the same film exposure time as for the fractions.
doi:10.1371/journal.pone.0013462.g005
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The above-mentioned study on 14-3-3 - Tau interaction [47]

showed that association of 14-3-3 with the microtubule binding

region of Tau stimulates phosphorylation of serine residues within this

region. We thus investigated whether 14-3-3 proteins have a similar

effect on CKII-mediated L1 phosphorylation. Notably, phosphory-

lation of L1ICD at Ser1181 by CKII was profoundly enhanced by 14-

3-3f. One explanation is that L1 phosphorylation is promoted by

initial interactions between 14-3-3f and (non-phosphorylated)

L1ICD, resulting in L1ICD conformational changes and, conse-

quently, increased susceptibility for CKII phosphorylation. It is

known that 14-3-3 behaves like a molecular anvil, deforming its

bound ligands while undergoing only minimal structural alterations

itself [46]. For example, in the case of serotonin N-acetyl transferase,

and presumably also exoenzyme S, 14-3-3 binding deforms the

catalytic residues, resulting in enhanced substrate binding and

product formation [50,51]. For other proteins, 14-3-3-mediated

conformational changes might facilitate the interaction with their

binding partners, leading for example to enhanced phosphorylation

[46]. Another possible explanation for 14-3-3-enhanced phosphor-

ylation of L1 by CKII is that 14-3-3f acts as a scaffolding protein by

recruiting CKII to L1ICD. Even though there is no direct evidence at

present for an association between 14-3-3f and CKII, other studies

have shown that 14-3-3f forms homo- or heterodimers, a prerequisite

for acting as a scaffolding protein [42,52]. Therefore, further

experiments investigating the CKII-catalyzed phosphorylation of

L1 in the presence of a 14-3-3f dimer and a dimerization-deficient

14-3-3f mutant could help to further elucidate how the dimeric

structure of 14-3-3f may influence L1 phosphorylation. Finally,

considering the time course of CKII-mediated L1 phosphorylation in

our study, it is plausible to assume that 14-3-3 stabilizes the CKII-

phosphorylated form of L1. Dent et al. showed that 14-3-3-bound

proteins are resistant to phosphoprotein phosphatases [53]. In our

case, binding of 14-3-3 to L1 might thus protect pSer1181 from

dephosphorylation.

Figure 6. Expression of 14-3-3f K49E leads to a specific increase in L1-mediated neurite outgrowth. Hippocampal neurons prepared
from embryonic rat hippocampus were transfected by nucleofection with an expression plasmid for EGFP together with plasmids encoding either
empty vector (‘‘Mock’’), wild-type 14-3-3f (‘‘WT’’) or 14-3-3f K49E (‘‘K49E’’). Subsequently, cells from each transfection were plated onto wells coated
with PLL in combination with Fc (‘‘Fc substrate’’) or L1-Fc (‘‘L1-Fc substrate’’). After incubation for 24 h at 37uC, cells were fixed. A. The images show
transfected neurons in three transfected groups grown either on Fc or L1-Fc substrates. B. Length of the longest neurite per cell was measured for
neurons in the same groups as in (A.). Values are expressed as mean 6SEM. Per substrate and expressed protein, neurons from 3 transfections, 3
wells per transfection, ,30 cells per well were analyzed. Two-way ANOVA with repeated measures (for substrate) revealed significant effects of
transfection (p,0.05), substrate (p,0.001) and interaction between transfection and substrate (p,0.05). **p,0.01, ***p,0.001, statistically
significant differences vs. 14-3-3 K49E; #p,0.05, ##p,0.01, ###p,0.001, statistically significant differences between neurons grown on Fc and
L1-Fc (Bonferroni’s post-hoc test, n = 3 transfections).
doi:10.1371/journal.pone.0013462.g006
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Nakata and Kamiguchi [13] have suggested that CKII regulates

endocytotic L1 trafficking in the axonal growth cone via

phosphorylation of the L1ICD. Considering our data on L1, 14-

3-3f and CKII, 14-3-3f might play a role in controlling L1 sorting

and trafficking between endosomes and plasma membranes. We

therefore investigated whether L1 and 14-3-3f interact in vesicle

fractions from mouse brain. We could show that 14-3-3f associates

with L1 in early and late endosome-enriched fractions, which

further supports an involvement of 14-3-3 proteins in L1 sorting

and trafficking.

Given the importance of L1 trafficking for neurite extension, we

also tested the influence of neuronally expressed 14-3-3f [17] on

L1-mediated neurite growth. We observed that expression of 14-3-

3f K49E in hippocampal neurons led to an increase in neurite

elongation on an L1 substrate. Only cells grown on an L1-Fc

substrate, but not on Fc responded to 14-3-3f K49E expression,

suggesting that 14-3-3f is a specific regulator of L1-dependent

neurite extension. This effect depended on the amphipathic

groove shared by all 14-3-3 isoforms [41], as the K49E mutant of

14-3-3 worked as a dominant-negative protein promoting L1-

triggered neurite outgrowth, presumably by competing with the

14-3-3f wild-type form in the growth cones. The K49E mutation

abolishes binding of 14-3-3f to various ligands, as has been shown

in several studies [41,54–56]. As an alternative approach, it would

be possible to knockdown 14-3-3f by RNA interference and test

the effect of this knockdown on L1-mediated neurite outgrowth.

However, given the high degree of conservation between 14-3-3

isoforms, other isoforms than zeta are likely to compensate for its

function in such a situation. We therefore opted for the dominant-

negative approach.

Based on our biochemical data, it is intriguing to speculate that

expression of dominant-negative 14-3-3f K49E causes a decrease

in L1 phosphorylation by CKII on Ser1181. This, in turn, could

inhibit targeting of L1 to late endosomes and lysosomes, resulting

in an increased amount of L1 molecules on the cell surface. If

more L1 molecules are available on the cell surface, this will

stimulate the neuron’s homophilic response to an L1 substrate, in

accordance with our results. In line with such a model, an

involvement of 14-3-3 proteins in the regulation of the subcellular

localization of target proteins and the stabilization of targets at the

cell surface has been demonstrated by several studies (e.g. [57,58];

see [59,60] for reviews). In this context, one might argue that 14-3-

3 could also act on molecules downstream of L1, like the p90

ribosomal S6 kinase 1 (p90rsk). p90rsk is bound by 14-3-3, which

negatively regulates its activity [61]. As p90rsk-mediated phos-

phorylation of L1 appears to be involved in L1-dependent neurite

growth [62], an increased p90rsk activity caused by 14-3-3f K49E

expression might also promote neurite extension on L1.

Summarizing, our study not only characterizes a novel

interaction between a neural cell adhesion molecule L1 and the

family of 14-3-3 intracellular signaling proteins, but also

demonstrates the importance of this interaction for CKII-

mediated phosphorylation of L1. Moreover, our cell culture

experiments identify 14-3-3f as a putative modulator of L1-

dependent neurite growth. These findings contribute to a better

understanding of the molecular mechanisms underlying the crucial

role L1 plays in nervous system development, regeneration and

plasticity.

Materials and Methods

Ethics statement
All animal experiments were conducted in accordance with the

Italian and European Community laws on protection of experi-

mental animals, and the procedures used were approved by the

Office of Animal Welfare at the Department of Veterinary Public

Health, Nutrition and Food Safety in Rome (permit number: 223).

Constructs and mutagenesis
pDEST15-14-3-3f, pDEST26-14-3-3f, and pDEST26-14-3-3f

K49E were kindly provided by Dr. H. Fu, Emory University,

Atlanta. pDEST15-14-3-3f was used for expression of GST-14-3-

3f in E. coli. pDEST26-14-3-3f and pDEST26-14-3-3f K49E

were transfected into mammalian cells for recombinant expression

of His-14-3-3f or His-14-3-3f K49E, respectively. To enable

prokaryotic expression of His-tagged L1ICD, including the amino

acids Cys-Phe-Ile (CFI) of the transmembrane domain, the

following steps were performed: RNA from murine brain was

extracted with TRIzol according to the manufacturer’s manual

(Invitrogen, Karlsruhe, Germany). The QuantiTect Rev. Tran-

scription Kit was used for cDNA synthesis according to the

manufacturer’s protocol (Qiagen, Hilden, Germany). L1 CFI was

amplified from cDNA using gene specific primers and AccuPri-

meTM Taq DNA Polymerase (Invitrogen). The polymerase chain

reaction (PCR) was started with 2 min at 94uC and followed by 30

cycles of 30 sec at 94uC, 30 sec at 55uC, and 60 sec at 68uC. All

primers were synthesized by Metabion (Martinsried, Germany)

based on the L1cam DNA sequence (NCBI accession number

NM_008478.3). The PCR product was first ligated into pGEM-T

Easy (Promega, Mannheim, Germany) using TA cloning, and

subsequently subcloned into the expression vector pQE30

(Qiagen) using BamH I and Hind III. Plasmids containing single

point mutations and the RSLESD deletion construct were

prepared using the QuikChange II XL Site-Directed Mutagenesis

Kit (Stratagene, Amsterdam, The Netherlands). All constructs

were verified by DNA sequencing.

Antibodies
Anti-14-3-3 (sc-1657), which recognizes all 14-3-3 isoforms

according to the supplier’s information, and anti-Rab 9 (sc-28573)

antibodies were purchased from Santa Cruz Biotechnology

(Heidelberg, Germany), anti-14-3-3f (JP 18644) from IBL

(Hamburg, Germany), anti-Rab 4 (610888) antibody from BD

Transduction Laboratories (Heidelberg, Germany) and the anti-

GST antibody from GE Healthcare (Freiburg, Germany).

Polyclonal antibodies against the mouse L1 extracellular domain

were obtained by immunizing rabbits with a protein A-purified

L1-Fc fusion protein consisting of the extracellular domain of

mouse L1 and the Fc portion of human IgG [63]. The rat

monoclonal against anti-mouse L1 antibody 557 [64] recognizes

an epitope localized in the extracellular domain of L1. The anti-L1

mouse monoclonal antibody 74-5H7 [9], which recognizes an

epitope in the intracellular domain of L1, was purchased from

HISS Diagnostics (Freiburg, Germany).

Proteins
GST-14-3-3f fusion protein was expressed in E. coli BL21-

AITM cells (Invitrogen) by L-arabinose induction. His-L1ICD,

His-L1ICDS1181A, and His-L1ICDDRSLESD were expressed in

E. coli M15 cells by isopropyl-b-D-thiogalactoside induction and

purified on Ni-NTA-agarose (Qiagen) and Ni-TED-agarose

(Macherey-Nagel, Düren, Germany) according to the manufac-

turer’s instructions. His-NCAM180 ICD [65] was provided by D.

Novak from our laboratory. L1-Fc [63] was provided by G. Loers

from our laboratory, and used for coating of wells in neurite

outgrowth experiments. Poly-L-lysine (PLL) was purchased from

Sigma (Taufkirchen, Germany), human Fc was from Dianova

(Hamburg, Germany).
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Sucrose density gradient fractionation
Brains from 7-day-old C57BL/6J mice were homogenized in

homogenization buffer (0.32 M sucrose, 50 mM Tris-HCl

(pH 7.4), 1 mM CaCl2, and 1 mM MgCl2, 1 mM phenylmethyl-

sulfonyl fluoride (PMSF), Complete Protease Inhibitor Cocktail,

EDTA-free (Roche Diagnostics, Mannheim, Germany), and

Phosphatase Inhibitor Cocktail I (Sigma)). Brain homogenates

were centrifuged at 17,0006g for 1 h. The 17,0006g supernatant

thus obtained was centrifuged at 100,0006g for 1 h. The

subsequent 100,0006g pellet was homogenized in 0.32 M sucrose

in Tris buffer (50 mM Tris-HCl (pH 7.5), 1 mM CaCl2, and

1 mM MgCl2) and loaded onto a step gradient comprising layers

of 2, 1.3, 1.1, 0.8, 0.5 and 0.25 M sucrose as described [66,67].

Gradients were centrifuged at 100,0006g for 2 h. Eight 1 ml

fractions were collected from the top of the gradient and

homogenized in 0.32 M sucrose in Tris buffer. After another

centrifugation step at 100,0006g for 30 min, each of the eight

fractions, enriched in distinct endosomes, was collected. These

vesicle fractions were used for immunoprecipitation assays and

Western blot analysis with the indicated antibodies.

Enzyme Linked Immunosorbent Assay (ELISA)
Intracellular domains of L1 and NCAM180 (5 mg/ml) were

immobilized overnight on a polyvinyl chloride surface (Nunc,

Roskilde, Denmark) in TBS (10 mM Tris-HCl pH 7.4 and

150 mM NaCl). Wells were then blocked for 1 h with TBS

containing 1% BSA and incubated for 1 h at RT with increasing

concentrations of GST-14-3-3f (or GST-only control) diluted in

buffer A (1% BSA, 1 mM CaCl2, 1 mM MgCl2 in TBS-Tween

(0.05% Tween)). Plates were washed 3 times with TBS-T and

incubated for 1 h with anti-GST goat polyclonal antibody diluted

1:4000 in TBST containing 1% BSA. After washing with TBST,

wells were incubated with peroxidase-coupled secondary antibody

in TBS-T containing 1% BSA, washed 4 times, and incubated

with 0.1% ABTS substrate (Roche Diagnostics) in 100 mM

acetate buffer, pH 5.0. Absorbances were measured at 405 nm.

Correction for potential GST background signals was performed

by subtracting absorbance values in wells incubated with GST

only.

In vitro phosphorylation assay
CKII mediated phosphorylation was investigated by incubating

15 mg of L1ICD proteins at 30uC for 3 h in a reaction mixture

containing 20 mM Tris- HCl (pH 7.5), 50 mM KCl, 10 mM

MgCl2, 1 mM dithiothreitol (DTT), and 200 mM ATP with

2000 units/mL of CKII (New England Biolabs, Schwalbach,

Germany). The same assay was also performed with L1ICD

proteins preincubated with GST or GST-14-3-3f at 4uC for 16 h.

Where indicated, l protein phosphatase 1 (lPP1, New England

Biolabs) was added to aliquots of the CKII reaction mixture after

3 h, yielding a lPP1 concentration of 6000 units/mL. These

aliquots were supplemented with 50 mM HEPES (pH 7.5),

100 mM NaCl, 1 mM MnCl2, 2 mM DTT and 0.01% Brij 35,

and incubated for 1 h at 30uC. To determine L1ICD phosphor-

ylation, reaction aliquots were withdrawn at the indicated time

points, mixed with an equal volume of SDS-PAGE sample buffer,

and analyzed by SDS-PAGE and Western blotting. Blots were

scanned and band intensities were determined.

GST Pull-down assay
20 mg GST-14-3-3f fusion protein or an approximately

equimolar amount of GST (10 mg) were coupled to 50 ml

Glutathione Sepharose 4B beads (Sigma) for 2 h at 4uC, followed

by preincubation with 5% BSA in pull-down buffer (20 mM Tris-

HCl pH 7.4, 300 mM NaCl, and 0.05% Nonidet P-40) for 2 h at

4uC. Beads were washed with pull-down buffer, and incubated

with the total CKII phosphorylation reaction described above.

Agarose beads were collected by centrifugation and washed

extensively with 0.1% Nonidet P-40 pull-down buffer. Samples

were analyzed by SDS-PAGE and Western blotting.

Co-Immunoprecipitation (Co-IP) of L1 and 14-3-3
Mouse brain membrane fractions containing 1.5 mg/ml protein in

modified RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl,

2 mM EDTA, 1 mM NaF, 1 mM Na3VO4, 1% Nonidet P-40, 0.5%

SDS, 100 mM PMSF, Complete Protease Inhibitor Cocktail EDTA-

free, and Phosphatase Inhibitor Cocktail I) were precleared using

25 ml of Protein A Agarose beads (Santa Cruz). Immunoprecipitation

was performed with an anti-mouse L1 polyclonal antibody and as a

negative control an nonimmune rabbit IgG. After 4 h of incubation,

25 ml of Protein A Agarose beads were added to the supernatant, and

incubation continued overnight at 4uC. Protein A Agarose beads

were collected by centrifugation, and washed 4 times with RIPA

buffer. Bound proteins were eluted by boiling in SDS-PAGE sample

buffer and subsequently analyzed by Western blotting using the

indicated antibodies. Mouse brain vesicle fractions were lysed in lysis

buffer (50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 150 mM NaCl,

1% Nonidet P-40, 1 mM Na4P2O7, 1 mM NaF, 2 mM Na3VO4,

and Protease Inhibitor Cocktail, EDTA-free) for 1 h at 4uC. Extracts

were centrifuged at 21,0006g for 30 min at 4uC and the supernatants

were further analyzed. Vesicle fractions containing 200 mg/ml

protein in Protein A/G binding buffer (Pierce, Bonn, Germany)

were precleared using 20 ml Protein G magnetic beads (Thermo

Scientific) for 30 min at 4uC. Immunoprecipitation was performed

with 5 mg anti-L1 antibody 557 and purified non-immune rat IgG as

a control overnight at 4uC. Antibody-protein complexes were

precipitated using 20 ml of Protein G magnetic beads. Samples were

analyzed by SDS-PAGE and Western blotting.

Culture of primary hippocampal neurons
A protocol for preparation, culture and transfection of primary rat

embryonic E18 hippocampal neurons and determination of neurite

length was adapted from [68]. Cell were co-transfected with 0.3 mg

pmaxGFPH (Amaxa, Cologne, Germany) and 0.3 mg DNA of either

14-3-3f or 14-3-3f K49E or an empty vector (pcDNA3) using the

AmaxaH basic neuron small cell number nucleofection kit,

NucleofectorH II and program 1 for small cell number. 300,000 cells

were used per transfection and 12,000 were seeded per well in 96-well

plates (BD Biosciences, Heidelberg, Germany) with thin glass bottom

consequently coated with PLL (100 mg; Sigma) and 37.5 nM of either

Fc or L1-Fc. The culture medium contained Neurobasal A medium

supplemented with 2% B27 (both from Invitrogen). For neurite

length measurements, digital images were automatically acquired

with BD Pathway Imager using a 206 objective. The length of the

longest neurite of enhanced green fluorescent protein (EGFP)-positive

cells was measured by a trained operator using ImageJ software

(http://rsb.info.nih.gov/ij/) without knowledge of substrate and

vectors used for transfection. Statistical analyses were performed by

Bonferroni’s post-hoc comparison after two-way ANOVA with

repeated measures (SigmaStat 3.5).

Acknowledgments

We would like to thank Fabio Morellini for help with statistics, Gaby Loers

for providing L1-Fc, Haian Fu for providing 14-3-3 plasmids, Stefan
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