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Abstract: Postoperative death within 1 year following hip fracture surgery is reported to be up to 27%.
In the current study, we benchmarked the predictive precision and accuracy of the algorithms support
vector machine (SVM), naïve Bayes classifier (NB), and random forest classifier (RF) against logistic
regression (LR) in predicting 1-year postoperative mortality in hip fracture patients as well as assessed
the relative importance of the variables included in the LR model. All adult patients who underwent
primary emergency hip fracture surgery in Sweden, between 1 January 2008 and 31 December 2017
were included in the study. Patients with pathological fractures and non-operatively managed hip
fractures, as well as those who died within 30 days after surgery, were excluded from the analysis.
A LR model with an elastic net regularization were fitted and compared to NB, SVM, and RF. The
relative importance of the variables in the LR model was then evaluated using the permutation
importance. The LR model including all the variables demonstrated an acceptable predictive ability
on both the training and test datasets for predicting one-year postoperative mortality (Area under
the curve (AUC) = 0.74 and 0.74 respectively). NB, SVM, and RF tended to over-predict the mortality,
particularly NB and SVM algorithms. In contrast, LR only over-predicted mortality when the
predicted probability of mortality was larger than 0.7. The LR algorithm outperformed the other three
algorithms in predicting 1-year postoperative mortality in hip fracture patients. The most important
predictors of 1-year mortality were the presence of a metastatic carcinoma, American Society of
Anesthesiologists(ASA) classification, sex, Charlson Comorbidity Index (CCI) ≤ 4, age, dementia,
congestive heart failure, hypertension, surgery using pins/screws, and chronic kidney disease.

Keywords: hip fracture; postoperative mortality; prediction; variable importance; machine learning;
logistic regression

1. Introduction

Some patient-level evidence exists associating comorbidity burden with short-term
survival after hip fracture surgery [1]. Postoperative death within 1 year following hip
fracture surgery is also relatively common, with reported estimates up to 27% [2,3]. Thus,
given the per annum denominator of approximately 18,000 hip fractures, this disease
accrues excess morbidity, mortality and an annual direct cost of approximately 1.5 billion
SEK (175 million USD/147 million EUR) to the Swedish healthcare system [4–6]. Costs are
predicted to increase with an ageing population [7].
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There is a potential utility in outcome prediction, particularly in better matching
perioperative resources to this population’s needs. The logistic regression (LR) method of
prediction is well-known to researchers and surgeons, and our recent work demonstrated
that convolutional neural networks do not outperform LR in predicting 30-day postopera-
tive mortality in hip fracture patients [8]. There are, however, other viable alternatives that
should be explored. Support vector machines (SVM), for example, have been shown to
require fewer variables than LR to achieve a lower, or equivalent, misclassification rate [9].
A naïve Bayes classifier (NB) offers speed advantages when fitting the model [10], while
random forest classifiers (RF) often outperform LR in feature-rich datasets [11]. In the
current study, we benchmarked the predictive precision and accuracy of SVM, NB, and RF
against LR in predicting 1-year postoperative mortality in hip fracture patients as well as
compared the relative importance of the variables included in the LR model.

2. Materials and Methods
2.1. Study Population

The principles of the Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) guidelines were adhered to while conducting
this study (Table S1). We used the high-fidelity Swedish National Quality Register for Hip
Fracture Patients, RIKSHOFT, to identify a study population composed of all adult patients
(18 years or older) who underwent primary emergency hip fracture surgery in Sweden,
between 1 January 2008 and 31 December 2017 [12]. Patients with pathological fractures
and non-operatively managed hip fractures, as well as those who died within 30 days after
surgery, were excluded from the current analysis. Studying the association between the
variables included in the prediction models and mortality in the first year, conditional on
patients surviving 30 days or more after surgery, allows for the evaluation of the long-term
association between the potential predictors and mortality, in isolation. This may reduce
the effect of short-term mortality due to surgical and anesthesiologic complications as well
as the higher degree of advanced directives present in the study population compared to
the general population.

The selected patients were cross referenced with the Swedish National Patient and
Cause of Death registers maintained by the Swedish National Board of Health and Welfare
to retrieve comorbidity and mortality data. Variables used in the prediction model include
survival status one year after surgery, age, sex, American Society of Anesthesiologists
(ASA) classification, age-adjusted Charlson Comorbidity Index (CCI) [13], Revised Cardiac
Risk Index (RCRI) [14], concurrent comorbidities (arrhythmia, hypertension, myocardial
infarction, congestive heart failure, cerebrovascular disease, chronic obstructive pulmonary
disease, connective tissue disease, dementia, diabetes mellitus, liver disease, hemiplegia,
chronic kidney disease, local tumor, metastatic carcinoma, peptic ulcer disease), type of
fracture, and surgical procedure performed.

2.2. Descriptive Analysis

Continuous variables were presented as a mean ± standard deviation (SD), and the
ordered and nominal variables were presented as a count and percentage. The Pearson’s
chi-squared test was used to test the statistical significance of differences between groups
for categorical variables, while the Student’s t-test and Mann–Whitney U test were used
for continuous variables [15–17]. Missing values were imputed using the chained method
with the nearest neighbor algorithm [18,19]. Two-tailed p-values < 0.05 were considered
statistically significant.

2.3. Predictive Models

A LR model with an elastic net regularization (the final ratio of L1 penalty: L2
penalty = 0.5:0.5 based on the random search) was used in the current study [20,21]. Two LR
models were constructed, one including all the included variables and the other including
the 10 most important variables. The relative importance of the variables was evaluated



J. Pers. Med. 2021, 11, 727 3 of 13

using the permutation importance (PI) [22]. PI was measured by looking at how much
a predefined performance metric (in the current study Youden’s index, i.e., the sum of
sensitivity and specificity minus 1, was used) is impacted by missing specific variable
data [23]. To mask the information of a variable during evaluation, instead of removing
the variable from the dataset, the PI method replaces it with random noise from other
participants by shuffling the values of the variable. The relative importance of a variable
was then calculated as the decrease in Youden’s index of the variable relative to the range
of the decreases of all the variables [22]. LR was also compared with three other commonly
used supervised classification algorithms, i.e., NB, SVM, and RF, and presented using a
calibration plot. NB is a probabilistic classifier based on applying Bayes’ theorem with
strong (naïve) independence assumptions between the variables. It can be trained very
efficiently in a supervised learning setting. SVM is an algorithm aiming to find a hyperplane
in an N-dimensional space (N is the number of variables) that may distinctly classify the
data points. RF is an ensemble learning method for classification, regression and other
tasks that operates by constructing a multitude of decision trees at training time. For
classification tasks, the output of RF is the class selected by most trees [24–27].

2.4. Data Normalization and Model Construction

Multinomial variables were converted into multiple binary variables before entering
the models. Ordinal and continuous variables were normalized using the min–max trans-
formation to have values between 0 and 1 [28]. Eighty percent of the randomly selected
patients were used as a training dataset to train the LR models. During the model training
stage, K-fold cross-validation was used [29]. The training dataset was randomly split
into five equal partitions, which instantiated five identical model building and validation
processes. The LR models were built on four partitions while the predictive ability was
evaluated using the remaining partition. The predictive ability of the models and impor-
tance of the variables based on the training dataset were calculated as the average over the
five validations. The remaining 20% of the patients were used as a test dataset to provide
an unbiased evaluation of the final models’ fit on the training dataset.

Because tuning of hyperparameters, which define the model architecture, is an impor-
tant issue for model optimization, during the model training, we used the recommended
random search method to find the optimal hyperparameters for the compared machine
learning algorithms, including the penalty parameters for the LR models. The method
searches the hyperparameters based on presumptive distributions (both Gaussian distribu-
tion and uniform distribution were implemented in the current study) from which values
may be randomly sampled. The method is able to find the optimized models within a
small fraction of the computation time that are as good as or better than those based on the
exhaustive grid search method [30].

2.5. Metrics of Predictive Ability

Given that our prediction task was a binary classification question, i.e., whether the
patient would die or survive, we used the threshold-dependent metrics, including overall
accuracy, sensitivity, specificity, to evaluate the performance of the LR models [31]. In the
current study, we reported the accuracy, specificity, and sensitivity at the threshold that
maximized the Youden index (or sensitivity + specificity −1) [32]. The receiver operating
characteristic (ROC) curve and the area under the ROC curve (AUC) with 95% confidence
interval (CI) were also reported based on the model-predicted probabilities. The boundaries
for acceptable, good, and great predictive models were defined as an AUC value greater
than 0.7, 0.8, and 0.9, respectively [33].

The descriptive analysis was conducted in R 4.0.3 (R Foundation for Statistical Com-
puting, Vienna, Austria, https://www.r-project.org (accessed on 9 May 2021)). The cre-
ation of the machine learning models and calculation of each model’s predictive abil-
ity along with the PI were performed in Python 3.7 (Python Software Foundation,
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https://www.python.org (accessed on 9 May 2021)) using the Scikit-learn 0.24 and ELI5
0.11.0 packages.

3. Results
3.1. Patient Demographics

We identified 124,707 traumatic hip fracture cases who survived beyond 30 days after
their operation, of whom 21,045 (16.9%) died within the 1-year postoperative period. The
patients who died were on average older and more often male. Patients who died tended
to have a higher comorbidity burden (CCI ≥ 7: 31.2% vs. 14.3%, p < 0.001), were less
fit for surgery based on their ASA classification (ASA ≥ 3: 74.9% vs. 53.0%), and had a
higher cardiac risk (RCRI ≥ 2: 20.5% vs. 10.7%, p < 0.001) [1]. All comorbidities were more
prevalent among patients who died except for hypertension and connective tissue disease
(Table 1).

Table 1. Characteristics of the traumatic hip fracture patients in Sweden between 2008 and 2017.

Variable Total
(n = 124,707)

Alive
(n = 103,662)

Dead
(n = 21,045) p-Value

Age, mean (SD) 81.55 (10.10) 80.75 (10.29) 85.46 (8.01) <0.001
Sex, n (%) <0.001

Female 86,379 (69.3) 73,166 (70.6) 13,213 (62.8)
Male 38,314 (30.7) 30,483 (29.4) 7831 (37.2)
Missing 14 (0.0) 13 (0.0) 1 (0.0)

ASA classification, n (%) <0.001
1 6356 (5.3) 6216 (6.1) 320 (1.6)
2 46,507 (38.0) 41,626 (40.9) 4878 (23.6)
3 60,857 (49.7) 48,278 (47.4) 12,579 (60.9)
4 8459 (6.9) 5606 (5.5) 2853 (13.8)
5 79 (0.1) 44 (0.1) 35 (0.2)

CCI, n (%) <0.001
≤4 57,634 (46.2) 52,281 (50.4) 5353 (25.4)
5–6 46,733 (36.7) 36,604 (35.3) 9129 (43.4)
≥7 21,340 (17.1) 14,777 (14.3) 6563 (31.2)

RCRI, n (%) <0.001
0 75,864 (60.8) 65,476 (63.2) 10,388 (49.4)
1 33,476 (26.8) 27,135 (26.2) 6341 (30.1)
2 11,284 (9.1) 8352 (8.1) 2932 (13.9)
3 3245 (2.6) 2174 (2.1) 1071 (5.1)
≥4 838 (0.7) 525 (0.5) 313 (1.5)

Arrhythmia, n (%) 22,305 (17.9) 17,223 (16.6) 5082 (24.1) <0.001
Hypertension, n (%) 47,990 (38.5) 39,849 (38.4) 8141 (38.7) 0.515
Myocardial infarction, n (%) 6789 (5.4) 5065 (4.9) 1724 (8.2) <0.001
Congestive heart failure, n (%) 17,475 (14.0) 12,276 (11.8) 5199 (24.7) <0.001
Cerebrovascular disease, n (%) 21,036 (16.9) 16,669 (16.1) 4367 (20.8) <0.001
COPD, n (%) 13,933 (11.2) 11,094 (10.7) 2839 (13.5) <0.001
Connective tissue disease, n (%) 6036 (4.8) 5017 (4.8) 1019 (4.8) 1.000
Dementia, n (%) 23,789 (19.1) 17,283 (16.7) 6506 (30.9) <0.001
Diabetes mellitus, n (%) 18,166 (14.6) 14,588 (14.1) 3578 (17.0) <0.001
Liver disease, n (%) 1232 (1.0) 985 (1.0) 247 (1.2) 0.003
Hemiplegia, n (%) 2715 (2.2) 2302 (2.2) 413 (2.0) 0.021
Chronic kidney disease, n (%) 5774 (4.6) 3920 (3.8) 1854 (8.8) <0.001
Local tumor, n (%) 13,108 (10.5) 10,037 (9.7) 3071 (14.6) <0.001
Metastatic carcinoma, n (%) 2498 (2.0) 1357 (1.3) 1141 (5.4) <0.001
Peptic ulcer disease, n (%) 3918 (3.1) 3036 (2.9) 882 (4.2) <0.001
Type of fracture, n (%) <0.001

Non-displaced cervical (Garden 1–2) 16,840 (13.5) 14,138 (13.6) 2702 (12.8)
Displaced cervical (Garden 3–4) 46,248 (37.1) 38,824 (37.5) 7424 (35.3)
Basicervical 4126 (3.3) 3337 (3.2) 789 (3.7)
Peritrochanteric (two fragments) 24,775 (19.9) 20,314 (19.6) 4461 (21.2)
Peritrochanteric (multiple fragments) 22,487 (18.0) 18,502 (17.8) 3985 (18.9)
Subtrochanteric 10,178 (8.2) 8501 (8.2) 1677 (8.0)
Missing 53 (0.0) 46 (0.0) 7 (0.0)
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Table 1. Cont.

Variable Total
(n = 124,707)

Alive
(n = 103,662)

Dead
(n = 21,045) p-Value

Type of surgery, n (%) <0.001
Pins or screws 21,849 (17.5) 18,026 (17.4) 3823 (18.2)
Screws or pins with sideplate 32,146 (25.8) 26,221 (25.3) 5925 (28.2)
Intramedullary nail 29,496 (23.7) 24,461 (23.6) 5035 (23.9)
Hemiarthroplasty 31,473 (25.2) 25,729 (24.8) 5744 (27.3)
Total hip replacement 9676 (7.8) 9170 (8.8) 506 (2.4)
Missing 67 (0.1) 55 (0.1) 12 (0.1)

ASA, American Society of Anesthesiologists; CCI, Charlson Comorbidity Index; RCRI, Revised Cardiac Risk
Index; COPD, Chronic obstructive pulmonary disease.

3.2. Predictive Performance of the LR Models

The relative importance of the variables in predicting one-year postoperative mortality
based on the LR algorithm and cross-validation using the training dataset is shown in
Figure 1. The 10 most important variables were: metastatic carcinoma, ASA classifica-
tion, sex, CCI ≤ 4, age, dementia, congestive heart failure, hypertension, surgery using
pins/screws, and chronic kidney disease.

Figure 1. Relative variable importance in predicting one-year postoperative mortality based on the
LR algorithm. ASA, American Society of Anesthesiologists; CCI, Charlson Comorbidity Index; RCRI,
Revised Cardiac Risk Index.

The LR model including all the variables demonstrated an acceptable predictive ability
on both the training and test datasets for predicting one-year postoperative mortality
(AUC = 0.74 and 0.74 respectively) (Figure 2, Table 2). When including only the top ten
most important variables, the model still achieved an acceptable predictive ability on both
the training and test datasets (AUC = 0.73 and 0.74 respectively) (Figure 3, Table 2)
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Figure 2. ROC of the LR model including all the variables with elastic net regularization.

Table 2. Predictive ability of the investigated machine learning algorithms.

Model
Training Test

Specificity Sensitivity AUC (95% CI) Specificity Sensitivity AUC (95% CI)

LR 0.64 0.72 0.74 (0.73–0.74) 0.62 0.75 0.74 (0.74–0.75)
LR (including only the

top ten variables) 0.65 0.73 0.73 (0.73–0.75) 0.61 0.74 0.74 (0.74–0.75)

NB 0.62 0.67 0.69 (0.69–0.70) 0.63 0.67 0.70 (0.69–0.70)
SVM 0.62 0.74 0.74 (0.73–0.74) 0.61 0.70 0.72 (0.72–0.73)
RF 0.57 0.73 0.71 (0.70–0.71) 0.66 0.67 0.72 (0.71–0.72)

3.3. Comparison of LR with the Selected Machine Learning Algorithms

In our dataset, the LR model showed superiority over the commonly used NB, SVM,
and RF algorithms. In general, the three compared algorithms presented lower AUC,
sensitivity, or specificity for both the training and test datasets (Table 2) and tended to
over-predict the mortality overall as shown in Figure 4, where their calibration curves
are all below the diagonal. The over-prediction was more prominent for NB and SVM
algorithms, which significantly over-predicted mortality in the middle and upper end of
the calibration curve (Figure 4). In contrast, LR only over-predicted mortality when the
predicted probability of mortality was larger than 0.7 (Figure 4).
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Figure 3. ROC of the LR model including only the top ten important variables with elastic net
regularization.

Figure 4. Cont.
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Figure 4. Calibration curves and histograms of the predicted probabilities of one-year postoperative
mortality of the investigated machine learning algorithms.

4. Discussion

A key benefit of precision medicine is the ability to predict the risk of mortality and
determine when the marginal benefit of additional interventions is negligible. Prediction
models have an important role to play, and as the models increase in sophistication the
goal may be shifted from precision medicine tailored to cohorts to personalized medicine
adapted for individuals. To date, this is the largest study investigating the performance of
machine learning models in predicting 1-year postoperative mortality after hip fracture
surgery beyond the admission/early 30-day mortality. We found that out of the tested
algorithms, LR performed significantly better than the alternatives. While all others tended
to overpredict mortality, the LR models only did so in higher risk patients. From a clinical
perspective, this is not completely undesirable, as it efficiently flags high-risk patients in a
population that is already at an elevated risk of mortality [1,3,34,35]. The LR model itself
demonstrated an acceptable predictive ability, with an AUC of 0.74 in the test dataset using
all variables and the top ten most important predictive variables [33].

As the name implies, NB assumes that the included features are conditionally inde-
pendent; however, this is rarely the case in real datasets even if they can come close [36].
LR, on the other hand, splits the feature space linearly and is able to handle a certain degree
of multicollinearity, particularly with the help of regularization [37]. NB has also been
demonstrated to perform better on smaller datasets, while LR tends to gain the advan-
tage as the training size increases [10,36]. This dataset is relatively large, and a degree of
collinearity is undoubtedly present; the type of surgery selected for a hip fracture is in
part dictated by the type of fracture and a patient’s age affects which comorbidities are
present [38,39]. This, in combination with NB tending to have a higher bias than LR [10,36],
likely all contributed to the LR models superior performance. This is important to note as
large amounts of correlated data is the standard, rather than the exception, when working
with data collected in the medical setting [40].

SVM makes use of the geometrical relationship between the features and outcome
rather than the probabilistic model of LR [20,41]. This entails that SVM in most useful when
working with unstructured and semi-structure data like text and images [42], while LR
instead requires previously identified independent variables [20]. SVM also requires less
features than LR to achieve an equivalent, or better, misclassification rate [9]. Conversely,
the current dataset is feature rich and has clearly defined variables, which gives LR the
overall advantage. In a broader context, this is also generally the case with medical big
data [40]. The problems facing many researchers today is not a paucity in features, but
rather an overabundance with a sometimes dubious accuracy and consistency [40].

The final machine learning algorithm that was investigated, RF, is an ensemble learn-
ing technique that combines the Bagging algorithm with the random subspace method
while using decision trees as the classifier [43]. While not always the case [11], LR has
previously been found to achieve a higher overall accuracy compared to RF [44]. LR also
consistently outperforms RF in datasets with higher variance in their features [44]. As a
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whole, hip fracture patients are a heterogenous patient population; this is evident from
both the distribution of risk scores, such as the ASA classification, RCRI, and CCI, in the
current dataset as well as previous research [45]. Consequently, it is to be expected that
LR surpasses RF in hip fracture patients. Nevertheless, in a larger medical context care
should be taken to consider the specific population being studied as a higher degree of
homogeneity may make RF a more viable option.

Of the variables analyzed, metastatic carcinoma, ASA classification, sex, CCI ≤ 4, age,
dementia, congestive heart failure, hypertension, surgery using pins/screws, and chronic
kidney disease were the most important for predicting mortality 1 year postoperatively. In
contrast, a previous study from our group investigating 30-day postoperative mortality
found that the most important predictors were age, hypertension, dementia, sex, ASA
classification, RCRI, CCI, congestive heart failure, non-displaced cervical hip fractures,
and cerebrovascular disease [8]. There was a significant overlap, with age, sex, ASA
classification, CCI, dementia, congestive heart failure and hypertension being important
for predicting both 30-day and 1-year mortality [8]. The increased importance of metastatic
carcinoma and chronic kidney disease for predicting 1-year mortality is understandable as
they are both chronic conditions with systemic, long-term effects; however, the remaining
differences require further discussion.

Of particular note, the RCRI had previously demonstrated superiority over the CCI in
predicting 30-day mortality [8]. However, while the CCI remained valuable for predicting
1-year mortality, the RCRI was significantly less useful. This is not altogether surprising
as the RCRI was originally developed for predicting the 30-day risk of postoperative
myocardial infarction, cardiac arrest, and mortality [46]. On the other hand, the CCI has
been thoroughly validated for predicting 1-year mortality [13,47,48]. It is also worth noting
that the CCI includes variables such as metastatic carcinoma, age, dementia, congestive
heart failure, and chronic kidney disease in its calculation, all of which were variables
that individually demonstrated the highest predictive ability for 1-year postoperative
mortality in hip fracture patients. The fact that a CCI specifically ≤4 demonstrated a
high importance is likely due to the fact this excludes or limits many of these previously
mentioned comorbidities, which means this one variable contains a significant amount of
information that is relevant to 1-year mortality. A patient with a CCI ≤ 4 cannot have a
metastatic carcinoma since that would result in at least a CCI of 6. The patient must also
either be old without any comorbidities, or relatively young with a few comorbidities, to
stay at a CCI of 4; i.e., a patient in this category will undoubtably be healthier than the
typical hip fracture patient [1,3,34,35].

Another significant change, compared to the prediction of 30-day mortality, was the
inclusion of pins/screws rather than non-displaced cervical hip fractures as one of the
variables with the highest predictive ability. To a certain extent these two variables can
be considered interchangeable since the primary method used for fixating non-displaced
cervical hip fractures is with pins/screws [38,39]. However, pins/screws are also at times
used in the fixation of displaced femoral neck fractures, despite a consensus among orthope-
dic surgeons that hemiarthroplasty is the preferred surgical method for displaced femoral
neck fractures in older patients [49–51]. This may be because of a belief that arthroplasty
will result in a higher perioperative mortality in frailer patients, due to the increased stress
caused by a longer period of time spent under general anesthesia with a more extensive
surgical approach and intervention [50]. At least in patients with dementia, those who
were operated on using pins/screws tended to have more comorbidities and were less fit
for surgery [49]. An a priori preference for pin/screw fixation on the part of the operating
surgeon may allow it to function as an indirect patient-level indicator of frailty, which
could explain the variable’s increased importance for predicting 1-year mortality.

In clinical practice several factors, such as age and comorbidities, have intuitively
been associated with an increased mortality risk by physicians. Hip fractures predomi-
nantly affect older patients with several preexisting conditions [1,3,34,35,52]. As such, it is
important to delineate other factors, which could be modifiable in the perioperative and
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postoperative period, that could aid in achieving better outcomes beyond the immediate
postoperative period. For instance, while the RCRI does not excel at predicting 1-year
mortality, it has been found to be predictive of, and associated with, worse short-term
outcomes after emergency surgery [1,8,53,54]. This variable is readily available at the
time of admission and for those with an increased cardiac risk, higher levels of care and
cardioprotective medication such as beta-blockers are recommended by American Heart
Association [55]. There is also evidence that patients with an elevated RCRI receive a greater
survival benefit from beta-blocker therapy [35,56]. Another modifiable factor may be the
type of surgery; observational studies indicate that hemiarthroplasty may be associated
with lower mortality in patients with displaced femoral neck fractures [49–51].

This study makes use of the thoroughly validated Swedish National Quality Registry
for Hip Fracture Patients, which is highly regarded for its high case coverage, encompassing
between 80–90% of all hip fractures in Sweden [4,57]. The current dataset includes ten
consecutive years of data from this database. Even so, the limitations of retrospective
studies remain. The current analysis was limited to the data available in the registry so no
anesthesiologic variables could be included in the prediction model, aside from the ASA
classification. We also lacked data regarding more direct indicators of frailty, changes in
functional status pre- and postoperatively as well as postoperative complications. Future
studies investigating the role of frailty in predicting postoperative mortality as well as
studying the predictors of postoperative complications are warranted.

5. Conclusions

LR outperformed the three other commonly use machine learning algorithms in
predicting 1-year postoperative mortality in hip fracture patients. The most important
predictors of 1-year mortality were the presence of a metastatic carcinoma, ASA classifi-
cation, sex, CCI ≤ 4, age, dementia, congestive heart failure, hypertension, surgery using
pins/screws, and chronic kidney disease. Further studies are required to determine the
importance of frailty in predicting postoperative mortality in hip fracture patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11080727/s1, Table S1: Transparent reporting of a multivariable prediction model for
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