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ABSTRACT The anaerobic gut fungi (AGF), or Neocallimastigomycota, inhabit
the rumen and alimentary tract of herbivorous mammals, where they play impor-
tant roles in the degradation of plant fiber. Comparative genomic and phylog-
enomic analyses of the AGF have long been hampered by their fastidious
growth condition, as well as their large (up to 200 Mb) and AT-biased (78 to
84%) genomes. We sequenced 21 AGF transcriptomes and combined them with
5 available AGF genome sequences to explore their evolutionary relationships,
time their divergence, and characterize gene gain/loss patterns associated with
their evolution. We estimate that the most recent common ancestor of the AGF
diverged 66 (�10) million years ago, a time frame that coincides with the evolu-
tion of grasses (Poaceae), as well as the mammalian transition from insectivory
to herbivory. The concordance of independent estimations suggests that AGF
have been important in shaping the success of mammalian herbivory transition
by improving the efficiency of energy acquisition from recalcitrant plant materi-
als. Comparative genomics identified multiple lineage-specific genes in the AGF,
two of which were acquired from rumen gut bacteria and animal hosts via hori-
zontal gene transfer (HGT). A third AGF domain, plant-like polysaccharide lyase,
represents a novel gene in fungi that potentially aids AGF to degrade pectin.
Analysis of genomic and transcriptomic sequences confirmed both the presence
and expression of these lineage-specific genes in nearly all AGF clades. These ge-
netic elements may contribute to the exceptional abilities of AGF to degrade
plant biomass and enable metabolism of the rumen microbes and animal hosts.

IMPORTANCE Anaerobic fungi living in the rumen of herbivorous mammals possess
an extraordinary ability to degrade plant biomass. We examined the origin and
genomic composition of these poorly characterized anaerobic gut fungi using both
transcriptome and genomic data. Phylogenomics and molecular dating analyses
found remarkable concurrence of the divergence times of the rumen fungi, the for-
age grasses, and the dietary shift of ancestral mammals from primarily insectivory to
herbivory. Comparative genomics identified unique machinery in these fungi to uti-
lize plant polysaccharides. The rumen fungi were also identified with the ability to
code for three protein domains with putative functions in plant pectin degradation
and microbial defense, which were absent from all other fungal organisms (exam-
ined over 1,000 fungal genomes). Two of these domains were likely acquired from
rumen gut bacteria and animal hosts separately via horizontal gene transfer. The
third one is a plant-like polysaccharide lyase, representing a unique fungal enzyme
with potential pectin breakdown abilities.
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Diverse microbes inhabit the digestive tract of ruminant mammals and contribute to
the degradation of ingested plant fibers, a process that liberates nutrients for their

hosts. Large-scale genomic and metagenomic sequencing of rumen microbes have
produced hundreds of novel bacterial genomes, enabling the discovery of plant
biomass-degrading enzymes and patterns of genomic evolution (1, 2). However, eu-
karyotic members of the rumen microbial community have been less intensely studied
(3, 4). Members of the phylum Neocallimastigomycota (anaerobic gut fungi [AGF]) are
important members of the rumen and hindgut of a wide range of herbivorous
mammals and reptiles (5). To survive in this anoxic and prokaryote-dominated envi-
ronment, extant AGF members have undergone multiple structures and metabolic
adaptations, including the loss of the mitochondria, gain of a hydrogenosome, loss of
respiratory capacities, and substitution of ergosterol with tetrahymanol in the cell
membrane (6). Importantly, all known AGF taxa have a remarkably efficient plant
biomass degradation machinery, which may be critical for competing with other
microbes for resources and establishing growth in the herbivorous gut. Such capacity
is reflected in the possession of an impressive arsenal of plant biomass degradation
enzymes and the production of the cellulosomes, extracellular structures that harbor
multiple enzymes bound to scaffoldins (4). These metabolic and structural adaptations
improve the survivability, fitness, and competitiveness of the AGF in the herbivorous
gut, but the genetic and evolutionary origins of these changes remain largely unde-
scribed (3, 7). Previous genomic investigations of the AGF have identified a massive
number of carbohydrate-active enzymes encoded by genes with foreign origins, pre-
sumably from multiple lineages of bacteria through independent horizontal gene
transfer (HGT) events (3, 4, 7). Recently, hundreds of HGT elements were detected in
AGF and are suggested to have enabled the fungi to expand their substrate utilization
range, augment their biosynthetic capabilities, and shape a phylogenetically distinct
fungal lineage (8). In fact, HGT examples from bacteria to fungi have been documented
extensively (9–12). However, HGT elements in fungi that have been transferred from
other eukaryotes are still rare, with only a few described cases from animals (13),
oomycetes (14), or plants (15). The rumen is an intriguing context to explore patterns
of HGT, where DNA and RNA are liberated when cells are disrupted by degradative
enzymes. Competing organisms can find an advantage by acquiring foreign genes that
operate efficiently in an anaerobic environment to obtain nutrients from recalcitrant
plant fibers or to recognize other microbes. Our study took a conservative approach to
identify candidate HGT by focusing on protein domains rather than entire genes and
focusing on instances that appear to be unique gains in the AGF and that are missing
in all other fungal lineages.

The Neocallimastigomycota are classified within the Chytridiomycota (chytrid) fungi,
which share the trait of a flagellated zoospore stage (16–19). Efforts to resolve the
phylogenetic relationship of AGF and their sister lineages using ribosomal markers have
yielded conflicting topologies (20, 21). A multilocus phylogeny is needed to evaluate
their evolutionary relationships and to estimate the divergence time of the AGF. Using
genomes and transcriptomes from 26 different AGF taxa (Table 1) covering seven out
of the 10 recognized genera, we reconstructed a robust phylogenomic tree of the AGF
and estimated their divergence time. We compared the genomes or transcriptomes of
AGF and their non-rumen-associated relatives in Chytridiomycota to identify unique
and shared genome contents. This study examined the relatively recent divergence of
the AGF clade and revealed a concordance of the divergence time of the Neocallimas-
tigomycota fungi with both the mammalian host transition to herbivory and the
diversification events of the forage grasses. As the AGF are well known for their
exceptional efficiency at plant biomass degradation, we also explored the diverse
genetic components of these fungi. We discovered two potential HGT elements that
were found to be unique to the AGF, which are predicted to have originated from
animals or bacteria. Examination of the family of bacterial transferred genes revealed
multiple intron insertion events that occurred after the HGT acquisition process, which
are present in all five AGF genomes. Comparative analyses of these genes suggest
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putative intron insert events involved the intragenic duplication of coding sequences.
In addition, a novel plant polysaccharide lyase was revealed from both AGF genomes
and transcriptomes that has never been reported from any known fungal genomes
or genetic studies. The evolutionary genomic investigation of these rumen-inhabiting
fungi provides perspective on the concordant timing of their divergence with the
ecological niche they inhabit and the potential role of HGT in the accumulation of
lineage-specific processes that may contribute to their unique biology.

RESULTS
Divergence time estimation and phylogenomic relationship of Neocallimas-

tigomycota. Phylogenomic analysis placed the 26 AGF taxa into a single monophyletic
clade with strong support of Bayesian posterior probability (1.0/1.0) and maximum
likelihood bootstrap value (100%) (Fig. 1; see also Fig. S1 in the supplemental material).
All AGF genera (Anaeromyces, Caecomyces, Feramyces, Neocallimastix, Orpinomyces,
Pecoramyces, and Piromyces) included in this study formed individual monophyletic
clades that were also supported by both Bayesian (Fig. 1) and maximum likelihood
(Fig. S1) analyses. A conflict in the tree topology between the two phylogenetic
reconstructions is the placement of the Caecomyces clade. This lineage is sister to the
rest of the Neocallimastigomycota in the maximum likelihood tree (Fig. S1), while the
Caecomyces position is swapped with Piromyces in the Bayesian phylogeny (Fig. 1). This
is likely due to short internode distances, which suggests a rapid radiation of the
ancestors of the two genera. The relative short bar of the highest-probability density
(HPD) on the node of the AGF clade (Fig. 1) suggests the integrative natural history of
this group of fungi and the outperforming resolving power of the genome-wide data
in the molecular dating analyses.

The divergence time of the Neocallimastigomycota clade is estimated at the Creta-
ceous/Paleogene (K/Pg) period boundary 66 (�10) million years ago (Mya) (Fig. 1). The
chronogram (Fig. 1) displays a long branch leading to the emergence of the AGF clade,
which extends from the end of Ediacaran period (�564 Mya) to the K/Pg period
boundary (�66 Mya). This suggests that the extant members of AGF did not emerge
until recently and then rapidly radiated into separate clades in the Paleogene. The

TABLE 1 Information for the AGF strains included in this study

Organism Strain Accession no. Type Host Reference or source

Anaeromyces contortous Na GGWN00000000 Transcriptome Cow This study
Anaeromyces contortous C3J GGWO00000000 Transcriptome Cow This study
Anaeromyces contortous G3G GGWR00000000 Transcriptome Goat This study
Anaeromyces contortous O2 GGWQ00000000 Transcriptome Cow This study
Anaeromyces contortous C3G GGWR00000000 Transcriptome Cow This study
Anaeromyces robustus S4 MCFG00000000 Genome Sheep 4
Caecomyces sp. Brit4 GGWS00000000 Transcriptome Cow This study
Caecomyces sp. Iso3 GGXE00000000 Transcriptome Cow This study
Feramyces austinii WSF3a GGWU00000000 Transcriptome Aoudad This study
Feramyces austinii WSF2c GGWT00000000 Transcriptome Aoudad This study
Orpinomyces sp. D3A GGWV00000000 Transcriptome Cow This study
Orpinomyces sp. D3B GGWW00000000 Transcriptome Cow This study
Orpinomyces sp. D4C GGWX00000000 Transcriptome Cow This study
Pecoramyces ruminantium C1A ASRE00000000 Genome Cow 3
Pecoramyces sp. S4B GGWY00000000 Transcriptome Sheep This study
Pecoramyces sp. FX4B GGWZ00000000 Transcriptome Cow This study
Pecoramyces sp. FS3c GGXF00000000 Transcriptome Cow This study
Pecoramyces sp. YC3 GGXA00000000 Transcriptome Cow This study
Piromyces finnis Pirfi3 MCFH00000000 Genome Horse 4
Piromyces sp. E2 MCNC00000000 Genome Elephant 4
Piromyces sp. A1 GGXB00000000 Transcriptome Sheep This study
Piromyces sp. B4 GGXH00000000 Transcriptome Cow This study
Piromyces sp. B5 GGXI00000000 Transcriptome Cow This study
Neocallimastix californiae G1 MCOG00000000 Genome Goat 4
Neocallimastix frontalis Hef5 GGXJ00000000 Transcriptome Cow This study
Neocallimastix sp. G3 GGXC00000000 Transcriptome Sheep This study
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estimated time frame for AGF divergence broadly coincides with the age of the grasses
(70 to 95 Mya), previously estimated using molecular (nuclear and chloroplast) markers,
and calibrated using fossils from pollen and dinosaur coprolite as well as the breakup
time of the Gondwana (22–26). In addition, this inferred AGF divergence time also
coincides with a major diet change of placental mammals, the transition from a
primarily insectivorous to an herbivorous and omnivorous lifestyle. The loss of chitinase
gene diversity, estimated to occurred from the K/Pg period boundary (66 Mya) to the
mid-Paleogene period (34 Mya) (Fig. 1), is widely seen as a consequence of such a
transition (27). Collectively, these overlapping estimates suggest that the evolution of
the symbiotic association between herbivorous mammals and rumen fungi is tightly
linked with the evolution of forage grasses and mammalian dietary transitions within
a 66- to 95-Mya time frame. The exact chronology of these three divergence or
transition events cannot be accurately determined partially due to the intervals of the
estimates (Fig. 1). However, the dates inferred from phylogenetic analyses are consis-
tent with the hypothesis that rumen fungi have played important roles in the dietary
transition of some mammals to acquire nutrition from forage grasses.

Genome-wide comparison of protein domains and homologous genes. Com-
parative genomic analysis between AGF and their non-rumen-associated chytrid rela-
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tives (Fig. 2) identified 40 Pfam domains that are unique to the AGF, representing 0.67%
of the total number of Pfams (5,980) in the AGF pangenome-transcriptome (Table S1
and Fig. 2b). The predicted functions of these domains include anaerobic ribonucle-
otide reductase (NRDD), metal transport and binding (FeoA and FeoB_C), carbohydrate
binding (e.g., CBM_10, CBM-like, and Cthe_2159), atypical protein kinase (CotH), and
glycoside hydrolase (e.g., Glyco_hydro_6 and Glyco_hydro_11) (Table S1 and Fig. 2b).
In addition to these 40 unique AGF domains, many additional Pfams were also enriched
in the AGF. Such domains mediate polysaccharide degradation and monosaccharide
fermentations (Fig. 2c), including Chitin_binding_1, CBM_1, Cellulase, Glyco_hydro_10,
Gly_radical, RicinB_lectin_2, Esterase, and Polysacc_deac_1 domains. Further, our anal-
ysis also identified 106 Pfam domains that are not present in AGF genomes and
transcriptomes but found in sister Chytridiomycota. Most of these missing domains are
related to oxidation reactions on cytochromes and mitochondria; instead, they possess
specialized organelles called hydrogenosomes conducting metabolism under anaero-
bic conditions (6) (Table S1 and Fig. 2d). In addition, domains involved in the biosyn-
thesis of nicotinic acid, uric acid, and photolyase, in purine catabolism, and in pathways
of ureidoglycolate and kynurenine are also found to be absent in AGF species. Similar
patterns were also identified in the comparison of homologous genes (Fig. S2).

A permissive criterion, allowing some missing copies, found a total of 2,728 gene
families shared between AGF and chytrids. We discovered that 1,709 additional gene
families are shared among AGF genomes (each gene presents in at least 21 out of the
total 26 taxa) but absent in other chytrids, while another 367 families are missing in AGF
members but present in the other chytrid lineages.

Genomic interactions within the rumen of mammalian herbivores. We focused
on three Pfam domains (Cthe_2159, Gal_Lectin, and Rhamnogal_lyase) that are unique
to the Neocallimastigomycota and previously not observed in fungal genomes. Phylo-
genetic analyses support a horizontal transfer of Cthe_2159 from rumen bacteria into
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AGF, followed by potential gene fusion to deliver eukaryotic specific functions. Simi-
larly, analysis of Gal_Lectin domain copies in AGF suggests they were acquired from
animal donor lineages. A similarity search of the AGF Rhamnogal_lyase domain finds
most similar copies in plant genomes, and phylogenetic analysis indicates that the AGF
polysaccharide lyase domain is distinct and not orthologous to related enzymes in
other fungi.

A bacteria-like biomass-binding and putatively polysaccharide lyase domain,
Cthe_2159. The Cthe_2159 domain was originally characterized as a polysaccharide
lyase-like protein in the thermophilic and biomass-degrading bacterium Clostridium
thermocellum (28). Proteins of the Cthe_2159 domain are beta-helix proteins with the
ability to bind celluloses and acid sugars (polygalacturonic acid, a major component of
the pectin), and homologs are primarily found in archaeal and bacterial genomes.
Notably, a total 583 copies of the Cthe_2159 domain were identified in 5 genomes and
21 transcriptomes of AGF taxa, but this was reduced to a set of 126 clusters based on
overall protein similarity (�90%) due to redundancy in transcriptome assemblies. This
domain is absent in all other eukaryotic genomes examined in this study (Fig. 3 and
Table 2). A phylogenetic tree of Cthe_2159 homologs identified from archaea, bacteria,
and AGF suggests that the AGF Cthe_2159 domains were acquired from bacteria
through HGT (Fig. 3). The likely donor was a Gram-positive firmicute (Clostridiales)
(maximum likelihood bootstrap value, 98%), and the closest protein copies of Cthe_2159
domains are encoded in the Oribacterium sinus, Oribacterium sp., and Hungatella
hathewayi genomes (Fig. 3). Members of the order Clostridiales are integral members of
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the rumen microbiome. Four of these AGF Cthe_2159 domain-containing genes also
encode eukaryotic Pfam protein domains (Atrophin-1, eIF-3_zeta, Nop14, and TPH) at
the 3= position of the Cthe_2159 domain. We hypothesize that these domains are the
result of fusion after the acquisition of Cthe_2159 domain. The putative functions of
these additional domains include initiation of the eukaryotic translation, maturation of
18S rRNA, production of 40S ribosome, and meiosis-specific activities (Fig. 4). Approx-
imately 30% of these AGF Cthe_2159 gene models possess between 1 and 2 introns,
but there is limited spliced transcript evidence to provide confidence in the gene
structures, so the apparent intron gains could be artifacts of genome assembly or
annotation (Text S1) (3, 4).

An animal-like galactose binding lectin domain, Gal_Lectin. Gal_Lectin domains
were found in AGF genomes universally and absent in all other examined chytrid and
fungal genomes (Table 2). Phylogenetic analysis recovered a monophyletic AGF
Gal_Lectin clade which was not placed as a sister clade to the animals as expected for
a fungal gene. Instead, it was embedded within the animal homologs in the tree and
allies with one subgroup, polycystin-1 (PC-1) (Fig. 5a). The three separate animal
subclades contain protein members that harbor the Gal_Lectin domain but with
dissimilar functions based on sequence homology (Fig. 5). The genomes of ruminant
hosts (e.g., horse and sheep) of the AGF also contain three gene families with the
Gal_Lectin domain, which can be observed in each of the animal subclades (Fig. 5). The
proteins in the animal subclade 1 were annotated as PC-1 based on similarity to the
human polycystic kidney disease (PKD1) genes. The members of the animal subclade 2
were searched by BLAST against the NCBI nonredundant protein database and iden-
tified as homologs of the adhesion G protein-coupled receptor L1/3 (ADGRL1). The
animal subclade 3 contains homologs of the EVA-1 protein, most of which contain two
adjacent copies of the Gal_Lectin domain. The three subgroups of animal Gal_Lectin
domains are also flanked by disparate Pfam domains (Fig. 5b). The gene phylogeny
suggests an animal PC-1 protein as the likely donor lineage for the AGF Gal_Lectin gene
(Fig. 5a), based on its closest sister relationship. In addition, the AGF proteins also
contain a Pfam Glyco_transf_34 domain (Fig. 5b) which is absent in all animal homologs
of the Gal_Lectin-containing genes, suggesting its involvement in fungus-specific
activities in the rumen.

A novel fungal rhamnogalacturonate lyase domain, Rhamnogal_lyase, in AGF.
In plants, the rhamnogalacturonate lyases are involved in the fruit ripening-related
process, cell wall modification, and lateral root and root hair formation (29, 30). The
Pfam database classifies two types of domains for rhamnogalactoside-degrading activ-
ity, Rhamnogal_lyase and RhgB_N. They are both N-terminal catalytic domains associ-
ated with the rhamnogalacturonan lyase protein (polysaccharide lyase family 4 [PL4])
and flanked persistently by the group of fn3_3 and carbohydrate-binding module
(CBM)-like domains, with the particular function of degrading the rhamnogalacturonan
I (RG-I) backbone of pectin. The Rhamnogal_lyase domain is found in the genomes of

TABLE 2 Distribution of the three studied domains in the fungal kingdom

Phylum No. of examined genomes

No. of domains

Cthe_2159 Gal_Lectin Rhamnogal_lyase

Ascomycota 652 0 0 0
Basidiomycota 324 0 0 0
Mucoromycota 76 0 0 0
Zoopagomycota 23 0 0 0
Chytridiomycota 14 0 0 0
Neocallimastigomycota 5 95 67 26
Blastocladiomycota 4 0 0 0
Cryptomycota 1 0 0 0
Microsporidia 22 0 0 0

Total 1,121
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plants and plant-pathogenic bacteria (e.g., Dickeya dadantii, formerly Erwinia chrysan-
themi), whereas the RhgB_N domain has a wider distribution and can be found in
bacteria, fungi, and oomycetes (31). Sequence similarity searches using the Rhamnogal-
_lyase domain against various protein sequence databases (e.g., EnsEMBL, MycoCosm,
and Pfam) returned no homolog in any other fungi (except the AGF members), which
indicates that this domain is unique to AGF, plants, and bacteria. On the other hand, the
RhgB_N domain is widely shared by Dikarya fungi, oomycetes, and bacteria. Although
the RhgB_N and Rhamnogal_lyase domains are distantly related according to sequence
similarity (24% between the copies of the Aspergillus nidulans and Anaeromyces robus-
tus), they presumably share an origin due to the fact that they both physically located
on the N-terminal region of the PL4 proteins and they have resembling functions to
degrade the pectin RG-I region. The phylogenetic tree shows that although AGF
Rhamnogal_lyase domains are more closely related to the plant homologs than to the
clades of fungi and oomycetes, these AGF rhamnogalacturonate lyases likely have
evolved a specific function in fungi (Fig. 6). The presence of the Rhamnogal_lyase
domain in the rumen-associated fungi suggests that the AGF may support an ability to
soften, modify, and degrade the plant pectin within the anaerobic rumen in a related
but different way from plants.

DISCUSSION

Microbial diversity of ruminants is a research hot spot for development of bioenergy
tools (2, 32, 33). The AGF are an important but understudied component of the
ruminant microbiome, and their obligate anaerobic and relatively large (50 to 200 Mb)
and AT rich (78 to 84%) genomes challenged the initial generation of genomic
resources for the clade. In this study, we produced the most phylogenetically broad
transcriptome sampling of the Neocallimastigomycota fungi to date to support phy-
logenomic and comparative analyses. Our results contribute new insights into the
natural history and dynamic evolution of these cryptic ruminant gut fungi. The recon-
structed phylogenomic species tree resolved previously unanswered questions about
the evolutionary relationships of the members of the AGF. In addition, we provide the
first estimation of the divergence time of AGF taxa, 66 (�10) Mya (Fig. 1), which is in
remarkable concordance with the divergence of the forage Poaceae grasses (70 to 95
Mya) and dietary shifts in mammalian lineages (34 to 66 Mya) from insectivore to
herbivore and omnivore. Grass evolution enabled the herbivory transition, and this diet
adaptation drove an increase in the developmental and morphological complexity of
the digestive tract, compartmentalization, and the development of dedicated anaero-
bic fermentation chambers (e.g., rumen and cecum) in the herbivorous alimentary tract
to improve biomass degradation efficiency (34). This transition to plant-based (or
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plant-exclusive) diets required additional partnership with microbes since mammals
lack cellulolytic and hemicellulolytic enzymes necessary to liberate sugars for absorp-
tion (5). In addition, the genome content comparisons help illustrate and predict new
biological roles AGF play in the mammalian herbivore guts. The long branch that leads
to the emergence of the Neocallimastigomycota clade indicates the distinctiveness of
the extant group of obligate symbiotic fungi in the mammalian herbivores and implies
the existence of undiscovered although possibly extinct relatives of the Neocallimas-
tigomycota and Chytridiomycota (Fig. 1). Future environmental and metagenome
sequence exploration of anaerobic environment testing for presence of these types of
fungi may provide new observations that support their existence.

Our analyses identified multiple instances of Pfam domain gains (n � 40) and losses
(n � 106) within the Neocallimastigomycota clade (Fig. 2 and Table S1). As the mRNA
collected for most of the fungi was from isolates grown on a single substrate (cellobi-
ose), these observations are limited to the genes expressed under this condition. More
comprehensive sampling of growth conditions across developmental stages and sub-
strates is important to fully categorize gene gain and loss. We have taken a conservative
approach that considers genes with gain or loss patterns shared across multiple RNA
sequencing (RNA-seq) data sets and additionally confirmed by gene content in the five
available AGF genomes. This approach identified three AGF lineage-specific protein
domains which are absent from all other examined fungal genomes (Table 2). Phylo-
genetic analyses support the hypothesis that they were acquired via HGT or other
noncanonical events. Phylogenetic analyses of Cthe_2159 and Gal_Lectin domains
indicate that they were separately transferred from the rumen bacteria and animal
hosts horizontally (Fig. 3 and 5). Prior studies of multiple fungal lineages suggested that
lineage-specific genes may have come from lateral acquisition (35–37). The absence of
homologs in the entire fungal clades (except Neocallimastigomycota in this case) is a
strong signal for their potential foreign origins. The absence of any fungal homologs of
Cthe_2159 outside the AGF prevented us from testing the alternative hypotheses of a
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fungal origin of the domain with an approximately unbiased (AU) topology constraint
test (38). In analyzing Gal_Lectin, we compared the likelihoods of a constrained tree
where all animal sequences were forced to be monophyletic to the topology of the
unconstrained tree. The AU test did not find the constrained tree to be a statistically
significantly worse fit, so the alternative hypothesis that the orphan Gal_Lectin in
Neocallimastigomycota is a result of multiple independent loss events in all other
fungal lineages could not be rejected by this analysis. Since the genetic distance
between Neocallimastigomycota and sister chytrid relatives is quite large (Fig. 1), this
multiple-loss scenario seems less likely than a single gain event. These identified
domains highlight the diverse genomic tools utilized by AGF which we predict have
improved their lignocellulolytic capacities (through Cthe_2159 and Rhamnogal_lyase)
and recognition of molecules or other cells (through Gal_Lectin) within the rumen. The
presence of four different eukaryotic Pfam domains fused with these bacterium-
originated Cthe_2159 genes in AGF suggests that the genes are truly eukaryotic and
present in the fungal genomes (Fig. 4) and not a contamination artifact. Studies of
intron gains and losses in fungal lineages have suggested the ancestor was intron rich,
an observation that is supported by intron-rich chytrid genomes (39–41). Although
introns are present in several Cthe_2159 gene models in the Neocallimastigomycota
genomes and flanked with duplicated coding sequences (Piromyces sp. strain E2), there
is little support of spliced mRNA transcripts originating from these loci, preventing us
from confidently declaring these as recent intron insertions (Text S1 and Fig. S7).

The Cthe_2159 protein family binds cellulosic and pectic substrates in the anaerobic
and thermophilic bacterium Clostridium thermocellum (28). The crystal structure of the
Cthe_2159 domain suggests that it is a polysaccharide lyase family with similarity to
pectate lyases in the PL9 family. The Rhamnogal_lyase domains primarily function in
the facilitation of cell wall modification in plants (29). The domain in phytopathogenic
bacteria functions to disorganize plant tissues and support invasion (42). Although we
cannot identify an unambiguous donor lineage of the AGF Rhamnogal_lyase domains
(Fig. 6), their gain is a synapomorphy of the extant AGF taxa and may contribute to the
ability of these fungi to access polysaccharides in plant cell walls. Both Cthe_2159 and
Rhamnogal_lyase (PL4 family) domains have putative function in pectin binding or
degradation activity, which we interpret as an indication of the importance of decon-
struction of pectin in the lifestyle of AGF in the rumen (Table 2 and Fig. 2). Pectin is
abundant in primary cell walls and the middle lamella in both dicotyledonous plants
(making up 20 to 35% dry weight) and grasses (2 to 10%), serving as protection for
plant cells from degrading enzymes produced by animals (43–46). The removal of
pectin can increase the exposed surface area of a plant cell wall and improve the
accessibility of degradation enzymes to other polysaccharides (cellulose and hemicel-
lulose) masked by pectin (47). The Cthe_2159 and Rhamnogal_lyase proteins may
contribute to the high efficiency of the AGF biomass degradability by uncoupling the
pectin that glues cells together, increasing the exposed surface areas, and thus allowing
diverse polysaccharide enzymes to work on plant cells simultaneously in the rumen.
The fungi may benefit from these acquired domains in their capacity as primary
degraders of ingested forage (48). Further investigation of their role in the multiple
processes that AGF perform to weaken forage fibers and release polysaccharides is
warranted (49, 50).

The Gal_Lectin domain bears the phylogenetic hallmark of being acquired from an
animal donor. Animals use galactose-binding lectins to recognize foreign entities (51)
and participate in antimicrobial defenses (52, 53). Our results suggest that the Gal_Lec-
tin domains in AGF are homologous and closely related to animal PC-1 proteins
(Fig. 5a), which are transmembrane proteins functioning in cell recognition (54, 55). In
vitro, PC-1 shows binding ability to carbohydrate matrices and collagen types I, II, and
IV (56). We postulate that the acquisition of the animal-like Gal_Lectin domain contrib-
utes to the AGF abilities of cell-cell recognition and interaction with other microbes in
the rumen. The syntenic relationship of the coding genes shows that the AGF Gal_Lec-
tin domains are flanked by the Glyco_transf_34 domain, which lacks homologs in any
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other animals (Fig. 5b and S5). The AGF-equipped Glyco_transf_34 belongs to the
galactosyltransferase GMA12/MNN10 family and may help catalyze the transfer of the
sugar moieties in cooperating with the adjacent Gal_Lectin domain. Our investigation
found that HGT has contributed to the AGF genome evolution, with donors from both
prokaryotes and eukaryotes. HGT may have helped these fungi to acquire new func-
tions and to thrive in the anaerobic gut as a key member of the microbial community
degrading plant materials in animal hosts.

Other than the arsenal of diverse enzyme profiles, the AGF have also been
known to use rhizoids and holdfasts to physically aid the fungal body to penetrate
into the plant material deeply, which is superior to other rumen microorganisms in
terms of efficiency (5, 57). Our study provides evidence that the rumen fungi are
able to and have actively acquired functional domains from the animal hosts and
coexisting anaerobic bacteria in the rumen. These exotic genetic elements encoded
in Neocallimastigomycota genomes may contribute to the unique traits of these
fungi which are distinct from their free-living relatives. The long branch leading to
the recent radiation of Neocallimastigomycota (Fig. 1) also suggests an evolutionary
trajectory distinct from those of the sister Chytridiomycota lineages. Living as gut
dwellers in the strict anaerobic gut environment for over 66 million years, AGF have
undergone reductive evolution on the mitochondria and eventually transformed it
to a new organelle, the hydrosome (3, 32). Their ecological roles of AGF in such an
extreme environment also endow their exceptional ability for plant degradation.
The AGF use both physical (deconstruction of lignocelluloses) and biological (depolymer-
ization) mechanisms before the fermentation of plant polysaccharides. These steps require
diverse enzymes capable of breaking chemical bonds in carbohydrates, including cellulases,
hemicellulases, ligninases, and pectinases (58). In turn, the acquisition of these enzymatic
processes has driven the synapomorphic and autapomorphic characteristics described in
the AGF. Currently, few close relatives have been found, and none have been cultured
which subtend from the long branch. Environmental DNA investigations of extreme and
anaerobic environment that may be a suitable niche of those Neocallimastigomycota-like
microbes may reveal potential relatives (59). For example, a recent metagenomic survey
from coastal marine sediments suggests that some operational taxonomic units (OTUs)
could be assigned to Neocallimastigomycota using a 28S rRNA marker (60). Sampling
of deep-sea habitats and marine mammalian herbivores could provide future discoveries of
biodiversity and evolutionary importance for understanding the evolutionary trajectory of
the Neocallimastigomycota.

MATERIALS AND METHODS
RNA extraction, sequencing, and data set preparation. In total, 21 strains of Neocallimastigo-

mycota fungi were cultured from cow, sheep, horse, and goat feces and rumen fluid of fistulated
cows in the Stillwater, OK, area (8) (Table 1). These strains were maintained under anaerobic
conditions using the modified Hungate method, as described previously (61–64). Culture purity was
ensured by serial dilution and incubation at 39°C for 24 to 48 h, followed by inoculation and a
second round of isolation. Cellobiose was the sole carbon source of the fungal culture prepared for
RNA extraction. The total volume of RNA was harvested at early stationary phase (48 to 60 h
postinoculation) using the MasterPure yeast RNA purification kit (Epicentre, Madison, WI, USA) and
processed for transcriptomics sequencing using the Illumina HiSeq 2500 platform and 2 � 150-bp
paired-end library by Novogene (Beijing, China).

The RNA-seq data were assembled into de novo transcript assemblies using Trinity (v2.6.6) and used
to predict ORFs using TransDecoder (v5.0.2) (65, 66). The generated proteomes and corresponding
coding sequences were used as input to phylogenomic and comparative genomic analyses.

The five published Neocallimastigomycota genome sequences were obtained from the Joint
Genome Institute (JGI) MycoCosm database (67, 68). These are the sequences for Anaeromyces
robustus S4, Neocallimastix californiae G1, Pecoramyces ruminantium C1A (synonym Orpinomyces sp.),
Piromyces finnis (v3.0), and Piromyces sp. E2 (3, 4). Five outgroup Chytridiomycota taxa with
sequenced genomes were chosen. These are Chytriomyces sp. strain MP 71, Entophlyctis helioformis
JEL805, Gaertneriomyces semiglobifer Barr 43, Gonapodya prolifera JEL478, and Rhizoclosmatium
globosum JEL800 (69, 70).

Phylogenomics and divergence time estimation. A set of 434 highly conserved and generally
single-copy protein-coding genes in fungi (https://doi.org/10.5281/zenodo.1251476) were developed
through efforts of the 1000 Fungal Genomes Project and identified as single-copy genes in orthologous
clusters provided in the Joint Genome Institute MycoCosm site (67, 71, 72). These markers were used for
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phylogenomic analyses in the PHYling pipeline (https://doi.org/10.5281/zenodo.1257001). Profile-
Hidden-Markov models of these markers were searched in the chytrid predicted protein sequences using
HMMER3 (v3.1b2). A total of 426 (out of 434) conserved orthologous markers were identified with
hmmsearch (cutoff � 1E�10) in the 26 Neocallimastigomycota and 5 Chytridiomycota. The identified
protein sequence homologs in each species, for each phylogenetic marker, were aligned with hmmalign
to the marker profile-HMM. The protein alignments were also back translated into codon alignments
guided by the protein alignment using the tool bp_mrtrans.pl (73). The protein and coding sequences
of the markers were concatenated into a superalignment with 426 partitions defined by each gene
marker. The 426 gene partitions were further collapsed into 33 partitions by PartitionFinder v2.1.1 with
a greedy search to find partitions with consistent phylogenetic signals (74). Phylogenetic trees were
constructed from this superalignment and partition scheme with two methods, the maximum likelihood
method, implemented in IQ-TREE (v1.5.5), and Bayesian inference method, implemented in BEAST
(v1.8.4) (75, 76). Configuration files for divergence time estimation analysis were coded in BEAUti
v1.8.4 using the 33 partitions and two calibration priors, (i) a direct fossil record of Chytridiomycota
from the Rhynie Chert (407 Mya) (77, 78), and (ii) the emergence time of Chytridiomycota (573 to 770
Mya as 95% HPD) from earlier studies (69, 79, 80). The Birth-Death incomplete sampling tree model
was employed for interspecies relationship analyses (81). Unlinked strict clock models were used for
each partition. The archive of input files and analysis scripts used to perform the phylogenetic
analyses are available at Zenodo (https://doi.org/10.5281/zenodo.1447225). Three independent runs
were performed separately for 50 million generations each with random starting seeds. Sufficient
effective sample size (ESS) (�200) values were obtained after the default burn-in (10%) for the final
sampled trees. The maximum clade credibility (MCC) tree was compiled using TreeAnnotator v1.8.4.

Identification of AGF-specific genes and Pfam domains. Orthologous genes across the 31 ge-
nomes or transcriptomes were identified using a comparative genomic pipeline that utilized all-versus-all
BLASTp (cutoff � 1E�5) to obtain the similarity pairs, orthAgogue to identify putative orthologous
relationships, and the Markov clustering algorithm (MCL, using the inflation value of 1.5) to generate
disjoint clusters and deployed in an analysis pipeline (https://doi.org/10.5281/zenodo.1447225) (82–84).
Comparisons of the shared gene content of the orthologous clusters were performed among the
Chytridiomycota lineages using a permissive strategy of counting a gene family as shared if it is missing
in up to 5 of the 26 Neocallimastigomycota taxa and 1 of the 5 chytrid genomes. In this scenario, genes
absent in all chytrid genomes and maintained by more than 21 out of the 26 Neocallimastigomycota
genomes/transcriptomes are defined as AGF unique genes; on the other hand, genes missing from all
Neocallimastigomycota and present in at least 4 out of the 5 chytrid genomes are treated as AGF lost
genes.

Protein domains were identified by searching the predicted proteomes from each genome assembly
or transcriptome assembly against the Protein Family (Pfam) database (v31.0). The enrichment heatmap
of the Pfam domains across the included taxa was produced using the aheatmap function in the R
package NMF based on the total copy number (based on hmmscan results of searches against the Pfam
database using a cutoff E-value of 1e�2) count in each assembly (85). Genes only present in the AGF
genomes and missing from all of the included free-living chytrids relatives were identified.

To identify genes in AGF that are likely important for interactions with mammalian hosts and plant
material breakdown, we further compared the five available AGF genomes to the genomes of their
animal hosts (e.g., sheep, horse, elephant, and yak) (https://www.broadinstitute.org/elephant/elephant
-genome-project and references 86–88), the diet plant (e.g., moss, rice, palm, maize, and sorghum)
(89–98) (Table S2), and the 1,165 available fungal genomes from the ongoing 1000 Fungal Genomes
Project (http://1000.fungalgenomes.org; https://mycocosm.jgi.doe.gov) (18, 19, 67, 68). Comparison of
AGF genes to host or plant genomes was intended to test if any copies were likely donated from these
lineages by searching for high-identity nucleotide matches. To prioritize AGF genes that may have been
laterally acquired from these hosts, a Python script (13) and similarity search tool BLAT (99) were applied
to filter out DNA elements in AGF with higher similarity to animal or plant homologs than any fungal
ones, excluding the AGF themselves. Candidate genes for lateral transfer were ranked by the combina-
tion of the two strategies. The candidate genes with an assigned functional or biological process
annotation were analyzed with priority using phylogenetic reconstruction to infer their potential origin.

Identification of homologous sequences and potential origin of HGT candidate loci. Three Pfam
domains, Cthe_2159, Gal_Lectin, and Rhamnogal_lyase, were identified to be unique to the AGF
genomes compared to the Chytridiomycota fungi or all other fungal members. To predict the donor
lineages for these putative HGT events, we searched more broadly for homologues in genome
databases of plant, metazoa, fungi, bacteria, and protists in EnsEMBL (v37) (100) via the Web-
implemented HMMER tool (https://www.ebi.ac.uk/Tools/hmmer/) (cutoff � 1E�3). Additional fungal
homologues were found by searching the Department of Energy (DOE) JGI’s MycoCosm database (67,
68). The profile Hidden Markov Model tool phmmer in the HMMer package (101) was used to search for
similar sequences in the 1,165 fungal genomes using the query of edge-trimmed domain sequences from
A. robustus (cutoff � 1E�3).

Members of the RhgB_N sequences were obtained from the Pfam database classified in the
RhgB_N (PF09284) family (31), along with the N-terminal sequences of the rhamnogalacturonate
lyase families A, B, and C from GenBank (102–104). A single data set of RhgB_N and Rhamnogal_lyase
family members from animals, fungi, plants, and bacteria was constructed from these searches.
Domain names were confirmed using NCBI’s conserved domain search tool (cutoff � 1E�5) with
unaligned FASTA sequences (105). Similarly, homologs of the Gal_Lectin and Cthe_2159 domains
were obtained by searching for similar sequences in the previously described genome databases and
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the categorized Pfam database (families of Gal_Lectin [PF02140] and Cthe_2159 [PF14262]). Homol-
ogous sequences containing the Cthe_2159 domain were only identified in archaea and bacteria,
while the AGF copies are the first eukaryotic representatives identified with this domain. Homologs
of the flanking domain Glyco_transf_34 were obtained similarly from EnsEMBL genome databases
described above using the edge-trimmed domain sequence from A. robustus (cutoff � 1E�5). Highly
similar sequences (�90%) were filtered using CD-HIT v4.6.4, followed by multiple-sequence align-
ment with MUSCLE v3.8.31 (106, 107).

Phylogenetic analyses of the HGT candidates. In total, 747 sequences of the rhamnogalacturanate
degradation proteins (including both Rhamnogal_lyase and RhgB_N) were included in the alignment. For
the other two domains, Gal_Lectin and Cthe_2159, the alignments include 297 and 234 unique variants,
respectively. The Cthe_2159 domain-containing genes in the 5 AGF genomes were aligned separately
using MUSCLE v3.8.31 in the Mesquite software (107, 108). Both the upstream and downstream flanking
regions of the studied Pfam domain sequences were trimmed using the Mesquite software (108).
Selection of the appropriate substitutional model, the maximum likelihood phylogenetic tree recon-
struction, and the ultrafast bootstrapping (1,000 replicates) were conducted using the IQ-TREE v1.5.5
package (75, 109, 110).

Data availability. Assembled transcriptomes, raw Illumina read sequences, and isolate metadata are
deposited in GenBank with the BioProject number PRJNA489922. All accession numbers are listed in
Table 1. All generated RNA-seq reads were deposited in the Sequence Read Archive, and assembled
transcriptomes were deposited in the Transcriptome Shotgun Assembly archive.
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