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Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune,
and neuroinflammatory diseases. During this process, microglia, which populate the
embryonic brain and become a permanent sentinel myeloid population, are inexorably
joined by peripherally derived monocytes, recruited by the central nervous system. These
cells can quickly adopt a morphology and immunophenotype similar to microglia. Both
microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining
immune-mediated pathology and thus disease progression in a number of
neuropathologies. For many years, experimental and analytical systems have failed to
differentiate resident microglia from peripherally derived myeloid cells accurately. This has
impeded our understanding of their precise functions in, and contributions to, these
diseases, and hampered the development of novel treatments that could target specific
cell subsets. Over the past decade, microglia have been investigated more intensively in the
context of neuroimmunological research, fostering the development of more precise
experimental systems. In light of our rapidly growing understanding of these cells, we
discuss the differential origins of microglia and peripherally derived myeloid cells in the
inflamed brain, with an analysis of the problems resolving these cell types phenotypically and
morphologically, and highlight recent developments enabling more precise identification.

Keywords: microglia, neuroinflammation, central nervous system infiltration, neuropathology, central nervous
system infection, monocyte-macrophage
INTRODUCTION

Like other organs of the body, it is now well established that the central nervous system (CNS) has its
own unique immune system that constantly maintains homeostasis and is rapidly engaged during
inflammatory insult. Arguably, microglia are the key regulators of the immune response in the healthy
brain. However, under certain conditions, such as those underlying neurodegenerative disease,
autoimmunity, infectious encephalitis, and ischemia, infiltration of bone marrow (BM)-derived
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monocytes act in concert with local microglia in the brain
parenchyma to initiate, enhance, or dampen immune activity.
Resident and infiltrating myeloid cells in the inflamed brain may
be developmentally distinct, but often adopt similar morphologies
and phenotypes, complicating accurate identification. More
nuanced tools have improved resolution, and through these we
can better define populations in the brain, allowing further
elucidation of the role of resident and peripherally infiltrating
myeloid cells in the inflamed brain. Given the fast-developing
field, and the evident importance of both microglia and BM-
derived monocytes to disease processes in a variety of CNS
pathologies, we review the current understanding of the origins
and functions of these cell types in homeostasis and highlight
new experimental tools, molecules, and drugs which may
overcome issues of differentiating between these populations
during neuroinflammation.
MICROGLIA ORIGINS AND RENEWAL

Historically, microglia were first believed to be of neuroepithelial
origin (1, 2), along with neurons and neuroglia. Subsequently,
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they were thought to be of monocytic origin (3), derived from
hemopoietic stem cells (HSCs) in the fetal liver or BM. In 1999,
Alloit et al. proposed the yolk sac (YS) origin of microglia (4). A
decade later, this was confirmed using a fate-mapping model to
trace YS progenitors, replacing the view of a monocytic origin for
microglia (5). Microglia are now known to arise from
uncommitted KIT+ erythromyeloid precursors (EMP) (6)
(Figure 1), which seed the brain from the YS at embryonic day
9.5 (E9.5) in the mouse (5), well before other glial cells and before
the formation of the blood-brain barrier (BBB) (6, 7). However,
other evidence suggests that microglia are not exclusively YS-
derived, and that a small population arise from Hoxb8+

progenitors in the E12.5 fetal liver (8) or from fetal HSC-
derived monocytes (9). Subsequent to the formation of the
brain, microglia are renewed in-situ throughout life,
independently of BM-derived HSCs (10–12). In the steady
state, microglia have region-specific renewal rates (13) with
their density maintained via the tight coupling of apoptosis
and proliferation (14). In the mouse brain, half the microglial
population persists throughout the entire lifespan of the animal
and thus remains a relic of the embryonic brain (11). In young
and adult mice, the median life span of microglia is 22 and 29
FIGURE 1 | Origins and phenotypes of resident microglia and monocyte-derived cells in the periphery and inflamed brain.
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months, respectively (11). In humans, microglia can survive for
more than twenty years, although unlike mice, their entire
population is renewed at a median rate of 28% per year (10).
The correlation of high differential renewal rates with microglial
function remain to be revealed.

The microglial phenotype is derived from the successive
development of uncommitted KIT+ EMP into the macrophage
ancestor population A1 (CD45+, CX3CR1-, F4/80-) and then into
the A2 progenitor population (CD45+, CD115+, CX3CR1+, F4/
80hi), which migrates to and populates the embryonic brain (6).
The development of microglia from precursor cells into
intermediate progenitors is a finely tuned process orchestrated
by external and internal stimuli. PU.1, RUNX1, and IRF8 are
indispensable transcription factors in the programming of EMP
into microglia during embryonic development (5, 6, 15, 16).
CD115 (also known as colony-stimulating factor-1 receptor,
CSF-1R, or macrophage colony-stimulating factor receptor, M-
CSFR) ligands, CSF-1, and interleukin (IL)-34, are important for
the maintenance of microglia in the adult brain, with IL-34 being
highly expressed by neurons in a region-specific manner in the
adult mouse brain (17, 18). CD115 signaling is more critical
during development, playing an important role in the
differentiation of EMP into microglia, but is also required for
replenishment of adult microglia and maintenance (18–20).
CD115-deficient mice have reduced microglial numbers, and
treatment with CD115 inhibitors at high doses results in
significant microglial depletion (19, 21).

Remarkably, microglia rapidly renew their entire population
after chemical or genetic (conditional) depletion. Depending on
the depletion method, the presence of non-physiological
perturbations, and/or the experimental model, studies have
suggested this occurs through niche repopulation by
infiltrating monocytes, proliferation of a microglial progenitor
or proliferation of surviving microglia. In the absence of BBB
breakdown or lethal irradiation and BM transplant, it is believed
that there is little or no contribution of HSC-derived monocytes
to the microglial pool (12, 22) and that surviving microglia
repopulate via self -renewal (23–25). Experimental methods used
to deplete myeloid cells in the CNS and periphery are presented
in Table 1. In irradiated BM-reconstituted CD11b-herpes
simplex virus thymidine kinase (HSV-TK) mice injected
intracerebroventricularly (i.c.v.) with ganciclovir to deplete
microglia, engrafted “microglia” were of peripheral origin (45)
(Table 1). On the other hand, following treatment with
PLX3397, a small-molecule CD115 inhibitor, replacement
microglia arose from a resident microglial progenitor
population expressing nestin, a neural stem cell marker that
can also be expressed on macrophages (19) (Table 1). By
contrast, microglial depletion in either Cx3cr1CreER:iDTR
mice, in which long-lived CX3CR1+ cells (microglia) are
depleted after tamoxifen and diphtheria toxin (DTx)
administration (Table 1) (25) or with the CD115 inhibitor
PLX5622 (24, 46), showed little contribution of nestin+

progenitors or peripheral myeloid cells to the regenerating
microglial pool, supporting the innate capacity for microglial
self-renewal (Table 1). The specific attributes required for
Frontiers in Immunology | www.frontiersin.org 3
microglial survival (and thus incomplete depletion) during
these depletion procedures are unclear, but there is an implied
refractoriness in the pathways involved in surviving microglia
reminiscent of a developmental stage difference or “stemness,”
with survivors clearly retaining the ability to proliferate for
population renewal.

The concept that microglia are capable of self-renewal
without input from peripheral myeloid cells, both in
homeostasis and disease, was established in “microfetti” mice
(Cx3cr1CreER mice crossed with R26RConfetti reporter mice) and
in a model of parabiosis. In microfetti mice, replenished
microglia are tagged with one of four reporter proteins of the
confetti labelling system, giving information on the distribution,
expansion, and clonality of repopulating microglia. After
unilateral facial nerve axotomy, microglia underwent rapid
self-renewal with no contribution from progenitors or external
myeloid populations (13). In the parabiosis model, a transgenic
mouse expressing green fluorescent protein (GFP) in
hemopoietic mononuclear cells and a wild type (WT) mouse
were surgically attached for several weeks to achieve 50% blood
chimerism (12). When the WT mice were subjected to facial
nerve axotomy or amyotrophic lateral sclerosis (ALS), the CNS
of the WT mice had no GFP+ cells (partner-derived cells),
demonstrating in-situ microglial repopulation.

While the capacity of microglia to self-renew without
contribution from the periphery has emerged as the dogma,
these ideas were established using parabiotic mice and mild
inflammatory insults. During severe inflammatory insult and/or
perturbation of the BBB, it was speculated that microglia could
be derived from circulating peripheral monocytes (30). As the
circulating myeloid compartment serves as a reservoir of
immune cells that can rapidly be recruited to any tissue as
needed, whether to contain virus or assist in tissue repair after
traumatic injury, this may be an additional pragmatic solution to
replenishing microglia, either in the short or long term,
notwithstanding a likely differential genetic signature (47). It is
unclear if such BM precursors are sufficiently stem-like to
become “real” microglia once in the CNS, and if so, whether
they could become a completely self-renewing immigrant
population that can maintain a density and network
configuration similar to native microglia. Whether such
engrafted “microglia” would function similarly to YS-derived
microglia in both homeostasis and pathology over time, is of
considerable interest and still unresolved.
A DAY IN THE LIFE OF MICROGLIA:
FUNCTIONS IN THE EMBRYONIC AND
ADULT CNS

The importance of microglia to normal CNS development and
homeostasis has been historically underappreciated. While
microglia have long been recognized for their role as resident
tissue macrophages, this extends considerably further than their
innate immunological “first-line of defense” functions.
December 2020 | Volume 11 | Article 600822
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TABLE 1 | Methods of myeloid cell blockade and depletion.

Depletion method Cell type targeted by
method of depletion

Drawbacks Mechanism of action

Intravenous administration
of clodronate-encapsulated
liposomes

Circulating monocytes
and phagocytic cells in
the bone marrow, liver
and spleen (26–28)

Depletion is incomplete
Clodronate liposomes do not specifically
deplete one monocyte/macrophage
subset

If clodronate is administered via an intravenous injection,
clodronate liposomes in homeostatic animals cannot leave the
blood vessels unless through sinusoids, and are thus limited to the
circulation, bone marrow, liver, and spleen. In inflammatory
conditions where the endothelium allows extravasation of
molecules, liposomes can pass through.
Liposomes containing clodronate are engulfed by phagocytic cells.
Once in the cell, liposomes fuse with lysosomes causing the
disruption of liposome bilayers, which allows the intracellular
release of clodronate. Clodronate above a threshold concentration,
causes irreversible damage to the cell and subsequent apoptosis
(29).

Targeting chemokine
receptor CCR2

CCR2-expressing
monocytes in the bone
marrow

Cells are not depleted but blocked from
entering the circulation and thus do not
reach inflamed tissue.
Using anti-CCL2 (CCR2 ligand)
monoclonal antibody (mAb) results in
incomplete blockade (30).

Intravenous (i.v.) or intraperitoneal (i.p.) injection of anti-CCR2 or
CCL2 mAb (31) or by the use of transgenic CCR2−/− mice (32).
Monocytes are prevented from leaving the bone marrow via
blocking the CCL2-CCR2 signaling axis.

Intracerebroventricular
(i.c.v.) administration of
clodronate liposomes

Microglia (33) Invasive procedure which breaches the
BBB
Incomplete depletion

Clodronate liposomes are administered intracranially and engulfed
by phagocytic cells in the brain, causing their “suicide” via
apoptosis (26)

Transgenic animals with
mutations in genes critical
for microglial development
and maintenance: PU.1,
CD115 (CSF1R) and TGF-b

In CNS-TGFb1−/− mice
(i.e. IL2TGF-b1-Tg-
TGF-b1−/−: TGF-b1 is
thus limited to T
lymphocytes): Microglia
(25)
In CSF1R−/−: Microglia,
monocytes and tissue
resident macrophages
(5)
In PU.1−/− mice:
Microglia, mature
myeloid cells and B
cells (6)

These mice rarely survive into adulthood
and develop defects in other organs
other than the brain (34).
Incomplete microglia depletion in CNS-
TGFb1−/− mice and an increase in
peripherally derived cells into the CNS
(CD39−CD11bhiLy6C+) (25)

Genes required for development and maintenance of microglia
were genetically deleted, resulting in their depletion.

CD11b-HSVTK mice Gamma-irradiation-
resistant CD11b+ cells
(i.e. microglia)

Incomplete bone marrow reconstitution
and prolonged ganciclovir (GCV)-
administration causes myelotoxicity and
can be fatal (35).
GCV administered orally or via an i.p.
injection results in incomplete microglia
depletion. Instead microglia proliferation
and activation is blocked (35).
Compromise of the BBB if GCV is
administered i.c.v. and also extended
application of GCV this way, causes
microhemorrhages and influx of
peripheral macrophages into the CNS
(36).

Host mice express herpes-simplex virus thymidine kinase (HSV-
TK) under the CD11b-promoter are lethally irradiated and
engrafted with WT BM (35). Only irradiation resistant CD11b+ cells
express HSV-TK. GCV administered in-vivo is converted into a
monophosphorylated form via HSV-TK. Endogenous cellular
kinases then convert the monophosphorylated form of GCV into a
toxic triphosphate. GCV competes with thymine for DNA synthesis
and thus preferentially targets proliferating cells. Non-proliferating
cells have a reduced susceptibility to GCV. GCV administered
orally or via an i.p. injection does not result in complete microglia
depletion, but microglia “paralysis” whereby these cells are unable
to proliferate or become “activated” (35). However, administrating
GCV i.c.v. via an osmotic pump causes 90% depletion after two
weeks (36).

CX3CR1CreERDTR
mice

Long lived CX3CR1+

cells (microglia, and
most likely BAMs)

Repopulation in 5 days (23)
Incomplete depletion—20% of microglia
remained (23). Although Parkhurst et al.
(37) showed a 99% depletion rate.
Astrogliosis and “massive” production of
cytokine and chemokines (cytokine
storm) (23).
Mice showed impaired learning and
dendritic spine elimination (37)

Mice expressing Cre-recombinase (Cre-ER) under the CX3CR1
promoter were crossed with iDTR animals. Tamoxifen (TAM)
administration causes the nuclear translocation of the CreER
fusion protein resulting in cre-mediated recombination and the
expression of the diphtheria toxin receptor (DTR) on CX3CR1+

cells. Nuclear translocation of the CreER fusion protein is transient
and lost shortly after TAM treatment in short-lived CX3CR1+ cells
that are readily renewed in the BM via HSC. Long-lived CX3CR1+

cells express DTR, thus after systemic administration of diphtheria
toxin (DTx), which can pass through the BBB, these cells are
ablated. This system does not require the generation of a BM
chimera and thus avoids the non-physiological effects observed

(Continued)
Frontiers in Immunology | www.
frontiersin.org
 4
 December 2020 | Volume 11 | Article 600822

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Spiteri et al. Myeloid Cells in Neuroinflammation
Embryonic Brain
As microglia seed the brain during early embryogenesis, they
display an “activated,” ameboid morphology as they proliferate
and migrate throughout the CNS (48, 49). Upon CNS
maturation, microglia become more sessile and adopt a highly
ramified morphology (49). The importance of microglia to
embryonic development in the CNS has been shown in several
depletion models, with ablation of these cells causing long term
effects on normal brain functioning. For example, the absence of
embryonic microglial progenitors caused defects in dopamine
innervation and cortical networks (50), whilst neuronal survival
was reduced in CX3CR1-deficient and microglia-ablated CD11b-
DTR mice, arguably from the absence of CX3CR1-dependent
production of neurotrophic insulin-like growth factor-1 (IGF-1)
(51). Absence of microglia in mice homozygous for the null
mutation in the CSF-1 receptor (Csf1r−/−) revealed a disruption to
brain morphology and neuronal density, as well as significantly
affecting total astrocyte and oligodendrocyte numbers (52).
Further, depletion of microglia using PLX5622 resulted in sex-
specific behavior effects, with female mice developing long-term
hyperactivity and anxiolytic-like behavior (46).

In the developing brain, microglia shape neural circuitry by:
1) inducing neuronal cell death via the release of superoxide ions
(53, 54), 2) clearing viable (55) and apoptotic neural progenitors
(56), 3) promoting neurogenesis via the release of IL-1b, IL-6,
TNF, and IFN-g (57–60), and 4) paring down supernumerary
synapses, whilst strengthening functional ones (61–63). A
Frontiers in Immunology | www.frontiersin.org 5
number of mechanisms have been identified which contribute
to microglial-meditated synapse modulation. Complement
cascade components, C1q and C3, localized to neuronal
synapses, promote microglial synapse engulfment (60, 64),
while CD47 localized to neurons provides a “don’t eat me
signal” to microglia that express CD172a (SIRPa), thereby
preventing aberrant synaptic phagocytosis (65). Serotonin
signaling (66), triggering receptor expressed on myeloid cells 2
(TREM2)-dependent functions (67), the CX3CR1-CX3CL1 axis
(62) and microglial interaction with neuronal-expressed major
histocompatibility complex (MHC) class I (68–71) are also
thought to be involved in microglial-mediated synapse
elimination. Microglia express CX3CR1 (62), TREM2 (67), and
a serotonin receptor (5-HT2B) (66), with the latter enabling their
movement towards serotonin. Knockout of these receptors
results in defects in synaptic refinement (CX3CR1 and
TREM2) or the organization of retinal projections (5-HT2B).
Although microglia can prune superfluous synapses, they can
also promote the formation of new ones (37, 72).

Beyond shaping neuronal circuitry, microglia are also
required for vascularization, myelination, and gliogenesis.
Microglia are recruited to growing vessels to promote vascular
network formation in the retina (73, 74) and this is via release of
angiogenic factors other than vascular endothelial growth factor–
A (74). CD11c+ microglia, which expand in the postnatal brain,
express a neurosupportive gene signature and IGF-1 and are
required for myelinogenesis during development (75). More
TABLE 1 | Continued

Depletion method Cell type targeted by
method of depletion

Drawbacks Mechanism of action

with whole body irradiation, including BBB disruption and
peripheral immune cell infiltration into the CNS.

Sall1CreERCsf1rfl/fl

mice
Microglia Incomplete microglia ablation. 70–90%

of microglia are deleted in various brain
regions (38).
Requires mouse breeding and
generation of transgenic animals.
Tamoxifen may result in an
immunomodulatory phenotype in mice
(34).

TAM administration induces the nuclear translocation of the CreER
fusion protein in Sall1+ cells. Cre-recombinase then drives the
deletion of floxed Csf1r, causing the ablation of microglia (38).
Sall1 is thought to be a microglia-specific marker, thus this
depletion method is very specific to microglia.

Pharmacological inhibition of
CD115 (CSF1R) using
PLX3397

Microglia, HSC,
osteoclasts,
macrophages, and
mast cells

Inhibits three other kinases including
FLT3, PDGFR, and KIT (39–41).
Repopulation once the drug is
withdrawn
Broad myelosuppression and
astrogliosis (34).

PLX3397 is a CD115 (CSFIR) inhibitor that is typically formulating
into a rodent chow and administered orally (19). CD115 signaling
is required for microglial development and maintenance, thus
inhibition of this receptor results in microglial ablation. Unlike all the
other depletion methods listed above, microglia can be targeted
without the breeding of transgenic animals, or the use of irradiation
to achieve chimerism or the use of an invasive procedure which
compromises the BBB. PLX3397, causes 50% microglia depletion
within 3 days, and >99% depletion after 21 days of treatment (at
290 ppm) (19). At 75 ppm PLX3357 causes CSF1R inhibition
without ablating microglia (21).

Pharmacological inhibition of
CD115 (CSF1R) using
PLX5622

Microglia Rapid repopulation after the drug is
withdrawn.
Incomplete microglia depletion (21)
Affects haemopoiesis and macrophage
phenotype and function in the spleen,
BM and blood (42–44)

PLX5622, like PLX3397 is a CD115 (CSFIR) inhibitor which is also
typically formulated into a rodent chow to be administered orally.
Both PLX3397 and PLX5622 have the same potency for inhibiting
CD115. PLX5622, however, has a 20-fold selectivity for CD115
over other kinases (KIT and FLT3) and a ~15% increase in BBB
penetrance (has a lower molecular weight, higher lipophilicity, and
better cell permeability), compared to PLX3397 (21) and can yield
90% microglia depletion within 5 days (at 1,200 ppm in chow).
December 2020 | Volume 11 | Article 600822
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recently, a new role in gliogenesis has been identified for
microglia at the later embryonic stages of E15.5 and E17.5
(76). A subpopulation of amoeboid microglia lining the tuberal
hypothalamic third ventricle have been found to influence glial
precursors via chemokine signaling, namely, CCL2 and CXCL10,
which are required for the migration and maturation of
oligodendrocytes, but not astrocytes (76). An additional unique
microglial subset (i.e. proliferative-region associated microglia or
PAM) enriched in metabolic genes and found in the first post-
natal week in the corpus callosum and cerebellar white matter
were found to be specialized in the clearance of newly formed
oligodendrocytes (77).

Adult Brain
In the adult brain, microglia tile the parenchyma in a grid-like
fashion, displaying a ramified morphology with static somata
and “never-resting” cytoplasmic extensions (78). These
extensions survey the CNS microenvironment using their
“sensome” to identify and respond to perturbations that may
threaten homeostasis (79). The TWIK-related Halothane-
Inhibited K+ channel, a tonically active potassium channel
expressed by microglia, regulates the ramification and
movement of microglial processes to support homeostatic
surveillance of CNS activity (80). The microglial “sensome”
comprises microglia-expressed genes encoding receptors and
signaling molecules that enable detection of pathogen invasion,
cytokines, pH alterations, metabolites, ATP, and adenosine.
These include toll-like receptors (Tlr2 and Tlr7), chemokine
receptors (Ccr5, Cx3cr1, Cxcr4, and Cxcr2), Interferon-induced
transmembrane proteins (Ifitm2, Ifitm3, and Ifitm6), Fc receptors
(Fcer1g and Fcgr3), siglecs (SiglecH and Siglec3/Cd33), and
purinergic receptors (P2rx4, P2rx7, P2ry12, P2ry13, and P2ry6)
(79). P2RY12 and SiglecH are microglia-specific in the CNS, with
P2RY12 importantly involved in chemotaxis towards neuronal
and CNS damage via the detection of ATP or ADP (81, 82). In
the aging brain, 81% of these genes are downregulated, with
some genes, including Cxcr4, Cxcr2, Tlr2, Ifitm2, Ifitm3, Ifitm6,
and P2rx4, being upregulated (79). This is thought to contribute
to age-related microglial neurotoxicity (79) and potentially
reduced microglial phagocytic activity that occurs with aging
(83). Microglia also display an increased expression of CD11b,
MHC-II, CD68, and CD86 proteins and expression of Tnf, Il-6,
and Il-1b RNA in the aging brain, collectively suggesting an
enhanced inflammatory profile and reduced homeostatic
function with age (84).

The maintenance of a surveillant microglial state under
physiological conditions is ultimately likely to be a vectorial
outcome of a number of signals, including neuronal and astrocyte-
derived factors, microglia-expressed CX3CR1, CD200 receptor
(CD200R), and CD172a, which dampen microglial activity
through binding their respective ligands, CX3CL1 (expressed by
neurons), CD200 (expressed by neurons, astrocytes, and
oligodendrocytes), and CD47 (expressed ubiquitously, including
on neurons) (85), as well as through increased expression of
microRNA-124 (86) and TGF-b signaling (25).

Besides tissue surveillance, microglia are involved in synapse
formation and learning in the adult CNS via the secretion of
Frontiers in Immunology | www.frontiersin.org 6
brain-derived neurotropic factor (37). Microglia are also required
for synaptic pruning, with the purine receptor P2RY12 important
for synaptic plasticity in the visual cortex of the adolescent CNS
(87). In contrast, the CX3CR1-CX3CL1 (62) and CR3/CD11b (60)
axis appear to be more critical during development for microglial-
mediated synaptic pruning. Microglia also support adult
neurogenesis, with a unique population of microglia expressing
low levels of purine receptors in the subventricular zone and
rostral migratory stream required for survival and migration of
newly generated neuroblasts (88).

The role of microglia as phagocytes also plays a major part in
homeostasis, enabling clearance of debris, apoptotic, and surplus
cells (89) to maintain optimal neural function. Microglial-
expressed TAM receptor kinases, MER Proto-Oncogene
Tyrosine Kinase (MerTK), and Axl have revealed an important
role for neuronal progenitor cell clearance (90), which may be
required for efficient neurogenesis, whereas CD11b, TREM2,
TIM-4, and BAI1 appear to be required for the phagocytosis of
apoptotic neurons (53, 91, 92). Microglia can recognize a number
of “eat-me” signals, including phosphatidylserine, components
of the complement system, thrombospondin and uridine 5′-
diphosphate (93), which stimulate phagocytosis (68, 76, 93).
Although microglia are the principle phagocytes in the CNS,
other glia, including oligodendrocytes and astrocytes, are also
thought to contribute to this function (94, 95).
MICROGLIAL “ACTIVATION”

Microglial “activation” refers to a reversible, transient state,
defined by a morphological and functional phenotype distinct
from homeostatic microglia. Before the advent of in vivo
imaging, microglia in steady state homeostasis were classified
as “resting.” However, it is now clear that although the cell soma
may remain in one site, the processes of each microglia
continuously explore the microenvironment in a highly
dynamic manner (78).

In the steady state, microglia have a small cell soma with long,
thin hyper-ramified cytoplasmic processes. On detection of a
noxious signal (toxins, pathogens, endogenous proteins) or
neuronal damage, microglia undergo a rapid morphological
transition, retracting their processes to become shorter and
thicker, acquiring a more ameboid morphology, and
undergoing hypertrophy, thus increasing their somatic surface
area. In addition to these morphological adaptations, often
referred to as microgliosis, microglia undergo transcriptional
and phenotypic changes in a context-dependent manner. This
reactive phenotype is associated with changes to motile,
proliferative, and phagocytic functions (96, 97) and invites
comparison with microglia that populate the early CNS.
Historically, alterations in microglial morphology and/or the
upregulation of CD45, Iba1, Griffonia simplicifolia-lectin, and
MHC-II were the first reliable indicators of microglial
“activation” that implicated microglia in CNS pathology.

Intermediate morphological activated states of microglia have
also been identified, which are described as “rod-like,” “hyper-
ramified,” “bi-polar,” and “bushy” (98). However, it is clear that
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microglial form and function do not necessarily correspond, as
microglia are observed to display both classic “resting” and
“activated” morphologies in human CNS inflammation and
neurological and psychiatr ic disease (99) . Despite
morphological measurements (cell somatic area, dendrite
length and number, total cell area, and parenchymal cell
density) being the primary technique used to study these cells
for decades, there are no standard parameters that link these
forms to function and more detailed in situ molecular and
protein profiling techniques, paired with imaging will be
required to fill this gap. The Hyperion is an imaging mass
cytometer and one of the first multiplexed imaging
technologies developed which theoretically enables the
detection of >100 different metal-conjugated markers
(currently 49) to enable spatial resolution of protein expression
in tissue sections (100). Other competing high-dimensional
imaging systems include the CODEX, GeoMx DSP, and the
MACSima by Akoya Biosciences, Nanostring, and Miltenyi
Biotec, respectively. To fully recapitulate the dynamic nature of
these cells in tissues in real-time, in vivo imaging techniques,
such as intravital microscopy (IVM) can be employed. However,
with the limited number of fluorescent probes and mouse models
available for IVM, correlative imaging, combining data from
fluorescence, light and electron microscopic modalities provide
additional structure-function information (101, 102).

Advances in high-dimensional and single-cell molecular and
immune profiling technologies have effectively invalidated
classical microglial characterization approaches. The descriptive
“resting” versus “activated” and “M1” versus “M2” nomenclature
oversimplified microglial behavior, suggesting they exhibited
dichotomous “yin-yang”-like functions. These concepts have
been rejected by the field (103) and are being replaced by
multi-dimensional activation states, in which function is
programmed and then finely tuned according to the prevailing
microenvironment, in a context-, sex-, region-, developmental-,
disease-, and even disease stage-specific manner. It is still accepted
that microglia have pro-inflammatory (“M1”) and anti-
inflammatory (“M2”) functions, but these are now understood
to co-exist, with microglia capable of co-expressing M1-like and
M2-like markers in a context-dependent manner. Thus “disease-
associated” microglia (DAMs) in a mouse model of Alzheimer’s
disease (104), “microglial neurodegenerative” phenotype
(MGnD) in mouse models of AD and ALS (105) and disease-
associated microglia (daMG1-4) in experimental autoimmune
encephalomyelitis (EAE) (106) are superseding earlier and more
simplistic terms, to incorporate the idea that microglia can have
unique molecular and/or immunological profiles and/or functions
in different disease contexts.
ORIGIN AND CLASSIFICATION OF
MONOCYTES AND MONOCYTE-DERIVED
CELLS

During certain diseases and/or injuries involving breach of the
BBB, BM-derived monocytes infiltrate the CNS parenchyma and
Frontiers in Immunology | www.frontiersin.org 7
intermingle with the resident microglial population. Despite
often close phenotypic similarities, these infiltrating myeloid
cells are developmentally distinct from microglia and give rise
to effector cells whose functions are presumably not fulfilled by
their resident counterparts. In contrast to the YS-origin of
microglia, monocytes are hematopoietic cells that originate in
the BM. In adulthood, these cells are derived from definitive HSC
and mature from monocyte-dendritic cell (MDP) precursors,
common monocyte progenitors (cMoP), and granulocyte and
macrophage progenitors (GMP) through a series of sequential
differentiation steps in the BM (107, 108). The fate of these
monocytes is specified by the expression of transcription factors
PU.1, IRF8, Klf4, and GATA2 (3, 109–111), and their
differentiation, survival, and proliferation is regulated by the
growth factor receptor CD115 and its ligand M-CSF (112–114).
Following their generation in the BM, monocytes are released
into the peripheral circulation.

Circulating monocytes are composed of multiple subsets that
differ in their phenotype, size, transcriptional profiles, and
migratory properties. These distinct monocyte subsets are
characterized by their differential expression of CD14 and
CD16 in humans (115) and by the surface marker combination
Ly6C, CD62L, CD43, and the chemokine receptors CX3CR1 and
C-C chemokine receptor 2 (CCR2) in mice (116) (Figure 1). In
humans, 80–90% of the monocyte pool is composed of
CD14+CD16− classical monocytes with the remaining 10–20%
shared by CD14+CD16+ intermediate and CD14loCD16+ non-
classical monocytes (115). The generation of a mouse strain in
which a GFP reporter was engineered into the CX3CR1 locus
(CX3CR1GFP mice) (117) enabled the discovery of two
corresponding monocyte subsets (116). In mice, “classical”
monocytes (also known as “inflammatory monocytes”) are
characterized by their expression of surface markers Ly6Chi,
CX3CR1int, CCR2+, CD62L+, and CD43lo, whereas “non-
classical” monocytes (also referred to as “patrolling
monocytes”) are defined as Ly6Clo, CX3CR1hi, CCR2lo,
CD62L−, and CD43+ cells (116, 118, 119). Transcriptional
comparison between mouse and human monocyte subsets
correlated Ly6Chi monocytes with classical CD14+CD16-

monocytes and Ly6Clo monocytes with non-classical
CD14loCD16+ monocytes (120).

As a component of the mononuclear phagocyte system,
circulating monocytes were historically considered to be the
definitive precursors of tissue-resident macrophages and
dendritic cells (DC) (121). However, recent studies have
demonstrated that most tissue-resident macrophages are of
embryonic origin (122, 123), although conventional DCs have
a distinct BM precursor (124). Today, monocytes are viewed as a
distinctive cell type with diverse functions. In the steady state,
Ly6C+ monocytes can traffic to various tissues and maintain their
monocytic transcriptional profile (119), but they can also give
rise to a proportion of tissue-resident myeloid cells (123) or
transition into Ly6Clo monocytes (123, 125, 126). During
inflammation, monocytes can give rise to macrophages
(monocyte-derived macrophages or MDMs) and DCs
(monocyte-derived DC or moDCs) with non-redundant
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functions that often cannot be fulfilled by their resident
counterparts (126). Collectively, these distinctive cell types
have been classified according to their monocytic origin as
“monocyte-derived cells” (MDC) (127) (Figure 1).

Under homeostatic conditions, Ly6Chi monocyte progeny are
present in almost all tissues, where they constitute a minor
fraction of the tissue-resident macrophage pool (119, 128–134).
The CNS parenchyma is a notable exception, where little to no
monocyte immigration is observed in the steady state (5, 12,
135), although a proportion of choroid plexus and dural
macrophages are evidently replenished by BM-derived
monocytes during homeostasis (15, 136).
ONTOGENY AND DIFFERENTIATION OF
MONOCYTE-DERIVED CELLS IN THE
INFLAMED CNS

In contrast to homeostasis, during inflammation Ly6Chi

monocytes may rapidly infiltrate the diseased CNS, usually in a
CCR2-dependent manner. This may be facilitated by
compromise of the BBB, but not necessarily (30, 137).
Although monocyte recruitment and infiltration is well
described in the acutely diseased brain, the behavior of these
cells is more controversial in chronic, low grade inflammation
observed in aging and stress. Thus, despite increased BBB
permeability with age, monocyte infiltration does not
inevitably accompany healthy aging (138). On the other hand,
inflammation associated with psychosocial stress may promote
monocyte infiltration into the CNS (139, 140), although this has
been contested (141, 142).

Interactions between monocytes and CNS borders critically
affect their recruitment, infiltration, and differentiation during
neuroinflammation. The different ports of entry into the CNS
have been implicated in shaping either a protective or pathogenic
monocyte response. For instance, the differential expression of
CX3CR1 and CCR2 ligands may selectively recruit either “pro-
inflammatory” (Ly6Ch iCCR2+) or “pro-resolut ion”
(Ly6CloCX3CR1hi) monocyte-derived cells. This is supported
by experiments showing that Ly6CloCX3CR1hi monocytes,
which aid recovery from spinal cord injury, entered the CNS
via the choroid plexus and migrated to the injury site through the
central canal in an a4-integrin/vascular cell adhesion molecule-
1- and CD73-dependent manner. In contrast, Ly6ChiCCR2+ pro-
inflammatory monocytes entered the CNS via the parenchymal
blood vasculature in a CCL2-dependent manner and mediated
secondary injury (143). Although Ly6Chi and Ly6Clo monocytes
are thought to be independently recruited to the CNS, the
transition of Ly6Chi monocytes to Ly6Clo monocytes has been
observed during both homeostasis and inflammation, and the
recruitment of Ly6Clo monocytes is at least partially CCR2-
dependent (123, 125, 126). It is possible that the transition from
Ly6Chi to Ly6Clo monocytes is influenced by different CNS entry
points, such that monocytes traversing through choroid plexus
and leptomeninges encounter st imuli driving their
Frontiers in Immunology | www.frontiersin.org 8
differentiation into Ly6Clo monocytes, whereas those traversing
through the parenchymal vasculature remain undifferentiated
inflammatory monocytes. Alternatively, the endothelium may
better enable the emigration of Ly6Chi cells from the CNS
parenchymal vasculature (144). Future studies investigating
how endogenous macrophages and/or endothelium at various
CNS-entry points may shape the phenotypic and functional
profiles of CNS-infiltrating Ly6Chi monocytes in the mature
animal are needed to address these gaps. Furthermore, what
changes occur during development of the BBB that enable
differential diapedesis during maturation of the adaptive
immune system have yet to be fully elucidated.

Once in the CNS parenchyma, local microenvironmental cues
can shape MDMs to adopt a phenotype similar to those of CNS-
resident macrophages. Using CCR2-red fluorescent reporter
(RFP) mice, a recent study found CNS-infiltrating CCR2+CD206+

monocyte-derived cells localized beside CCR2-CD206+ resident
macrophages in the leptomeninges and perivascular space,
demonstrating these cells can gain phenotypic markers
characteristic of CNS-resident myeloid cells (106). Similarly, CNS-
infiltrating monocytes adopt a phenotype indistinguishable from
microglia in the acute phase of EAE, although these cells do not
appear to integrate into the CNS-resident microglia population
following the resolution of inflammation (145, 146).

Emergency conditions may additionally generate
ontogenically distinct monocyte subsets whose presence is
restricted to inflammatory conditions. As severe inflammation
requires the constant generation and mobilization of monocytes
to the inflamed brain, emergency monopoiesis can generate
GMP-, MDP-, and cMoP-derived monocytes that appear
under inflammatory conditions (108) and may perhaps bypass
the canonical Ly6C+ monocyte intermediate (147). In the
inflamed brain, such populations may include Cxcl10+ and
Saa3+ monocytes, the former having been identified in EAE
and possibly cerebral malaria (147, 148). Whether these
“emergency” monocyte populations are functionally distinct
from Ly6Chi monocyte-derived cells is unclear, although recent
evidence suggests these subsets may differentially contribute to
pathology (147). Further fate-mapping and functional studies
investigating emergency monocyte populations in the inflamed
CNS will be needed to assess whether these cells are
ontogenically and functionally distinct from those derived
from Ly6Chi monocytes during neuroinflammation. Taken
together, monocytes represent a particular unique, plastic cell
type equipped with a diverse differential program that enables
their context-dependent effector functions upon entry into
the CNS.
IDENTIFYING MICROGLIA IN THE
HOMOEOSTATIC AND INFLAMED BRAIN

Studying microglial behavior in the brain is difficult, even under
homeostatic conditions. Separating microglial functions from
other neuroglial or peripherally derived immune cell responses is
challenged firstly by the difficulty of culturing adult murine
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microglia (149) and secondly, by their tendency to alter their
transcriptome ex vivo. Human and mouse microglia lose their in
vivo transcriptional profile upon isolation, with significant
differences in mRNA signatures between recently isolated
microglia and in vitro-cultured microglia (25, 150), although
the in vivo profile may be restored when cells are put back into an
intact brain (151). This emphasizes the likely need for interaction
with other CNS cell types for “normalcy” and it is likely that loss
of environmental cues remodel the regulatory milieu in vitro,
inducing substantial changes in microglial gene expression (150).
Culturing mouse and human microglia for only 6 h induced
upregulation of genes related to acute inflammatory response
and stress and downregulation of genes associated with immune
functions, as well as blood vessel and brain development (150).
Although culturing conditions required to maintain the in vivo
microglial transcriptome are unknown, brain-specific signals are
almost certainly required, currently limiting the interpretation of
in vitro observations. Our growing understanding of the
inextricable importance of the brain microenvironment in
instructing microglial phenotype and behavior thus drives an
increasing emphasis on work in vivo.

In the homeostatic brain, microglia are easily identifiable
from other cells in the CNS (see Table 2 for a list of microglial
phenotypes identified in the adult murine brain in steady state).
Microglia comprise the largest myeloid population in the CNS
and can be identified using imaging or single-cell cytometry
systems with one or two of a wide range of phenotypic and/or
functional markers, e.g., CD45, CX3CR1, CD11b, F4/80, CD64,
CD68, transmembrane protein 119 (TMEM119), purinergic
receptor P2Y, G-protein-coupled 12 (P2RY12), CD115 (CSF-
1R), CD200R, CD172a (SIRPa), CD317, MerTK, 4D4,
lymphocyte antigen 86 (LY86), secreted protein acidic and rich
in cysteine (SPARC), CD162, and Fc receptor-like S (FCRLS)
(106, 136, 146, 153–157) (Figure 1 and Table 2). Using flow,
mass, and spectral cytometry, murine and human homeostatic
microglia are typically identified as CD45loCD11b+ (30, 154,
158). Non-parenchymal brain macrophages, i.e., dural,
meningeal, perivascular, and choroid plexus macrophages,
collectively called CNS- or border-associated macrophages
(CAMS or BAMS) (159–161), have a higher expression of
CD45 (CD11b+CD45int) and/or do not express microglia-
specific markers, making these cells distinguishable from
microglia (136). By immunohistochemical techniques,
microglia are commonly recognized by their immunoreactivity
to Iba1, CD11b, CD68, and GS-lectin. Moreover, the highly
ramified morphology of microglia makes them readily
distinguishable from other myeloid cells in the brain, which
are more amoeboid in shape (162).

H ow e v e r , i d e n t i fi c a t i o n o f m i c r o g l i a u s i n g
immunohistochemistry or cytometry becomes increasingly
complicated during neuroinflammation with the infiltration of
BM-derived monocytes that adopt a phenotype and morphology
similar to reactive microglia. Infiltration of MDMs into the CNS
is a hallmark of a number of acute and chronic neuropathologies,
including autoimmunity, neurodegeneration, stroke, traumatic
injury, and infection, with each disease context associated with a
Frontiers in Immunology | www.frontiersin.org 9
varying degree of CNS infiltration, inflammation, as well as
differential MDM and microglial phenotype and function.

CNS-infiltrating MDMs express molecular markers common
to microglia, including CX3CR1, CD11b, F4/80, CD45, CD64,
CD115, and Iba1, to name a few (154). On the other hand, these
cells express higher amounts of Ly6C, CD44, CD45, CD49d,
CD11a, CXCR4, and CCR2 and have a lower expression of
CX3CR1 (30, 153, 154, 163–165). These markers, however, can
be downregulated over the course of disease. Typically, MDMs
are identified as CD11b+CD45hi. However, since BAMs are also
CD45int/hi and “activated” microglia upregulate CD45, this
gating system fails to accurately discriminate between these
cells. This is particularly true in severe inflammatory
conditions, such as West Nile virus (WNV) encephalitis, where
there is substantial and sustained infiltration of MDMs into the
CNS (30). Thus, the ability to resolve populations during
neuroinflammation has historically been impossible without
TABLE 2 | Genes and proteins expressed by microglia in steady state.

Transcriptome Two microglia subsets, hMG1 and hMG2, both
expressing: Bhlhe41, Gpr34, Hexb, Olfml3, P2ry12,
P2ry13, Sall1, Serpine2, Siglech, Sparc, Cx3cr1, Fcr1,
Csfr, Csf1, C1qc, C1qb, C1qa, Tmem119, Trem2, and
Slc2a5
(hMG1 express genes related to the ERK1 and ERK2
cascade as well as responses to IFN-g)
[Single-cell RNAseq, (106)]

Hexb, Cst3, Cx3cr1, Ctsd, Csf1r, Ctss, Sparc, Tmsb4x,
P2ry12, C1qa, and C1qb
[Single-cell RNAseq, (104)]

Fcrls, Trem2, Hexb, Olfml3, Gpr34, Tmem119, P2ry12,
Siglech, Golm1, Sall1, Adgrg1, Slc2a5, Serpine2, Sparc,
Adamts1, Itgam, Aif1, Cx3cr1, Csf1r, Cd68, Adgre1,
Fcgr1, and MerTK
[Single-cell RNAseq (136)]

Proteome CD45+CD11b+F4/80+CD64+MerTK+CD24+ CD172a+

[CyTOF (152)].

Two microglia subsets, A and B, both expressing:
CD45+CD11b+CD317+MHC-II-

CD88+MHCI+MerTK+4D4+FCRLS+

Unique expression profiles between the microglia
subsets:
Pop A: CD39lowCD86−

Pop B: CD39hiCD86+

[CYTOF (146)]

CD162+P2RY12+TMEM119+Ly86+Iba-1+ SPARC+

[IHC (106)]

Three microglia subsets, 1–3, all expressing:
CD45lowCX3CR1+CD11b+F4/80low/−

Unique expression profiles between the three
microglia subsets:
Subset 1: CD14+TCR-b+

Subset 2: CXCR4+CCR5+CD115+

(Could represent a more motile population)
Subset 3: MHCII+

(Could be of peripheral origin)
[CyTOF (153)]a

CD45+CD64hiCD11clowMMRlowMHCIIlowCD11bhiCLEC12Alow

NRP1lowCD63low[Flow cytometry (136)]
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recourse to adoptive transfers, parabiosis, or chimeric animals
made by lethal gamma-irradiation and BM reconstitution.
Although identification of resident and infiltrating cells
becomes clearer using such techniques, the non-physiological
conditions may confound the accurate interpretation of results.
TOOLS USED TO DISCRIMINATE
RESIDENT AND INFILTRATING MYELOID
CELLS IN THE INFLAMED BRAIN

Recent advances in single-cell sequencing technologies has shed
light on some uniquely expressed microglial genes including
Fcrls, P2ry12 (25), Spalt-like transcription factor 1 (SALL1) (38),
sialic acid-binding immunoglobulin-type lectin H (Siglec-H), and
Tmem119 (166). The development of RNA primers and
antibodies against these “microglia-specific” markers have
substantially aided in the resolution of myeloid populations in
the CNS, without the need for more complicated experimental
manipulation. Transgenic animals expressing fluorescent
reporters that identify microglia, or Cre-recombinase and/or
HSV-TK under “microglia-specific” promoters that can be
used to deplete microglia, have also been an important
advance on the use of CX3CR1 or CD11b promoters, which
also act on myeloid cells in the periphery.

However, the discovery that microglia-specific markers
P 2RY 1 2 a n d TMEM1 1 9 a r e d own r e g u l a t e d i n
neurodegeneration and neuroinflammation (105, 106, 167), has
reduced their value for identification of microglia in such models.
Nonetheless, the expression of these markers appears to be
model-dependent and therefore more useful in specific
diseased-states. P2RY12 was upregulated in models of
pseudorabies virus encephalitis (168) and neuropathic pain
(169), whilst P2RY12 (170) and TMEM119 (163, 171) were
stably expressed during stroke. However, both markers have
been shown to be expressed by peripherally-derived myeloid cells
in the CNS (9, 163), with TMEM119 also expressed by other
non-CNS cell types (172). TMEM119, originally shown to be
expressed in mouse osteoblasts, is additionally expressed in
human bone tissue, DCs, osteosarcoma, and lymphoid tissue
(173, 174). FCRLS, also previously thought to be microglia-
specific, has been observed in all CNS-associated macrophage
subsets (106). Notwithstanding these limitations, these markers
are still specific for microglia in the homeostatic CNS and will
likely remain important tools for elucidating function.

Another major advance in microglial biology has been the
discovery of PLX5622 (Plexxikon Inc.) (21), a small molecule
CD115 inhibitor that penetrates the BBB and depletes microglia
in as little as three days (175, 176) (Table 1). Other studies have
reported near to complete microglial depletion within 7, 14, or 21
days. Not surprisingly, other cells dependent on CD115 signaling
are also modulated by PLX5622 treatment, including
lymphocytes and myeloid cells in the spleen, blood and BM
(42). Moreover, some microglia are resistant to depletion even
after prolonged treatment, making this approach unsuitable for
Frontiers in Immunology | www.frontiersin.org 10
studying all microglia subtypes (21). Despite these limitations,
PLX5622 is a major improvement from previously used
depletion methods including i.c.v.-injected clodronate
liposomes, PLX3397 (also a CD115 inhibitor), CD11b-HSVTK,
and CX3CR1CreERDTR mice, all of which may non-specifically
target other leukocytes, with some methods taking longer for
microglial ablation to occur or associated with incomplete
microglial depletion and/or toxicity, off-target effects, or BBB
damage (34) (Table 1). Moreover, PLX5622, unlike PLX3397,
has a 20-fold greater selectivity for CD115 than for other kinases,
as well as increased BBB penetration (21).

Although PLX5622 has become the gold standard microglial
depletion method, CNS changes that subsequently occur in the
absence of microglia and/or in the presence of dead microglia,
limit the accurate interpretation of their cellular functions in
vivo. In vivo fate-mapping models used to track peripheral or
resident cells have largely overcome this limitation. The
development of site-specific recombinases and transgenic mice,
for instance, have provided tools to genetically mark cell lineages
and their descendants, enabling the mapping of cell interaction
and migration, lineage segregation and proliferation (177–179).
Thus, unlike the aforementioned methodologies used to study
microglial functions, fate-mapping provides a targeted and non-
invasive approach that can be used during development and
adulthood. Further, in contrast to conventional reporter strains
whereby mice express fluorescent reporters under specific
promoters (e.g. CX3CR1GFP/+ or CCR2 GFP/+ or CX3CR1GFP/+;
CCR2 GFP/+ mice), fate-mapping does not require markers to be
stably expressed by cells. Thus, enabling the identification of cells
following the downregulation of relevant genetic markers. Fate-
mapping approaches have been used in a number of
neuroinflammatory models to distinguish resident from
infiltrating myeloid cells (9, 163). For example, using
Cxcr4CreER/Wt; R26CAG-LSL-tdT mice in a stroke model, HSC-
derived myeloid cells were traceable by tdTomato (tdT)
fluorescence (163). Moreover, the ubiquitously active CAG
promoter in R26CAG-LSL-tdT enabled MDMs to be traced,
despite their downregulation of CXCR4 in the CNS during
stroke. A similar approach was used in neonatal stroke and
development using bi-transgenic CCR2-CreERtg/+; R26R-
EGFPtg/+ mice, where Ly6Chi and Ly6Clo cells could be
mapped despite downregulation of CCR2 (9). Although fate-
mapping is a powerful approach that can be used to study
microglial functions in-vivo, these models can be time-
consuming and costly to generate, as well as requiring cell-
specific markers to target particular cell types.

The development of high-parameter cytometry systems,
including mass and spectral cytometry have further aided the
necessary discrimination of populations without genetic
manipulation. With a generally enhanced signal sensitivity,
spectral cytometers such as the Cytek® Aurora can enable
more accurate separation of cells which may differ in their
relative expression of single and/or dim markers. The ability to
measure a greater number of fluorescent signals in one assay and
the speed of acquisition gives spectral cytometry a significant
advantage over conventional fluorescence flow and mass
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cytometry (180). Nevertheless, high-dimensional immune
profi l ing by these modal i t ies , in conjunction with
dimensionality-reduction algorithms, such as t-distributed
stochastic neighbor embedding (tSNE) and uniform manifold
approximation (UMAP), which enable the visualization of high-
dimensional data on a 2D plot, provides important tools for
more detailed population identification and separation (181–
184). The use of unbiased clustering and dimensionality-
reduction approaches assist in the identification of
subpopulations with a range of differentially expressed
markers. The development of novel gating strategies arising
from this separation further enable cell types to be sorted for
more detailed in vitro or in vivo functional or RNA analysis. In
EAE, for instance, three microglial subpopulations were
identified with mass cytometry by two independent groups
(106, 146), with one of these studies also identifying five MDM
subsets (146). Understanding the protective or pathogenic
functions of these cell types will inform targeted cell-specific
therapies in these diseases. Taken together, the development of
new tools to resolve myeloid populations in the CNS has
substantially enhanced our understanding of their functions
and heterogeneity in health and disease.
SHOES TOO BIG TO FILL? CAN
MONOCYTE-DERIVED MACROPHAGES
ACQUIRE A MICROGLIAL IDENTITY?

Considering microglia seed the brain during early embryogenesis,
where they participate in CNS development, support neuronal
networks, and adopt memory-like functions as they persist
throughout adulthood, is it possible for MDMs, with a different
origin, epigenome, and transcriptome, to acquire a “true” or even a
functional microglial identity? Similar to microglia, tissue-resident
Kupffer cells in the liver and alveolar cells in the lung are established
before birth and are subsequently renewed in situ independently of
BM-derived monocytes (7, 132). However, monocytes show
minimal transcriptomic differences with their embryonic
counterparts and can differentiate into both Kupffer cells and
alveolar macrophages (185–187), but evidently not into microglia.
Peripheral monocytes can populate the CNS, but they differ
phenotypically, have a non-redundant role and a different
molecular signature from embryonically seeded microglia (25,
188). Even after prolonged engraftment in the brain, MDM
responses to lipopolysaccharide challenge, chromatin landscapes
and ~2000 transcripts remained different from resident microglia
(189). Engrafted MDMs did, however, adopt other microglial
characteristics including self-renewal, resistance to g-irradiation
and a ramified morphology (190). In contrast, donor microglial
cells fully adopt the transcriptomic identity of embryonically derived
microglia in microglia-deficient CD115 knockout mice (191). Why
BM-derived myeloid cells only become “microglia-like” in the CNS
is currently unknown, but the EMP origin of microglia and the
unique CNS tissue microenvironment likely plays a critical role
(150, 191).
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In contrast, a small population of microglia are reported to be
derived from BM-derived HSCs during embryogenesis,
suggesting a monocyte to microglia switch (9). This has also
been demonstrated during neonatal stroke using a fate-mapping
model, where invading monocytes became DCs or microglia-like
cells (9). Microglia-like cells were present 62 days post-stroke,
with many exhibiting a ramified morphology, P2RY12 and
TMEM119 immunopositivity and expression of Sall1 mRNA.
In another stroke model, MDMs ectopically placed in the peri
infarct region of Cxcr4 knockout mice became positive for
P2RY12 and TMEM119 (163). In WNV encephalitis models,
Ly6Chi monocytes migrate from the BM to the CNS, where they
assume a phenotype indistinguishable from activated microglia,
with regard to CD45 and CD11b expression (30, 192). Contrary
to the view that microglia-like cells enter the brain only when the
BBB is perturbed, the BBB is only sporadically affected in this
model (30). Some of these peripherally derived monocytes also
became ramified in the parenchyma of the brain (30).

Further investigation is required to understand why infiltrating
MDMs express microglial molecules in the CNS de novo, and the
putative functions of these peripherally derived cells, relative to their
resident counterparts. It is possible that TMEM119 and P2RY12 are
not microglia-specific in the inflamed CNS, or that the
inflammatory milieu in stroke, coupled with the prolonged time
MDMs spend in the CNS, enables them to acquire a microglia-like
phenotype, particularly as the CNS microenvironment ordinarily
defines microglial phenotype and identity (150, 191). The degree of
inflammation may be important; WNV causes a fatal encephalitis
characterized by severe inflammatory monocyte infiltration that
involves the entire CNS (30), whereas models such as EAE or AD,
used to investigate microglial activity, are accompanied only by
localized foci of inflammation and/or much less severe
inflammation overall. As such, the response observed in WNV
may be in stark contrast to what has previously been described. It is
worth reflecting from an evolutionary point of view that the biggest
threat to survival is infection, against which the best defense is the
primed innate and adaptive immune systems. Long-lived animals
are subject to many infections over a lifetime, as well as having an
environmentally increased probability of being infected by the same
pathogenmore than once. As such, it seems reasonable that myeloid
reservoirs in the BM compartment could be recruited to the brain to
perform microglial functions in the interim. Setting up novel
“microglial” networks during a first CNS infection in a high
prevalence environment, despite a possible functional cost, may
be a useful survival strategy for effective early CNS defense by the
innate immune response in the event of novel or recurring future
infections. Irrespective of whether MDMs can become microglia
physiologically, current approaches are being developed with the
intention of engineering these cells for therapeutic use in CNS
disease and will undoubtedly yield further insight into the
developmental plasticity and range of functions in this lineage, as
well as providing additional investigative tools for ongoing study.

Therapeutic ablation of microglia in AD and ALS, where
microglial activity has been shown to enhance disease severity,
has been proposed in conjunction with engraftment of
adoptively transferred myeloid cells (193). However, knowing
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whether transferred myeloid cells will contribute to undesirable
or unexpected adverse effects, due to their inability to mimic
microglial behavior and perhaps fulfil microglial homeostatic
roles, would be important to know. Other studies have attempted
to generate microglia from human induced pluripotent stem cells
in a defined media (194–197) to study human microglial behavior
as well as for therapeutic prospects. Methods used to generate
microglia are reviewed elsewhere (198). However, mRNA analysis
showed that microglia from human induced pluripotent stem cells
exhibited a phenotype similar to in vitro microglia rather than ex
vivo microglia (150). More complex culturing conditions may be
required to induce and maintain a microglial phenotype,
including the use of organoids and co-culturing with glial cells
(including astrocytes and oligodendrocytes). Understanding the
specific gene-environment interactions that shape microglial
phenotypes in different contexts will help inform ways to
generate “microglia” as well as revealing what influences their
phenotypic switch during disease. More recently, the development
of human pluripotent stem cell (hPSC)-based microglia chimeric
mouse brains, in which hPSC-derived cells are engrafted into
neonatal mice, has evidently overcome the limitations of using
cultured microglia to study these cells (199). Single-cell RNA
sequencing data showed that these xenografted microglial cells
resembled human microglia. Considering species-specific
differences between microglia in humans and mice (150), this
model provides a unique opportunity to study the role of human
microglia in the intact brain.
Frontiers in Immunology | www.frontiersin.org 12
Microglia, once considered a bystander of CNS physiology
and pathology, are now in the spotlight of neuroimmune
research. Single-cell protein and RNA sequencing technologies,
in-vivo imaging and lineage-tracing techniques have
substantially improved the delineation of myeloid populations
in the CNS, as well as, our understanding of microglial
physiology, ontogeny, and heterogeneity. This will likely
elucidate their disease-related functions and inform
targeted therapeutics.
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