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a b s t r a c t 

Efavirenz (EFV) is an anti-retroviral drug frequently combined with isoniazid (INH) to treat HIV-1 /
tuberculosis co-infected patients. Both drugs have been associated with idiosyncratic liver injury (DILI),

but combined anti-retroviral and anti-tubercular therapy can increase the risk for DILI as compared to either

drug class alone. Because both EFV and INH have been implicated in targeting mitochondria, we aimed at

exploring whether the two drugs might cause synergistic effects on the electron transport chain. We found

that EFV inhibited complex I activity in isolated mouse liver mitochondria (IC 50 ˜ 30 μM), whereas hydrazine,

a major metabolite of INH generated by acylamidase-mediated hydrolytic cleavage, inhibited complex II

activity (IC 50 ˜ 30 μM). Neither INH alone ( ≤1000 μM) nor EFV alone ( ≤30 μM) was able to induce cell

injury in cultured mouse hepatocytes. However, combined EFV / INH exposure resulted in increased super-

oxide formation and peroxynitrite stress, leading to the opening of the cyclosporine A-insensitive mode of

the mitochondrial permeability transition (mPT), and necrotic cell death. The peroxynitrite scavengers, CBA

or Fe-TMPyP, protected against mPT induction and alleviated cell injury. The acylamidase inhibitor bis - p -

nitrophenyl phosphate prevented cell injury, suggesting that hydrazine greatly contributed to the toxicity.

Methylene blue, a redox-active alternative electron acceptor / donor that bypasses complex I / II, effectively

protected against EFV / INH-induced toxicity. These data demonstrate that, in murine hepatocytes, the mi-

tochondrial electron transport chain is a critical target of combined EFV / INH exposure, and that this drug

combination can lead to peroxynitrite stress-induced mPT and hepatocellular necrosis. These results are

compatible with the concept that underlying silent mitochondrial dysfunction may be a key susceptibility

factor contributing to idiosyncratic drug-induced liver injury. 
c © 2014 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ).
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

An increasing number of therapeutic drugs have been implicated

in targeting mitochondria and causing mitochondrial dysfunction,

which likely contributes to some of the adverse effects and organ

toxicity associated with these drugs [ 1 –4 ]. Specifically, inhibition of

mitochondrial electron transport at one or several sites of the elec-

tron transport chain (ETC) is one common mechanism by which drugs
Abbreviations: 1-ABT, 1-aminobenzotriazole; BNPP, bis-p -nitrophenyl phosphate; 

CBA, coumarin-7-boronic acid; CYP, cytochrome P450; EFV, efavirenz; ETC, electron 

transport chain; Fe-TMPyP, 5,10,15,20-tetrakis( N -methyl-4 ′ -pyridyl)porphyrinato 

iron(III); INH, isoniazid; MB, methylene blue (methylthioninium chloride, 3,7- 

bis(dimethylamino)phenazathionium chloride); NAT, N -acetyltransferase; ROS, reac- 

tive oxygen species. 

* Correspondence to: Department of Pharmaceutical Sciences, University of Con- 

necticut, School of Pharmacy, 69 North Eagleville Road, Unit 3092, Storrs, CT 06269, 

United States of America. 
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can interfere with energy homeostasis and the redox balance in mi-

tochondria [ 5 ]. Minor impairment of ETC function normally does not

entail biologically significant effects, due to the large inherent re-

serve capacity of the mitochondrion, and because of certain func-

tional threshold effects for respiratory complexes I through IV [ 6 –8 ].

However, this may dramatically change in the presence of an inher-

ited or acquired mitochondrial deficiency, which can greatly amplify

superimposed drug effects and severely impair energy production

and mitochondrial function [ 9 ]. For example, underlying pharmaco-

logic or genetic complex I dysfunction has been implicated in aug-

menting and potentiating the mitochondrial and cellular toxicity of

mitochondria-targeting drugs [ 10 –13 ]. 

Consistent with this concept, we have recently demonstrated that

selective inhibition of complex I with rotenone or piericidin A was

able to trigger lethal cell injury induced by otherwise non-toxic con-

centrations of the anti-tubercular drug, isoniazid (INH) in cultured

mouse hepatocytes [ 14 ]. The mechanism of this synergistic effect is
 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 
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ot completely clear, but we have shown that hydrazine, a major hy- 

rolytic metabolite of INH, inhibited mitochondrial complex II and 

aused increased leakage of superoxide from the electron transport 

hain [ 14 ]. The resulting joint inhibition of complexes I and II caused 

assive ATP depletion and necrotic cell death in hepatocytes. 

In an attempt to translate these findings into a clinically more 

elevant situation, we have exposed hepatocytes to a combination 

f efavirenz (EFV) and INH. Efavirenz is an anti-retroviral drug fre- 

uently combined with INH to treat HIV-1 / tuberculosis co-infected 

atients [ 15 , 16 ]. Efavirenz has recently been associated with liver in- 

ury in susceptible patients, and a series of elegant mechanistic studies 

ave revealed that EFV causes mitochondrial stress in murine hepato- 

ytes [ 17 –20 ]. On the other hand, INH has been used therapeutically 

or many decades, and the risk for inducing liver injury in suscep- 

ible patients has been well known [ 21 , 22 ], but the susceptibility 

actors are largely unknown. Interestingly, combined anti-retroviral / 
nti-tubercular therapy significantly increases the risk for developing 

iver injury as compared to anti-retroviral therapy alone [ 23 ], but it is 

ot known whether mitochondrial dysfunction may be involved. The 

im of this study was to explore whether EFV in combination with INH 

ill precipitate cell injury in mouse hepatocytes via joint inhibition of 

he respiratory complexes I and II. Furthermore, we sought to explore 

hether pharmacologic intervention with methylene blue, an alter- 

ative electron carrier that can bypass the proximal ETC, can prevent 

he energy crisis and protect against lethal cell injury associated with 

he mitochondria-targeting drugs. 

aterials and methods 

hemicals 

Isoniazid (INH), efavirenz (EFV), and hydrazine (HzN) were pur- 

hased from Sigma (St. Louis, MO). All chemicals were obtained at the 

ighest grade available. 

nimals 

All animal studies were approved by the Institutional Animal Care 

nd Use Committee at the University of Connecticut. Young adult 

ale C57BL / 6J mice were purchased from the Jackson Laboratory (Bar 

arbor, ME). Prior to use, the mice were acclimatized for > 1 week and 

ept on a 14 / 10-h light / dark cycle under controlled environmental 

onditions. They had free access to mouse chow (Teklad Global Rodent 

iet; Harlan Laboratories, Boston, MA) and water. 

solation of hepatic mitochondria and complexes I and II activity 

easurement 

Mitochondria were isolated from untreated mice according to 

tandard procedures as previously described [ 14 ]. Protein content 

as determined with the BCR protein assay using albumin as the 

eference protein. The mitochondria-enriched fractions were kept at 

80 ◦C until analysis. Complexes I and II activities were determined 

n freeze–thawed (2 × ) mitochondria according to standard methods 

 24 ]. Briefly, complex I was measured as NADH: ubiquinone oxidore- 

uctase activity in 25 mM potassium phosphate buffer containing 

 mM MgCl 2 , pH 7.2, and 2.5 mg / ml BSA, 0.13 mM NADH, 2 μg /
l antimycin A, and 65 μM ubiquinone (Q1). NADH oxidation was 

onitored as decrease in absorbance at 340 nm. Complex II was mea- 

ured as succinate: ubiquinone oxidoreductase activity, linked to the 

rtificial electron acceptor, 2,6-dichlorophenolindophenol (DCPIP), in 

hosphate buffer without BSA, containing 20 mM sodium succinate, 

0 μM DCPIP, 2 μg / ml antimycin A, 2 μg / ml rotenone, and 65 μM 

1. DCPIP reduction was monitored at 600 nm. 
Primary mouse hepatocyte culture and exposure to drugs 

Hepatocytes were isolated from mice by retrograde collagenase 

perfusion, and subsequently cultured in supplemented Williams ’ 

Medium E as described [ 14 ]. Briefly, the cells were plated in 48-well 

plates (8.0 × 10 4 cells per well) coated with 50 μg / ml rat tail colla- 

gen. The hepatocytes were allowed to attach for 3 h in a humidified 

atmosphere of 5% CO 2 / 95% air at 37 ◦C. Subsequently, the cells were 

washed and then incubated in the same medium. After overnight pre- 

culture, the medium was replaced by fresh serum- and antibiotic-free 

medium to which the drugs were added from stock solutions. DMSO 

was used as solvent for EFV and other lipophilic compounds (final 

concentrations not exceeding 0.1%), and culture medium was used to 

dissolve INH. In some experiments, the cells were post-treated with 

methylene blue (MB) 20 min after exposure to EFV and / or INH. 

Determination of cell injury 

Release of cytosolic lactate dehydrogenase (LDH) into the extra- 

cellular medium (CytoTox-One Homogeneous Membrane Integrity 

Assay, Promega, Madison, WI) was used as an indicator of cytotoxic- 

ity. The data were expressed as percentage of activity present in the 

medium as compared to the total intra- and extracellular LDH activity. 

Total cellular ATP content was measured by luminescence techniques 

(Cell Titer-Glo Luminescent Cell Viability Assay, Promega). Chemilu- 

minescence was determined in black 96-well plates, and ATP content 

was calculated from a standard curve. INH, EFV, or MB did not inter- 

fere with the luciferin / luciferase reaction. The nuclear fluorescence of 

propidium iodide, which can permeate into cells with compromised 

plasma membrane only, was taken as an indicator of necrotic cell 

death. 

Assessment of the mitochondrial permeability transition 

To demonstrate the opening of the mitochondrial permeability 

transition (mPT) pore, we used the fluorogenic marker, calcein ace- 

toxymethylester (AM). To selectively label mitochondria with the 

probe, the cells were loaded with 1 μM calcein-AM in the presence of 

CoCl 2 (1 mM) for 15 min at 4 ◦C, followed by 6 h incubation at 37 ◦C 

[ 25 ]. By loading the cells in the cold, the calcein-AM can cross both 

the cell membrane and the mitochondrial membranes, because the 

cytosolic esterases are not active. Upon recovery at 37 ◦C, calcein-AM 

in mitochondria is cleaved and calcein remains trapped. Because the 

added Co 2 + , which is a high-affinity ligand for calcein, quenches the 

fluorescence upon binding, the cytosol readily loses its fluorescence, 

whereas intact mitochondria retain their bright fluorescence because 

Co 2 + is not readily taken up by mitochondria. However, following 

drug-induced opening of the mPT pore, the intramitochondrial cal- 

cein (Mr = 622) will leak into the cytosol, and the mitochondrial stain- 

ing will be lost. The green fluorescence was imaged with an Olympus 

Bx51 fluorescence microscope (40 × objective). 

Assessment of mitochondrial transmembrane potential in hepatocytes 

The mitochondrial inner transmembrane potential ( �ψ m 

) was 

measured with tetramethyl rhodamine methylester (TMRM, Molec- 

ular Probes / Invitrogen). Hepatocytes were loaded with TMRM 

(100 nM; non-quenching mode) [ 26 ] for 20 min at 37 ◦C, and drug- 

induced changes in fluorescence were recorded with an Olympus 

Bx51 fluorescence microscope. 
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Measurement of mitochondrial ROS / RNS generation in hepatocytes 

Mitochondrial generation of superoxide was estimated with the

cell-permeable and mitochondria-targeted fluorogenic probe, hy-

droethidine (HE) linked to triphenylphosphonium (MitoSOX Red, In-

vitrogen). The drug-pretreated cells were loaded with MitoSOX Red

(25 nM) for 10 min at 37 ◦C, washed with fresh culture medium,

and the mitochondrial 2-hydroxy ethidium-derived fluorescence was

determined at 396 / 580 nm (excitation / emission), respectively, in a

Safire2 microplate reader (Tecan, Maennedorf, Switzerland). Hepa-

tocellular formation of peroxynitrite was determined with the flu-

orogenic probe, coumarin-7-boronic acid (CBA, Cayman, Ann Arbor,

MI), which reacts stochiometrically and rapidly with ONOO 

− several

orders of magnitude faster than with H 2 O 2 [ 27 ]. Hepatocytes were

preloaded with 100 μM CBA for 20 min at 37 ◦C, and the genera-

tion of hydroxycoumarin was determined at 332 / 450 nm (excitation /
emission) in a Safire2 microplate reader. 

Statistical analysis 

All data were expressed as mean ± SD. If there was normal distri-

bution, a standard analysis of variance (ANOVA) was used, followed

by Dunnett ’ s test for multiple comparisons versus the control group.

When normality failed, a Kruskal–Wallis one-way analysis of variance

on ranks was used followed by Dunn ’ s test for multiple comparison

versus the control group. A P value of ≤0.05 was considered signifi-

cant. 

Results 

Co-exposure to efavirenz / isoniazid, but not to the individual drugs 

alone, induces cell injury in cultured mouse hepatocytes 

To determine the concentration-dependent toxic response to EFV

or INH, we first exposed cultured mouse hepatocytes to both of the

individual drugs alone. We found that EFV (up to 30 μM) or INH (up

to 3000 μM) did not induce increased LDH release from hepatocytes

or cause decreases in intracellular ATP concentrations, as compared

to the solvent controls ( Fig. 1 ). However, because EFV and INH are of-

ten combined clinically, and because combined anti-retroviral / anti-

tubercular therapy can significantly increase the risk for developing

liver injury as compared to anti-retroviral therapy alone [ 23 ], we

next determined the effect of EFV / INH co-treatment on hepatocel-

lular viability. We found that the combination of efavirenz (30 μM)

and INH (1000 μM) caused marked cell injury, as evidenced by a

time-dependent increase in LDH release, reaching > 40% leakage af-

ter 24 h ( Fig. 1 A). Furthermore, during EFV / INH co-exposure, intra-

cellular ATP levels decreased rapidly to < 20% of solvent control levels

during the first 6 h and were nearly undetectable after 12 h of expo-

sure ( Fig. 1 B). These data suggest that efavirenz and isoniazid may act

synergistically to trigger hepatocellular injury at otherwise non-toxic

concentrations. 

Efavirenz / isoniazid toxicity is BNPP-sensitive, indicating a key role for 

hydrazine 

To ascertain whether a metabolite(s) of INH was involved in caus-

ing the observed toxicity, we used selective inhibitors of metabolic

pathways responsible for INH biotransformation. First, to explore a

possible role of CYPs, we pretreated some hepatocytes with the pan-

CYP inhibitor, 1-aminobenzotriazole (1-ABT). We found that 1-ABT

(0–300 μM) did not significantly alter the toxic response to combined

EFV / INH (data not shown). As 1-ABT is also an N -acetyltransferase

(NAT) inhibitor [ 28 ], these data indicate that it is unlikely that an

acetylated or oxidative metabolite of either INH or EFV was a major

contributor to the cell injury. Because hydrazine, a major hydrolytic
metabolite of isoniazid, has been implicated in the hepatic toxicity of

isoniazid [ 29 –32 ], we hypothesized that hydrazine was the primary

toxic species contributing to the cytotoxicity in this model. To test

this hypothesis, we used bis- p -nitrophenyl phosphate (BNPP), a spe-

cific acylamidase inhibitor, to prevent hydrazine formation in cells

exposed to INH. We found that BNPP indeed attenuated the toxic-

ity of EFV / INH (30 μM / 1000 μM, respectively) in a concentration-

dependent manner ( Fig. 2 A) and that the loss of intracellular ATP

was largely prevented ( Fig. 2 B). Because the metabolism of EFV does

not involve any acylamidase activity [ 33 ], these data suggest that hy-

drazine is a key contributor to the lethal cell injury provoked by EFV /
INH co-treatment. 

Next, we determined the lowest concentration at which hydrazine

was able to cause toxicity in combination with a fixed nontoxic

concentration of EFV. We found that there was a concentration-

dependent potentiation of cell injury and loss of ATP that became

significant at 10 μM hydrazine, while hydrazine alone did not in-

duce cell injury at these low concentrations ( Fig. 2 C and D). Thus,

the hydrazine concentrations that can trigger cell injury in vitro are

in the same range or even lower than the hepatic concentrations of

hydrazine formed after a single dose of 50 mg / kg INH in mice [ 34 ]. 

Efavirenz inhibits mitochondrial complex I activity, and hydrazine 

inhibits complex II activity—a potentially dangerous combination that 

hits the ETC at two sites 

We have previously demonstrated that non-toxic concentrations

of pharmacologic inhibitors of complex I (rotenone, piericidin A) can

trigger massive cell injury induced by otherwise non-toxic concen-

trations of isoniazid [ 14 ]. Because indirect evidence has suggested

that EFV might also be a complex I inhibitor [ 17 ], we hypothesized

that combined treatment of cells with INH and EFV will precipitate

cell injury via a similar mechanism. Therefore, to ascertain whether

EFV directly inhibits complex I activity, we first determined NADH:

ubiquinone oxidoreductase activity in isolated mouse liver mitochon-

dria. We found that EFV indeed caused a concentration-dependent in-

hibition of complex I activity, with an IC 50 of approx. 30 μM ( Fig. 3 A).

The solvent (DMSO, 0.3% final) did not inhibit complex I function

(not shown). Rotenone (20 μM) was used as a positive control for

the assay and was found to inhibit total complex I activity by ap-

proximately 50%, which is typical for liver mitochondria [ 35 ]. As an

expected consequence of complex I dysfunction, we found that the

mitochondrial inner transmembrane potential ( �ψ m 

) was decreased

in cultured hepatocytes exposed to EFV. This was evidenced by us-

ing the fluorescent probe TMRM, which normally accumulates in the

mitochondrial matrix due to the inside negative potential but which

is lost from the matrix if the �ψ m 

decreases ( Fig. 3 B). Furthermore,

we found that hepatocytes exposed to EFV exhibited a concentration-

and time-dependent increase in MitoSOX Red-derived fluorescence,

indicating net increases in mitochondrial superoxide which, again, is

likely a consequence of complex I inhibition ( Fig. 3 C). 

Because hydrazine has been implicated as a key player in isoni-

azid toxicity to hepatocytes, and because we have previously demon-

strated that hydrazine inhibited complex II activity in isolated and

solubilized yeast mitochondria [ 14 ], we sought to confirm these find-

ings in mammalian mitochondria. We found that, in isolated mouse

liver mitochondria, hydrazine inhibited complex II activity, with an

IC 50 of approximately 30 μM ( Fig. 3 D). These data suggest that EFV

and INH together might severely inhibit the proximal mitochondrial

electron flow by jointly blocking ubiquinone reduction, providing a

working hypothesis to explain the hepatocellular toxicity induced by

the drugs used in combination. 
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Fig. 1. Synergistic effects of non-toxic concentrations of efavirenz (EFV) and isoniazid (INH) on cell injury and intracellular ATP concentrations during exposure of cultured mouse 

hepatocytes to combined EFV / INH. Time course of (A) LDH release and (B) intracellular ATP content after treatment with solvent (DMSO, 0.1%), INH alone (1000 μM), EFV alone 

(30 μM), or combined EFV / INH. Data are mean ± SD of three independent hepatocyte preparations using quadruplicate wells. * P < 0.05 versus solvent control. 

Fig. 2. Role of hydrazine (HzN) in EFV / INH-induced hepatocellular injury. (A and B) Concentration-dependent effects of bis - p -nitrophenyl phosphate (BNPP, an inhibitor of 

acylamidase-mediated hydrolysis of INH to HzN), on cell injury and intracellular ATP concentrations caused by exposure of cultured mouse hepatocytes to a combination of EFV 

(30 μM) and INH (1000 μM) for 24 h. Data are mean ± SD of three independent hepatocyte preparations using quadruplicate wells. * P < 0.05 versus no addition of BNPP. (C 

and D) Concentration-dependent effects of HzN in combination with a fixed concentration (30 μM) of EFV on LDH release and intracellular ATP content after 24 h. Data are mean 

± SD of three independent hepatocyte preparations using quadruplicate wells. * P < 0.05 versus EFV alone. 
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favirenz / isoniazid co-treatment causes peroxynitrite stress in 

epatocytes resulting in the induction of the mitochondrial permeability 

ransition 

Superoxide generated from complex I / II inhibition can be enzy- 

atically converted to hydrogen peroxide, but this reaction is out- 

ompeted by the ultrarapid non-enzymatic reaction of superoxide 

ith nitric oxide to form peroxynitrite. Because this latter reaction 

s kinetically controlled by superoxide levels [ 36 ], we hypothesized 

hat the observed increased superoxide signal following exposure 

o efavirenz / isoniazid might result in peroxynitrite stress. With the 
advent of novel and highly selective peroxynitrite probes, including 

coumarin-7-boronic acid (CBA) [ 27 ], it has become possible to mon- 

itor treatment-induced peroxynitrite formation in intact cells. Cells 

preloaded with CBA followed by exposure to non-toxic concentra- 

tions of EFV ( ≤30 μM) alone developed increases in fluorescence due 

to 7-hydroxycoumarin, whereas cells exposed to INH alone did not ex- 

hibit increases in this marker as compared to solvent controls ( Fig. 4 A). 

In contrast, combined EFV / INH treatment caused further increases in 

CBA-derived fluorescence over six hours, suggesting enhanced perox- 

ynitrite formation. The addition of Fe-TMPyP, a cell-permeable met- 

alloporphyrin which acts as a peroxynitrite decomposition catalyst 
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Fig. 3. Effects of EFV on complex I activity, mitochondrial inner transmembrane potential ( �ψ m ), and mitochondrial superoxide generation, and effect of HzN on complex II 

activity. (A) Isolated mouse hepatic mitochondria were used to determine the concentration-dependent effects of EFV on complex I activity. Rotenone (ROT, 20 μM) was used as 

a positive control. Data are mean ± SD of three independent mitochondrial preparations using duplicate determinations. * P < 0.05 versus solvent control. (B) Cultured mouse 

hepatocytes were loaded with TMRM, washed, and exposed to EFV (30 μM) for 1 h. The photomicrograph shows the results from one cell preparation typical of three independent 

experiments. The bright (punctate) fluorescence indicates the mitochondrial accumulation of TMRM, driven by an intact �ψ m , and the loss of the mitochondrial fluorescence after 

EFV exposure. (C) MitoSOX Red-derived fluorescence in cultured hepatocytes, indicative of increased superoxide generation. Data are mean ± SD of three independent hepatocyte 

preparations using quadruplicate wells. * P < 0.05 versus solvent control. (D) Isolated mouse hepatic mitochondria were used to determine the concentration-dependent effects 

of HzN on complex II activity. 3-Nitropropionic acid (3-NP, 3 mM) was used as a positive control. Data are mean ± SD of three independent mitochondrial preparations using 

duplicate determinations. * P < 0.05 versus solvent control. 



604 K. Lee, U.A. Boelsterli / Redox Biology 2 (2014) 599–609 

[

s

m

c

(

y

i

i

o

b

M

w

p

c

(

c

m

i

o

fl

c

fl

g

fi

m

a

w

n

E

a

5

3

n

t

p

h

b

c

p

t

t

�

5

r

t

i

i

M

a

i

v

t

a

l

a

v

c

N

i

c

o

 37 , 38 ] effectively attenuated the fluorescence, confirming that the 

ignal was selective for peroxynitrite Fig. 4 B). 

Peroxynitrite has been implicated in oxidizing / nitrating critical 

itochondrial targets that are involved in mediating cell death, in- 

luding proteins regulating the mitochondrial permeability transition 

mPT) [ 39 –42 ]. We therefore hypothesized that the increased perox- 

nitrite stress induced by EFV / INH co-exposure was causally involved 

n triggering lethal cell injury via opening of the mPT pore. To mon- 

tor in situ the opening of the mPT pore, which involves both the 

uter and inner mitochondrial membrane, we preloaded hepatocytes 

y cold / warm incubation with calcein-AM / Co 2 + (for rationale see 

aterials and methods) prior to exposure to the drugs. As expected, 

e found that untreated control hepatocytes exhibited a punctate 

attern of calcein fluorescence that co-localized with TMRM fluores- 

ence, indicating that calcein was sequestered in the mitochondria 

not shown). Solvent controls retained the mitochondrial fluores- 

ence for at least 2 h, indicative of an intact inner mitochondrial 

embrane ( Fig. 5 A). In contrast, the addition of combined EFV / INH 

nduced a rapid loss of the mitochondrial fluorescence, suggesting 

pening of the mPT pore as evidenced by the quenching of calcein 

uorescence by Co 2 + . INH alone had no apparent effect on mito- 

hondrial calcein release (not shown). The loss of the mitochondrial 

uorescence was not inhibitable by cyclosporin A (CsA, 1 μM), sug- 

esting that a CsA-insensitive mode of mPT [ 43 ] was activated. To con- 

rm that this event resulted in oncotic necrosis, which is the default 

ode of cell injury caused by the mPT [ 44 ], we co-exposed the hep- 

tocytes to propidium iodide (PI), a fluorescent nuclear DNA marker, 

hich has access to cells with damaged plasma membrane only, but 

ot to apoptotic nuclei with intact cell membrane [ 45 ]. We found that 

FV / INH co-treatment, but not treatment with solvent alone or INH 

lone, caused a large number of nuclei to become PI-positive ( Fig. 

 A). We also incubated cells with the fluorescent DNA stain Hoechst 

3342, but did not find any evidence of fragmented or condensed 

uclei, which would be indicative of apoptosis (not shown). Taken 

ogether, these data indicate that the combination of EFV / INH is a 

otent inducer of the CsA-insensitive mode of the mPT that results in 

epatocellular necrosis. 

To determine whether the increase in peroxynitrite levels might 

e causally involved in cell injury, as opposed to being a nonspecific 

onsequence of the injury, we explored the effects of two unrelated 

eroxynitrite-reactive agents on EFV / INH-induced cell injury. First, in 

he presence of the peroxynitrite scavenger CBA itself, we found that 

he cells were protected against the treatment-related collapse of the 

ψ m 

as well as the development of PI-positive (necrotic) cells ( Fig. 

 B). Second, Fe-TMPyP similarly attenuated EFV / INH-induced LDH 

elease in a concentration-dependent manner ( Fig. 5 C) and prevented 

he opening of the mPT pore ( Fig. 5 D). Taken together, these data 

ndicate that ONOO 

− formation occurred prior to cell death and that 

t contributes to the treatment-related cell injury. 

ethylene blue, an alternative electron carrier, bypasses complexes I 

nd II and rescues hepatocytes from EFV / INH-induced lethal injury 

If the mechanisms of EFV / INH-induced hepatocyte demise indeed 

nvolved a joint inhibitory effect on complexes I and II, then circum- 

ention of this proximal ETC block with an alternative electron carrier 

hat feeds electrons into the ETC at a more distal site should protect 

gainst cell injury. One of these alternative electron carriers is methy- 

ene blue (MB), a redox-active agent that has been shown to directly 

ccept electrons from NADH and reduce cytochrome c without the in- 

olvement of ubiquinone [ 46 ]. We found that, in the presence of mito- 

hondria and EFV (30 μM), MB greatly enhanced the consumption of 

ADH in a concentration-dependent manner ( Fig. 6 A), even exceed- 

ng the rate caused by normal complex I activity by several-fold. This 

onfirms the ability of MB to oxidize NADH even under conditions 

f chemical inhibition of complex I. Next, we investigated whether 
MB was able to protect cultured hepatocytes against cell injury in- 

duced by exposure to combined INH (1000 μM) / EFV (30 μM). We 

found that MB ( > 30 μM) protected against the opening of the mPT 

pore and the subsequent hepatocellular necrosis, as demonstrated by 

the retention of calcein in the mitochondrial matrix in the presence 

of otherwise cytotoxic concentrations of EFV / INH ( Fig. 6 B). Further- 

more, MB was able to almost completely prevent LDH release and loss 

of intracellular ATP ( Fig. 6 C and D). Control experiments confirmed 

that MB did not interfere with the LDH assay itself (data not shown). 

Taken together, these data strongly suggest that the toxicity caused 

by EFV / INH co-exposure is the consequence of a severe inhibition of 

ETC function, resulting in peroxynitrite stress, and that this impaired 

pathway can be bypassed by MB, resulting in full protection against 

cell injury. 

Discussion 

The aim of this study was to explore whether co-exposure of 

murine hepatocytes to EFV and INH, a clinically relevant drug com- 

bination, renders hepatocytes more susceptible to mitochondria- 

mediated lethal cell injury than either of the drugs alone. Our working 

hypothesis was that a joint inhibition of respiratory complexes I (by 

EFV) and II (by hydrazine, a major INH metabolite) would lead to a 

decrease in energy production, as well as an increase in superoxide 

leakage from the ETC, because ubiquinone reduction is impaired at 

the Q-binding site in both complexes I and II. We found that EFV in- 

deed inhibits complex I activity in mouse hepatic mitochondria, and 

that this mitochondrial effect, which alone does not cause cell injury, 

can activate and amplify the latent cell injury caused by co-exposure 

to otherwise nontoxic concentrations of INH. 

These conclusions were based on a number of experimental find- 

ings. First, the combined EFV / INH treatment, but not the individual 

drugs alone, resulted in a rapid loss of intracellular ATP, paralleled by 

a collapse of the �ψ m 

and opening of the mPT pore, leading to hepa- 

tocellular necrosis. This suggests that, due to the combined inhibitory 

effects of EFV and INH, the energy flux along the ETC was severely 

impaired, leading to increased formation of superoxide and, hence, 

peroxynitrite ( Fig. 7 A). 

Second, we show that bypassing complexes I and II with the redox- 

active, mitochondria-permeable electron carrier MB, normal energy 

fluxes could be maintained and cells could be protected against the 

toxicity caused by combined EFV / INH exposure ( Fig. 7 B). Methylene 

blue, a diaminophenothiazine, is reduced in the mitochondrial ma- 

trix by a number of NAD(P)H-dependent dehydrogenases, including 

complex I [ 46 –48 ], resulting in the formation of MBH 2 (leucomethy- 

lene blue). Because of the low redox potential (close to zero), MB can 

readily cycle between the oxidized and the reduced form [ 49 , 50 ] and 

function as electron donor to heme proteins including cytochrome 

c [ 46 , 49 ]. Although at high concentrations, MB can act as an uncou- 

pling agent in isolated mitochondria [ 51 ], control experiments with 

TMRM had confirmed that, under the conditions used, MB did not 

alter the �ψ m 

in mouse hepatocytes (data not shown). Methylene 

blue not only can be used as a biochemical tool to provide the proof- 

of-concept for a mitochondrial mechanism involved in the toxicity 

of a drug (here EFV / INH), but also could be used therapeutically to 

protect against drug-induced, mitochondria-mediated cell injury. In 

fact, MB is a clinically approved drug that has been used for many 

decades against methemoglobinemia and other disorders caused by 

imbalances in redox homeostasis. Furthermore, MB has been used 

in experimental models of drug-induced toxicity in which complex I 

dysfunction has been implicated, including doxorubicin-induced car- 

diotoxicity [ 52 ]. 

Third, the combined EFV / INH treatment resulted in the induction 

of the mPT as evidenced by in situ monitoring of calcein loss from 

mitochondria. Although many molecular details of the nature of the 

mPT pore are currently still unresolved, it has been demonstrated that 
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Fig. 4. Time course of EFV and / or INH-induced peroxynitrite (ONOO −) generation in hepatocytes. (A) Hepatocytes were preloaded with coumarin-7-boronic acid (CBA, 100 μM) 

for 3 h and exposed to EFV alone (30 μM), INH alone (1000 μM), or a combination of the two. Hydroxycoumarin fluorescence generated from peroxynitrite-mediated CBA oxidation 

was serially recorded with a plate reader. (B) Fe-TMPyP, a peroxynitrite decomposition catalyst, was used to demonstrate the selectivity of the assay for peroxynitrite in hepatocytes 

exposed to EFV (50 μM) for 6 h. Data are mean ± SD of three independent hepatocyte preparations using quadruplicate wells. * P < 0.05 versus solvent control; # P < 0.05 versus 

EFV alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be relevant for the in vivo situation. 
besides the canonical “regulated” mode of mPT, which is induced by

low-level chemical stress and which is CsA-sensitive, there is also an

“unregulated” mode of mPT, which is caused by high-level chemical

stress and which is CsA-insensitive [ 43 ]. We have previously shown

in a mouse model of acetaminophen hepatotoxicity that the CsA-

insensitive mode of mPT was activated by peroxynitrite [ 53 ]. Here,

we show that peroxynitrite stress is critical in precipitating EFV / INH-

induced cell death, as both the peroxynitrite scavenger CBA and the

peroxynitrite decomposition catalyst Fe-TMPyP effectively protected

against the mPT and the resulting cell death. 

Fourth, we have provided evidence that bioactivation of INH was

a key contributing factor to cell injury. This conclusion was supported

by the findings that inhibition of acyl amidase-mediated hydrolytic

cleavage of INH to hydrazine in the presence of BNPP was sufficient

to protect cells against the toxicity caused by EFV / INH co-exposure.

We also considered the possibility that the toxicity was dependent

on a CYP-mediated oxidative metabolite generated from either INH

or EFV. Indeed, previous studies had revealed that mitochondrial tox-

icity induced by EFV was inhibited by the pan-CYP inhibitor, 1-ABT,

in primary human hepatocytes [ 54 ], pointing to a possible role of its

major, CYP2B6-catalyzed metabolite, 8-hydroxy-EFV. However, here,

1-ABT had no apparent protective effects on combined EFV / INH toxi-

city. Also, INH itself is an irreversible CYP inhibitor, acting through its

terminal hydrazine nitrogen-derived nitrene that tightly coordinates

to the heme iron [ 55 ]. Because INH greatly amplified the toxicity in

combination with EFV, rather than inhibiting it, it is reasonable to

assume that the cell injury was not caused by an oxidative metabolite

of EFV, but rather triggered by hydrazine cleaved off the parent INH. 

How exactly EFV primes hepatocytes to the cell-killing activity

induced by INH and / or hydrazine remains still unclear. EFV causes

multiple toxic responses in cells, including endoplasmic reticulum

stress [ 18 ], but the primary target of EFV is the mitochondrion [ 19 ],

as convincingly demonstrated with Rho o cells (depleted of mitochon-

drial DNA), in which the EFV-induced cellular effects were greatly at-

tenuated. In Hep3B cells, EFV caused activation (phosphorylation) of

AMP-activated protein kinase, the master switch of cellular energet-

ics, causing a decrease in ATP-consuming processes and an increase
in fatty acid uptake and β-oxidation [ 17 ], as well as increases in mi-

tochondrial mass and induction of autophagy [ 20 ]. Together, these

events likely reflect an adaptive response to the mitochondrial stress

inflicted by EFV. However, the results of the present study suggest

that the inhibition of complex I by EFV may be a major mechanism

that leads to enhanced oxidant stress, lowering the threshold for in-

ducing lethal cell injury if a second mitochondrial insult (e.g., by INH)

is superimposed. 

Translation of these concentration-dependent effects to the clini-

cal situation is difficult, and a simple comparison of in vitro concentra-

tions (used for this study with cultured hepatocytes) with therapeutic

plasma levels may be misleading. Clinical peak plasma levels of EFV

are in the low micromolar range, but CYP2B6 polymorphisms (the

major CYP form involved in EFV clearance) can lead to much higher

plasma concentrations (e.g., > 20 μM in CYP2B6 * 6 / * 6 patients) [ 56 ].

However, EFV is highly (99.5%) plasma protein-bound, mostly albu-

min, thus greatly reducing the portion of “free”, pharmacologically

active drug. In a mouse study, an EFV dose of 20 mg / kg resulted in

a plasma C max ofapprox. 6 μM; however, the concentrations in the

liver were much higher (approx. 150 μM) [ 57 ]. Therefore, the EFV con-

centrations used in this study (30 μM) seem reasonable. As to INH,

the concentrations to which the mouse hepatocytes were exposed

(1 mM), were clearly higher (approx. 10-fold) than therapeutic peak

plasma levels in patients; however, they could be similar to portal

concentrations. A recent study has quantitated the hepatic concen-

trations of INH and hydrazine after a single oral dose of 50 mg INH / kg

body weight to mice; after 30 min, the hepatic levels were > 200 μM

for INH and > 70 μM for hydrazine [ 34 ]. Clinical levels of hydrazine

after INH have been reported to be in the low microM range [ 58 , 59 ],

but hydrazine can accumulate following repeated doses of INH in

slow acetylators. In view of our findings that, in combination with

EFV, hydrazine at low microM concentrations can have dramatic ef-

fects on mitochondrial dysfunction and cell injury, the findings could



606 K. Lee, U.A. Boelsterli / Redox Biology 2 (2014) 599–609 

Fig. 5. EFV / INH-induced opening of the mitochondrial permeability transition (mPT) pore and its modulation by peroxynitrite scavengers. Cultured mouse hepatocytes were 

cold / warm-loaded with calcein-AM / Co 2 + , TMRM, and PI, as described in Materials and methods, and exposed to combined INH (1000 μM) and EFV (30 μM) for 1 h. (A) The 

fluorescence micrographs show hepatocellular loss of mitochondrial labeling with calcein after drug treatment, indicative of mPT induction, loss of TMRM staining (100 nM, 

20 min preloading), reflecting a decrease in the �ψ m , and an increase in the number of PI (1 μM)-positive nuclei as it occurs in oncotic necrosis. Some cells were pretreated with 

cyclosporin A (CsA, 1 μM, for 20 min). (B) Preincubation (20 min) with the peroxynitrite scavenger, CBA (100 μM) afforded partial protection against EFV / INH-induced mPT, 

membrane depolarization, and cell injury. (C) Concentration-dependent protective effect of the peroxynitrite decomposition catalyst, Fe-TMPyP on EFV / INH-induced hepatocellular 

injury. LDH leakage was determined after 24 h. (D) Protective effects of Fe-TMPyP (30 μM, 1 h) against EFV / INH-induced mPT induction. All fluorescence micrographs are typical 

of three independent cell preparations. 
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Fig. 6. Protective effects of methylene blue (MB) against EFV / INH-induced hepatocellular injury. (A) Concentration-dependent effects of MB on EFV (30 μM)-induced inhibition of 

complex I activity (NADH oxidation) in isolated mouse liver mitochondria. Data are mean ± SD of three independent mitochondrial preparations using duplicate determinations. 
* P < 0.05 versus EFV alone. (B) Protective effects of MB (30 μM) against EFV (30 μM) / INH (1000 μM)-induced dissipation of the mitochondrial �ψ m . Hepatocytes were cold / 

warm-loaded with calcein / Co 2 + , washed, and incubated with EFV / INH in the presence or absence of MB (30 μM). Hepatocytes were also preloaded with TMRM (100 nM) and 

PI (1 μM) for 20 min prior to drug exposure. (C and D) Concentration-dependent effects of MB on EFV (30 μM) / INH (1000 μM)-induced cell injury and intracellular ATP levels. 

Release of LDH into the extracellular medium and ATP concentrations were determined after 24 h exposure. Data are mean ± SD of three independent hepatocyte preparations 

using triplicate wells. * P < 0.05 versus EFV / INH alone. 

Fig. 7. Schematic representation of the putative mechanisms involved in EFV / INH-mediated hepatic mitochondrial dysfunction and its prevention by MB. (A) Inhibition by EFV 

of complex I and hydrazine-mediated inhibition of complex II in combination results in peroxynitrite stress, opening of the mPT, and eventually oncotic necrosis. (B) MB acts 

as an electron acceptor from NADH at complex I, and MBH 2 directly reduces cytochrome c , bypassing the upstream components of the ETC, thus protecting hepatocytes against 

EFV / INH-induced lethal cell injury. 
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In conclusion, we show that co-exposure of primary mouse hep- 

tocytes to INH and EFV, two drugs often used in combination treat- 

ent clinically, can severely damage mitochondria and induce hepa- 

ocellular injury at otherwise nontoxic concentrations of the individ- 

al drugs. The findings are compatible with the concept that clinically 

ilent genetic or pharmacologic abnormalities of mitochondrial func- 

ion (e.g., EFV-induced complex I inhibition) can trigger and activate 

he hepatotoxic potential of drugs that have been implicated in caus- 

ng idiosyncratic liver injury (e.g., INH-induced complex II inhibition 

nd induction of peroxynitrite stress via its metabolite, hydrazine). 

lthough this acute cell model does not exactly reflect the clinical 

ituation, where the precipitation of overt liver injury is normally 

elayed, it provides a mechanistic model for cumulative prooxida- 

ive injury of liver mitochondria. Under normal conditions, due to 

he enormous energy reserve capacity of the liver, and the threshold 

ffects for hepatocellular injury, the injury will not immediately man- 

fest, but gradual oxidative injury can push the liver mitochondria to 

he point of no return. 
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