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Abstract: π-Conjugated organic donor–acceptor (D–A) type polymers are widely developed
and used in electronic device. Among which, diketopyrrolopyrrole (DPP)-based polymers
have received the most attention due to their high performances. The novel chromophores
named 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP), benzodipyrrolidone (BDP) and
naphthodipyrrolidone (NDP) are resemble DPP in chemical structure. IsoDPP is an isomer of DPP,
with the switching position of carbonyl and amide units. The cores of BDP and NDP are tri- and
tetracyclic, whereas isoDPP is bicyclic. π-Conjugation extension could result polymers with distinct
optical, electrochemical and device performance. It is expected that the polymers containing these
high-performance electron-deficient pigments are potential in the electronic device applications, and
have the potential to be better than the DPP-based ones. IsoDPP, BDP, and NDP based polymers
are synthesized since 2011, and have not receive desirable attention. In this work, the synthesis,
properties (optical and electrochemical characteristics), electronic device as well as their relationship
depending on core-extension or structure subtle optimization have been reviewed. The final goal is
to outline a theoretical scaffold for the design the D–A type conjugated polymers, which is potential
for high-performance electronic devices.

Keywords: conjugated polymers; isoDPP; benzodipyrrolidone; naphthodipyrrolidone

1. Introduction

Organic π-conjugated polymers are promising candidates for electronics device applications due
to light weight, low cost and potential use in flexible devices, such as organic filed-effect transistors
(OFETs), organic photovoltaic (OPV) solar cells, etc. [1–3]. The OFET is fundamental building block of
modern electronic devices and used to amplify and switch electronic signals. The OTFT operation
depends on the charge (electron or hole) carrier accumulation in the semiconductor enabled by applying
a bias on gate. If the gate voltage is smaller than the threshold voltage (Vt), there is no free charge
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carriers in the conducting channel and the source−drain current will be near zero. However, once the
applied gate voltage is over Vt, charges will be created in close vicinity of the semiconductor/dielectric
interface, and as a consequence, the source-drain current (Ids) will dramatically increase when a
voltage (Vsd) is applied between them [4]. The architectures of OFETs are shown in Figure 1a. As a
cost-free and environmental friendly energy source, organic solar cells (OSCs) have shown significantly
potential for generating electrical energy directly from sunlight using photo-voltaic (PV) technologies.
Universally, the OSCs absorb the photons from the sun, meanwhile, intermolecular excisions are
generated. Subsequently, the excitons diffuse to the donor/acceptor semiconductor interfaces and
dissociate via an electron-transfer process to form a geminate pair. Eventually, the separated charge
carriers (electron and hole) migrate to their respective electrodes under internal electric field and are
collected at the electrodes [4]. The architectures of OPV are shown in Figure 1b.

Polymers 2018, 10, x FOR PEER REVIEW  2 of 22 

 

However, once the applied gate voltage is over Vt, charges will be created in close vicinity of the 
semiconductor/dielectric interface, and as a consequence, the source-drain current (Ids) will 
dramatically increase when a voltage (Vsd) is applied between them [4]. The architectures of OFETs 
are shown in Figure 1a. As a cost-free and environmental friendly energy source, organic solar cells 
(OSCs) have shown significantly potential for generating electrical energy directly from sunlight 
using photo-voltaic (PV) technologies. Universally, the OSCs absorb the photons from the sun, 
meanwhile, intermolecular excisions are generated. Subsequently, the excitons diffuse to the 
donor/acceptor semiconductor interfaces and dissociate via an electron-transfer process to form a 
geminate pair. Eventually, the separated charge carriers (electron and hole) migrate to their 
respective electrodes under internal electric field and are collected at the electrodes [4]. The 
architectures of OPV are shown in Figure 1b. 

  
(a) (b) 

Figure 1. Schematic representation of an organic filed-effect transistors (a) and organic solar cells (b). 

In the past few years, a growing number of chemists focus their attention on development new 
π-conjugated polymers for electronics applications [5–12]. Some of the most widely studied polymers 
are donor–acceptor (D–A) type polymers due to its intrinsic properties such as high charge transfer 
mobility. Among a wide variety of acceptors, diketopyrrolopyrrole (DPP) receives lots of attention 
and have been widely used as a comonomer in large amount for polymer synthesis [13–17]. The 
designed polymers often show excellent performance. Altering the position of carbonyl and amide 
units of the DPP pigment result an isomer of DPP, named 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-
dione (isoDPP, Figure 2). IsoDPP chromophore exhibit deep color, weather resistance, strong π-
stacking, high electron mobility (μe), and good chemical-, thermal-, and photo-stability [18]. 

 

Figure 2. Chemical structure of diketopyrrolopyrrole (DPP), 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-
2,5-dione (isoDPP), benzodipyrrolidone (BDP), and naphthodipyrrolidone (NDP). 

Chromophore with π-conjugation extension could not only enlarge the charge transfer pathway, 
but also improve its optical and electrochemical properties. It is often important to use large π-
conjugation units to build polymers for good electronic device performance. The molecular structures 
of BDP and NDP resemble isoDPP except that the BDP and NDP core are tri- and tetracyclic, whereas 
isoDPP is bicyclic (Figure 2). The polymers based on isoDPP, BDP, and NDP show broad UV/vis 
absorption in the visible and low band gap, which reported since 2011 [19–21]. To the best of the 
knowledge of the authors, only a few articles have reported these chromophores. Using these high-
performance pigments to construct polymers, which should show as good performance as DPP ones, 
even improvement regarding to the photostability and charge transfer mobility. This is mainly 
attributed to the following factors: (i) The presence of heteroatoms (nitrogen and oxygen atom) in the 

Figure 1. Schematic representation of an organic filed-effect transistors (a) and organic solar cells (b).

In the past few years, a growing number of chemists focus their attention on development new
π-conjugated polymers for electronics applications [5–12]. Some of the most widely studied polymers
are donor–acceptor (D–A) type polymers due to its intrinsic properties such as high charge transfer
mobility. Among a wide variety of acceptors, diketopyrrolopyrrole (DPP) receives lots of attention and
have been widely used as a comonomer in large amount for polymer synthesis [13–17]. The designed
polymers often show excellent performance. Altering the position of carbonyl and amide units of the
DPP pigment result an isomer of DPP, named 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP,
Figure 2). IsoDPP chromophore exhibit deep color, weather resistance, strong π-stacking, high electron
mobility (µe), and good chemical-, thermal-, and photo-stability [18].
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2,5-dione (isoDPP), benzodipyrrolidone (BDP), and naphthodipyrrolidone (NDP).

Chromophore with π-conjugation extension could not only enlarge the charge transfer pathway,
but also improve its optical and electrochemical properties. It is often important to use large
π-conjugation units to build polymers for good electronic device performance. The molecular
structures of BDP and NDP resemble isoDPP except that the BDP and NDP core are tri- and tetracyclic,
whereas isoDPP is bicyclic (Figure 2). The polymers based on isoDPP, BDP, and NDP show broad
UV/vis absorption in the visible and low band gap, which reported since 2011 [19–21]. To the best of
the knowledge of the authors, only a few articles have reported these chromophores. Using these
high-performance pigments to construct polymers, which should show as good performance as DPP
ones, even improvement regarding to the photostability and charge transfer mobility. This is mainly
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attributed to the following factors: (i) The presence of heteroatoms (nitrogen and oxygen atom) in the
central rings among the compounds favors intermolecular interaction, which will enhance the charge
transport; (ii) the compounds contain bisamide (or bislactam) acceptor with a quinoid structure in its
electronic ground state., lowering semiconductor lowest unoccupied molecular orbitals (LUMOs), and
thus facilitating and stabling electrons injection [22]; (iii) the solubility of the compounds can be adjusted
through N-amide substituents, which can offer excellent solution processability, well polymerization
and fine-tuned film morphology; (iv) the cohromophores are deep color, which absorb light in the
visible region with high extinction coefficients; and (v) the substitution of an aromatic core with two
sets of π-accepting imides group led the chromophores electron deficient. Though these chromophores
have numerous advantages, they have not received desirable attention. In this review, the synthesis,
properties (optical and electrochemical characteristics), electronic device as well as their relationship
depending on core-extension or structure subtle optimization have been reviewed. In addition,
a future-outlook is also pointed out.

2. Small Molecules and Monomers

2.1. IsoDPP

As a natural dye, isoDPP is a regioisomer of DPP with switching position of the carbonyl group
and the nitrogen atom (Figure 2). Compared with DPP, the ketone and N-alkyl position of isoDPP are
interchanged causing the electron withdrawing functional groups closed to the conjugation pathway
and lowering the highest occupied molecular orbital (HOMO) level, improving the stability of the
electronic device. IsoDPP was firstly synthesized roughly 30 years ago in one step from pluvinic acid
using relatively harsh reaction conditions (autoclave reaction, 140–180 ◦C) [23], or three steps starting
from (N-phenylacetyl)acetic acid amino ester [24]. However, the important physical properties of
the isoDPPs, such as brilliant red color and high melting points were unnoticed. In 1997, J. Wuckelt
et al. took notice of this compound and found an efficient strategy to synthesize isoDPP in a single
reaction step with a high yield of up to 75% when a benzene unit substituted R1 and R2 (Scheme 1) [18].
The formation of product isoDPP involves two-fold attack of 2 equivalent of the ester enolate onto the
bis(imidoyl)chloride to obtain the open-chained intermediate A, which rapidly equilibrates with the
enamine-tatuometres B, C, and D. P. Langer further proved this method [25].
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Subsequent studies concentrated on the preparation of derivatives with different substituents.
Some research put their attention on isoDPP flanked with thienyls. IsoDPP based compound exhibited
extremely weak fluorescence down to 2 × 10−4 in solution [26], while the DPP molecules showed very
high fluorescence up to 0.88 [27]. M. Kirkus et al. explained the low quantum yields compared with DPP
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ones, which can be ascribed to a different symmetry of the lowest singlet excited state (S1) in isoDPP and
the corresponding loss in oscillator strength of the lowest energy transition. [26] This implies that the
S1 to ground state (S0) of isoDPP is a forbidden transition and efficient non-radiative decay pathways
of the excited state. In this study, it was determined that the isoDPP chromohphore exhibited not only
broad absorption peak in the visible, but also with a weak absorption tail at longer wavelength length.
The highly absorption in the visible and weak emission properties of isoDPP endow this chromophore
potential in photovoltaic device. H. Suh and coworkers reported three small molecules containing
isoDPP as acceptor and ended with thienyl-triphenylamine unit as donor (isoDPP1-3, Figure 3) [28].
The present study indicated that the three molecules exhibit broad absorption peak around 510 nm and
low band gap (1.66 eV). Device comprising isoDPP 3 and PC71BM (1:4) exhibited a good open-circuit
voltage (Voc) of 0.79 V, a short circuit current (Jsc) of 6.0 mA/cm2, and power conversion efficiency
(PCE) of 1.56%. Up to now, this article is the single one to study the OPV device based on isoDPP
small molecule.
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In order to study the isoDPP molecular packing properties, D. Gendron et al. [29] and H. Zhang
et al. [30] prepared the single crystal of small isoDPP molecules flanked with phenyl or thienyl unit
attached aromatic group (isoDPP 4 to 7, Figure 3). The core of isoDPP was fully coplanar as DPP,
which ensured full conjugation. Using thiophene ring (isoDPP 5) instead of phenyl ring (isoDPP 4,
Figure 3) attached the isoDPP core was a crucial effect on the decreasing the inter-plane distance (from
ketone oxygen to ketone) by reducing the twisting angle. The alkoxy or alky chains-substituted phenyl
ring attached to the nitrogen atom (isoDPP 6 and 7, Figure 3) does not promote π–π direct interaction,
while there were strong π–π interactions for DPP-type molecules [31].

In 2013, S. Lu et al. [32] discovered a new strategy to synthesize N-alkylated isoDPP (isoDPP 8 and
9) in five steps, however, it turned out the yield of this product was extremely low (10–18%, Scheme 2).
The N-alkylated isoDPP was planar in the solid state with torsional angle between the thiohene units
and isoDPP core being 8.7◦ determined by crystal structure analysis. This value was 16◦ and 1.5 ◦

smaller than isoDPP 6 and DPP with similar structure respectively [29,33]. The core-core intermolecular
distances of N-alkylated isoDPP was very small being 3.34 Å, while the DPP chromophore was around
3.51 Å and N-phenyl isoDPP was 6.97 Å. This indicates that N-alkyl chain replaced N-phenyl unit
of isoDPP core could improve the planarity and π-stacking of the chromophore, as well as lower
the band gap, which was beneficial for the charge transfer within the single molecule or between
neighboring molecules.
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2.2. Benzodipyrrolidone

Benzodipyrrolidone was first designed and synthesized by Greenhalgh et al. through three steps
with a good yield (Scheme 3) [34,35]. This chromophore exhibits a good solubility in common organic
solvents after N-alkylation with a high extinction coefficient, which was used as a colorant due to
its deep color and good thermal stability and photostability. The quinodimethane moiety in BDP,
in analogy to the tetracyanoquinodimethane (TCNQ), is expected to exhibit extensive π–π stacking.
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In 2011, W. Cui et al. noticed this pigment and firstly used it as comonomer for polymerization [25].
In this article, the solid-state structure of phenyl-flanked BDP (BDP 1, Figure 4) was analyzed through
X-ray, which showed that the core of BDP was fully coplanar as DPP and isoDPP [29,33]. The dihedral
angle between BDP core and the phenyl ring was 38◦. BDP 2 exhibited a broad UV/vis absorption
with a peak at 458 nm in solution and 523 nm in thin film. Comparing the maximum absorption in
solution, the large bathochromic shift for the solid state indicated a strong intermolecular interaction.
The LUMO of BDP 2 was estimated to be −3.53 eV, which was 0.35 eV lower than the corresponding
DPP chromophore [36]. This indicated that BDP was a strong electron affinity pigment and could be
easy reduced. To reduce the LUMO energy levels, P. Deng et al. reported a novel and effective strategy
via N-acylation instead of N-alkylation, which showed the LUMO energy levels can reduce almost
0.3 eV (BDP 3 and 4, Figure 4) [37]. This method might also suitable for other pigments containing
lactam unit.
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For pigments, the stability is an important characteristic for its application. H. Zhang et al. [38]
reported that BDP 5 (Figure 4) exhibited very stable properties in the ultraviolet light. The initial
slope the rate constant (k) was 4.43 × 10−3 (ln (At/A0, At,0 = absorbance at time t and time t = 0) vs.
time min). Good, reversible and stable electrochemical properties were reported by Y. Ling et al. [39].
Upon incorporation various donors, BDP-based small molecules showed various color and cover the
whole visible range. These molecules showed reversible electrochemical properties and dramatic color
switching under negative potentials owing to their two-step reversible reductive processes. BDP-based
small molecules were used to construct reversible and stable multicolored electrochromism device.
Very soon, H. Zhang et al. functionalized tert-butoxylcarbonyl (t-Boc) unit into the BDP core (BDP-6,
Figure 4) to form soluble BDP-7 [40]. Upon thermal annealing, through hydrogen bond rearrangement
of molecules resulting in crystal-to-crystal transition, a hydrogen bonded crystal BDP OFET was
prepared. The hydrogen bonded device exhibited p-type characteristic with hole mobility (µh) of
0.084 cm2 V−1 s−1, while the µh of BDP-7 was only 1.8 × 10−3 cm2 V−1 s−1. This study indicated that
the carbonyl unit and amide group of the BDP core could form hydrogen bonds, which resulted the
molecules self-assemble to form more ordered structure. Materials with ordered packing often showed
good charge carrier mobility and conductivity [41,42].

To achieve the goal of optical absorption extending to the longer wavelength of BDP derivatives,
thiophene-flanked BDPs through different methods (Scheme 4) were designed and synthesized. C. Wei
et al. synthesized the core of BDP with bromine atoms through five steps (BDP 12, Scheme 4) [43].
J. Rumer et al. obtained bis-isatin BDP derivative (BDP 14, Scheme 4) [44]. The two different monomers
can be easily substituted with thiophene, furan or other donor groups to form D–A systems within the
molecules. Unfortunately, no articles reported on furan-BDP or other donor units-flanked BDPs, except
BDP 13 and 15. The maximum absorption wavelength of BDP 13 was 101 nm red-shifted compared
with the phenyl-flanked BDP (BDP 2, Figure 4). This is because thiophene is a more electron-rich unit
compared with benzene. There was a 12.7◦ dihedral angle between the thiophene and BDP core, which
was 25.3◦ smaller compared with the diphenyl analogue but 4◦ larger than the thiophene-flanked
isoDPP [29]. It seems that thiophene-, instead of benzene-, substituted compounds can lead to more
planar structure. The nearest molecular distance in BDP 13 was 3.29 Å, which was slightly smaller
than both isoDPP 6 and BDP 1 [21,29]. This indicates stronger π-π interaction happened in BDP 13
than similar analogue (isoDPP 6 and BDP 1) which favors a bathochromic shift.
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Y. Wang et al. reported a series of BDP-based dimeric aza-BODIPY dyes (BDP 8-11, Figure 4) 
with push-pull structure and large conjugated systems, and were compared with BDP [45]. This is 
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Y. Wang et al. reported a series of BDP-based dimeric aza-BODIPY dyes (BDP 8-11, Figure 4) with
push-pull structure and large conjugated systems, and were compared with BDP [45]. This is expected
to induce bathochromic shift in the absorption and distinct electrochemical properties. The dihedral
angle between the pendant phenyl unit and the BDP-BODIPY core for BDP 8 was around 25◦, which
was 13◦ smaller than BDP 1 [21]. Extending coplanar structure resulted in a strong π–π stacking with
a distance of 3.3 Å for BDP 9, while the same distance for BDP 1 was 3.56 Å. The stronger stacking,
improvement planarity, and extended π-conjugation resulted the absorption of BDP-based aza-BODIPY
dyes exhibiting two peaks between 543 and 650 nm, which was red-shifted almost 100 nm compared
with BDP 2 [21]. The LUMO levels of these molecules were between −4.00 and −4.13 eV, which was
approximately 0.6 eV lower than BDP 2. This study indicated extending the coplanar structure could
lead compounds with stronger electron-deficient properties for electronic device.

2.3. Naphthodipyrrolidone

Naphthodipyrrolidone is a novel chromophore firstly developed by Zhang and Tieke [20,46].
The chemical structure of this chromophore is analogy to isoDPP and BDP (Figure 1), except the core of
the NDP is tetracyclic. NDP was obtained from 1,5-naphthalenediamine with 4-bromomandelic acid
in chlorobenzene followed by ring closure in sulfuric acid at room temperature. The final deep color
originates from the quinonoid structure of the central core unit, which was obtained upon oxidation of
the phenylene unit with potassium persulfate in good yield, typically over 70% (Scheme 5). To enhance
the solubility of NDP in common organic solvents, different scale of alkylation can be used (NDP 1 and
2, Scheme 5).

H. Zhang et al. analyzed the single crystal structure of NDP 2 which showed there was a 24.9◦

torsional angle between the 4-bromophenyl ring and the NDP core [20]. This value was 13.1◦ smaller
than BDP 1, indicating NDP with a more planar structure [21]. The crystal packing showed that the
molecules adopt a weak, intermolecularly slipped π–π stacking separated by the distance of 3.38 Å, in
other words, clearly shorter than similar analogues BDP 1 (3.56 Å) and isoDPP 4 (3.5 Å). This indicated
a stronger π–π interaction was happened in NDP. The UV/vis absorption maximum of NDP was located
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at 567 nm, which was 219 nm and 109 nm red-shifted compared with isoDPP 4 and BDP 2 [21,29]. The
bathochromic shift caused by the core extension. The NDP chromophore exhibited low fluorescence
but high absorbance efficiency. In solution state, this chromophore was very stable under ambient light,
but easily decomposed upon UV-light irradiation. However, BDP was stable at both conditions. Soon
thereafter, Z. Deng et al. used bithiophene to substitute both side of the NDP [47]. Using obtained
molecule to construct OFETs showed n-type behavior with a µe up to 0.26 cm2 V−1 s−1. However,
similar BDP-based molecule exhibited p-type behavior with a µh of only 0.09 cm V−1 s−1. This study
indicates that extension of π-conjugated system is a useful strategy to increase the performance of
semiconductors. NDP is a promising chromophore for n-type semiconductor. The solid packing,
UV/vis and electrochemical properties, as well as electronic device performance based on the part of
the three small molecules are summarized in Table 1.Polymers 2018, 10, x FOR PEER REVIEW  8 of 22 
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Table 1. List of properties of small molecules based on isoDPP, BDP, and NDP.

Polymers
π-π Stacking

Distance
Å

UV/vis [nm]
In Solution/In

Thin Film

Band Gap
[eV]

Eg
opt/Eg

ec

µe
cm2 V−1 s−1

µh
cm2 V−1 s−1

PCE
[%] Ref.

IsoDPP1 – 352,534/356,512 1.93/1.68 – – 1.26 [28]
IsoDPP2 – 352,533/352,519 1.90/1.66 1.32 [28]
IsoDPP3 – 352,534/356,516 1.90/1.68 – – 1.56 [28]
IsoDPP4 3.5 – – – – – [29]
IsoDPP5 3.7 – – – – – [29]
IsoDPP7 6.969 437/– – – – – [30]
IsoDPP8 – – 2.78/2.65 – – – [32]
IsoDPP9 3.34 – – – – – [32]

BDP1 3.56 458/– –/2.20 – – – [21]
BDP2 – 458/523 –/2.37 – – – [21]
BDP3 – 478/531 2.05/– – – – [37]
BDP4 – 478/504,555 2.00/– – – – [37]
BDP6 – 463,519/– – 8.21 × 10−2 [40]
BDP7 – 463/– – 1.8 × 10−3 – [40]
BDP9 3.3 583,630/– 1.79/1.30 – – – [45]

BDP13 3.29 559/593 1.38/1.67 – – – [43]
NDP2 3.38 567/– 1.46/1.48 1.0 × 10−2 – – [74]

Eg
opt: optical band gap; Eg

ec: electrochemical band gap; –: not available.

3. Polymers

Materials having a delocalized electron system can absorb sunlight, create photogenerated charge
carries, and transport these charge carries [48]. Compared corresponding small molecules, π-conjugated
polymers normally have a bathochromic shift in the absorption and match the sunlight spectrum due
to the π-extension during the polymerization. Furthermore, it also exhibits high charge mobility due to
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the stronger intermolecular reaction. Polymers often show higher thermal stability and photostability
compared with corresponding monomers. Thus, the π-conjugated polymers, especially containing the
D–A system in the structure, receive significant attention as n-type materials in bulk heterojunction
(BHJ) solar cells and semiconductive materials in OFETs [49–54].

3.1. IsoDPP

Recently, DPP-based polymers have been widely explored and used in various electronic devices,
such as OFETs, BHJ solar cells, and hole transfer materials in perovskite solar cells, among which,
electronic devices have showed excellent performances [55–60]. It is expected that isoDPP polymers
present similar device performance as their DPP analogues. However, compared to DPP-based
polymers, isoDPP-based polymers have not been widely utilized.

In 2012, B. Tieke and co-authors reported the first isoDPP-based polymers upon Suzuki reaction
between isoDPP and fluorene units (P1,P2, Figure 5) [19]. P1 and P2 are similar in chemical structure.
For the polymer backbone, P1 was along the 1- and 4-position of the isoDPP core, while P2 was along
3- and 4-position. The physical UV/vis absorption properties were remarkable different between P1
and P2. The UV/vis absorption of P2 was blue-shifted by 50 nm compared with P1, which can be
ascribed to the fact that π-conjugation of polymer backbone was interrupted at the lactam N-atoms
for P2. This phenomenon also happened in the DPP-containing polymers [61]. Polymers with good
π-conjugation could be obtained along 3- and 6-positions of isoDPP core.

Polymers 2018, 10, x FOR PEER REVIEW  10 of 22 

 

early precipitation during the polymerization. Atomic Force Microscopy study showed that the 
annealed surface of P4/PC61BM film was smooth and homogeneous. The device based on 
P4:PC61BM (1:1) blending with thermal treatment at 140 °C showed a Voc of 0.86 V, a Jsc of 5.02 
mA/cm2, and a FF of 0.29, giving a PCE of 1.24% which was sight lower than P3 [63]. These studies 
indicated that the monomer solubility and molecular weight of the polymers are crucial for electronic 
device application. IsoDPP containing polymers are good materials for BHJ solar cells if the molecular 
weight can be modified and the morphology can be improved.  

To obtain soluble polymers with high molecular weight, large scale alky chain substitution at 
the N position in isoDPP monomer core could be used. Upon Stille coupling and 4-methylundecane-
alkylated isoDPP as monomer, a series of polymers (P8-13, Figure 5) with high molecular weight up 
to Mn of 33.2 kDa and polymer dispersity index (PDI) of 2.77 were obtained [32]. All polymers 
exhibited LUMO energy levels around –3.5 eV, which was almost 0.3 eV higher than PC71BM, 
ensuring efficient exciton dissociation. These polymers showed broad UV/vis absorption in the 
visible with maxima from 533 to 679 nm. This matched well the sun light spectrum. P9 exhibited a μh 
as high as 0.03 cm2 V−1 s−1, whereas the mobilities of other polymers were lower, in the range of 10–4 
cm2 V−1 s−1. The device performance of P9-based polymer was found Voc of 0.76 V, Jsc of 10.28 mA/cm2, 
and FF of 0.65, giving a PCE of 5.1%, which indicated isoDPP was a promising acceptor building 
block for OPV. Studies regarding isoDPP based materials in solar cells were quite rare, among which, 
this was the best performance. Further studies on the devices using isoDPP polymers should be 
continued.  

N

N

O

O
C6H13

C6H13

N

N

O

O

C6H13

C6H13

P1 P2

N

N

O

O

S

S

C4H9

C4H9
N

C8H17

P3

C8H17

N

N

O

O

S

S
S

C4H9

C4H9

P4 x = 1
P5 x = 2

x

P6 R = butyl
P7 R = oxy-phetyl

N

N

O

O

S

S

P8

C4H9 C6H13

C4H9
C6H13

3 N

N

O

O

C10H21

C10H21

S

S

P9

S

Si

S

C4H9

C2H5 C4H9
C2H5

N

N

O

O

S

S

P10  R = C12H25, x = 2 
P11  R = OC12H25, x = 0

C4H9 C6H13

C4H9
C6H13

S
S

S
S

R

R

N

N

O

O

S

S

C4H9 C6H13

C4H9
C6H13

S

S
R

R

P12 R = dodecyl
P13 R = oxy-dodecyl

N

N

O

O

S

S

P14

S
N

N

O

O

S

S

S

S

O

P15

Si

S
C6H13

C6H13

C2H5

C4H9

C4H9

C2H5

C6H13

C6H13
O

C4H9
C2H5

C4H9C2H5

N

N

O

O

S

S

P16

C12H25

C12H25

N

N

O

O

C8H17

C10H21

C8H17

C10H21

S

S

n

nn

n

n

n

n

n

n
n

n

n

N

N

O

O

S

S

R

R

C6H13

C2H5
C6H13

C2H5
x

 
Figure 5. Chemical structure of polymers based on isoDPP. 

For solar cell materials, the photostability is an important characteristic which notable influence 
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Carbazole is a promising electron rich unit for high-performance solar cell polymers [62,63]. S.
Song et al. used carbazole as donor unit synthesized with D–A typed isoDPP-polymer (P3, Figure 5)
and used it in PV device application [64]. P3 exhibited a good thermal stability with 5% weight
loss of 428 ◦C and glass transition temperature (Tg) occurred at 137 ◦C, which was similar to the
copolymer containing DPP and carbazole unit in the main chain with Tg of 155 ◦C [61]. The LUMO
of P3 derived from cyclic voltammetry was −3.56 eV. The UV/vis absorption maxima of P3 located
at 545 and 548 nm in solution and film, respectively, which was almost 40 nm red shifted compared
with similar polymers in structure containing DPP units. [65] This may be because P3 had a higher
molecular weight compared with the DPP one, which favorited the bathochromic shit. The device
based on P3:PCBM (1:2) blending using dichlorobenzene without thermal treatment showed a good
Voc of 0.82 V, a Jsc of 6.28 mA/cm2, and a fill factor (FF) of 0.39, giving a PCE of 2.0%. The performance
of this device was improved compare to the one based on small molecular of isoDPP (isoDPP 4-6
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exhibit PCE between 0.93% and 1.56%). R. Gironda et al. reported four polymers based on isoDPP
as acceptor unit and thienyl or fluorine as donor group (P4-P7, Figure 5) [66]. P4 and P5 exhibited
extremely low number molecular weight (Mn) around 2 kDa while the Mn of P6 and P7 were 8.2 and
13.7 kDa, respectively. The low Mn could be ascribed to the poor solubility of the growing polymer
caused by early precipitation during the polymerization. Atomic Force Microscopy study showed
that the annealed surface of P4/PC61BM film was smooth and homogeneous. The device based on
P4:PC61BM (1:1) blending with thermal treatment at 140 ◦C showed a Voc of 0.86 V, a Jsc of 5.02 mA/cm2,
and a FF of 0.29, giving a PCE of 1.24% which was sight lower than P3 [63]. These studies indicated
that the monomer solubility and molecular weight of the polymers are crucial for electronic device
application. IsoDPP containing polymers are good materials for BHJ solar cells if the molecular weight
can be modified and the morphology can be improved.

To obtain soluble polymers with high molecular weight, large scale alky chain substitution at the N
position in isoDPP monomer core could be used. Upon Stille coupling and 4-methylundecane-alkylated
isoDPP as monomer, a series of polymers (P8-13, Figure 5) with high molecular weight up to Mn of 33.2
kDa and polymer dispersity index (PDI) of 2.77 were obtained [32]. All polymers exhibited LUMO
energy levels around −3.5 eV, which was almost 0.3 eV higher than PC71BM, ensuring efficient exciton
dissociation. These polymers showed broad UV/vis absorption in the visible with maxima from 533
to 679 nm. This matched well the sun light spectrum. P9 exhibited a µh as high as 0.03 cm2 V−1 s−1,
whereas the mobilities of other polymers were lower, in the range of 10−4 cm2 V−1 s−1. The device
performance of P9-based polymer was found Voc of 0.76 V, Jsc of 10.28 mA/cm2, and FF of 0.65, giving
a PCE of 5.1%, which indicated isoDPP was a promising acceptor building block for OPV. Studies
regarding isoDPP based materials in solar cells were quite rare, among which, this was the best
performance. Further studies on the devices using isoDPP polymers should be continued.

For solar cell materials, the photostability is an important characteristic which notable influence
the lifetime of device. H. Zhang et al. reported P14 and P15 (Figure 5) and studied the photostability of
the isoDPP-based polymers. The structures of these two polymers were similar to P9 and P12 except
that the N-alkylation of the isoDPP core was different [23]. After exposing the polymer solution under
UV-light irradiation for one hour, the absorption spectrum was almost no change. This indicated
the isoDPP-polymers showed good photostability, whereas polymers containing DPP unit in the
main chain were easily to be photo-decomposed [67]. The photostability of the chromophore was
significantly enhanced after exchanging the position between amide and carbonyl units. In this work,
the authors also studied the electrochromism properties of the polymer. P14 showed a reversible
electrochromism with isosbestic point near 710 nm, which indicated a red-shift of the absorption can
be reached upon oxidation of the polymer backbone. Later, the same group using electrochemical
polymerization methods obtained few isoDPP polymers, which also showed similar performance [68].

Except solar cells, isoDPP polymers are promising in OFETs. Very recently, X. Guo et al. reported
copolymer containing isoDPP (P16, Figure 5) and DPP in the polymer backbone [69]. P16 afforded
good order and quite close packing distance of 0.38 nm in the solid state, resulting it with good charge
carrier transport ability. Bottom-gate, bottom-contact (BG,BC) OTFT was fabricated by drop-cast
semiconductor onto the substrates, followed by annealing at 120 ◦C for 1 h, which exhibited an
ambipolar transport like most DPP polymers. The OTFTs exhibited a high and balanced holes
and electrons mobilities with values up to 0.02 cm2 V−1 s−1, which was 2–3 orders of magnitude
higher than the reported DPP-based ‘homo’-polymer [70]. Later, H. Zhang et al. prepared P14 with
weight molecular weight (Mw) of 45.2 kDa. This polymer showed a µh of 0.09 [71]. Upon thiolation
reaction by Lawesson regent, altering oxygen atom into sulfur atoms in the isoDPP core resulting
isoDTPP, could not only alter the materials optical properties, but also change its electrochemical
characteristics. IsoDTPP-based polymers showed red-shifted in the UV/vis absorption and narrow
band gap compared to isoDPP-based polymers. In addition, the thiolated polymer showed enhanced
ambipolar transporting ability with the µh increasing from 0.09 cm2 V−1 s−1 to 0.46 cm2 V−1 s−1, and an
µe enchantment from non-detectable to 0.26 cm2 V−1 s−1. The thiolation reaction is a useful and simple
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method to optimize the frontier molecular orbitals and improve OFET performance. For isoDPP based
polymers, optimizing the structure along the polymer backbone and developing new applications
require significantly more research.

3.2. Benzodipyrrolidone

Benzodipyrrolidone as a novel electron acceptor was successfully incorporated into several
polymers. The performances of BDP based polymer electronic devices have been studied. Compared
with isoDPP polymers, BDP polymers received more attention in the last few years. Through
Suzuki coupling with good solubility in common organic solvents, F. Wudl et al synthesized the two
BDP-containing polymers (P17 and P18, Figure 6) in 2011 [21]. The polymers showed good thermal
stability of 5% weight loss occurring around 290 ◦C. P18 showed 90 nm red-shifted compared with
isoDPP polymer with similar chemical structure [39]. This could be because BDP is a more strongly
electron deficient than isoDPP, and shows a higher degree of backbone coplanarity. Compare to P17,
in solution state, the maximum UV/vis absorption of P18 was 55 nm red-shifted (579 nm). This may be
because thiophene is a stronger electron donating unit and favors intramolecular charge transfer. P17
BG,BC OFET exhibited n-channel performance with an µe of 2.4 × 10−3 cm2 V−1 s−1 after annealing at
240 ◦C, while the µe and µh of P18 was 6.4 × 10−3 and 3.5 × 10−3 cm2 V−1 s−1, respectively. The low
charge transfer mobility of P18 could be ascribed to the low Mn of only 8 kDa (PDI: 2.29). Later, Janssen
et al. reported P18 with higher Mn of 13.9 and PDI of 2.3 [72]. The P18 OTFT performance showed
well-balanced µe and µh of 2.1 × 10−1 and 1.8 × 10−1 cm2 V−1 s−1, respectively, which showed the best
performance for BDP based materials until now. The maximum of UV/vis absorption was 36 nm and
60 nm red-shifted in solution and thin film, respectively, compared with the one reported by Wudl [21].
The bathochromic shift was caused by that the high molecular weight improved intramolecular charge
transfer mobility. KC Lee et al. reported the similar polymer P20 with even higher molecular weight
with Mn of 37 and PDI of 1.13 [73]. After annealing at 200 ◦C, this polymer showed an µe and a µh of
only 1.1 × 10−2 and 1.2 × 10−2 cm2 V−1 s−1, respectively, which was significantly decreased compared
with the P18 reported by Janssen [72]. The decreasing charge transport was possibly be related to the
idea that the device was fabricated on glass substrate with a poly(methyl methacrylate) gate dielectric
layer instead of Cytop dielectric and dielectric layer. To study the effects of actual ‘chalocogen atoms’
on OFET, the authors employed furan (Fu) and selenophene (Se) units into the polymer backbone,
resulting polymers P19 and P21 (Figure 6). P20 and P21 had a rather crystalline domains with edge-on
orientation, while P19 had a rather amorphous nature. The M. Du group reported that carriers migrate
more easily along the path through crystalline grains than the amorphous film [74]. Among these
three polymers, the highest charge transfer mobility was found in P21, which could be caused by the
strongest electron-rich property of Se unit and more crystalline formation.

McCulloch’s group reported a series of isoDPP-polymers (P22–26, Figure 6) [75]. The UV/vis
absorption maxima of all polymers in thin film located between 620 and 650 nm except P25 and P26
being of 687 and 554 nm, respectively. The red shifting or blue shifting could be ascribed to the strong
or weak push–pull and the intermolecular charge transfer band character of the polymers. In these
polymers, P25 exhibited strongest push-pull effect. P23 exhibited the highest degree of crystallinity
and a root mean square (RMS) roughness (1.82 nm) with the lowest µe of 1 × 10−3 cm2 V−1 s−1 among
these polymers, while P25 showed the lowest RMS roughness at 0.4 nm, but highest µe of 1 × 10−2 cm2

V−1 s−1. This indicated that the polymer film surface roughness and push-pull effect could notable
influence the charge carrier mobility.
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For the purpose to reduce the LUMO energy levels of polymers based on BDP, Zhang et al.
reported an effectively strategy, which introduce the N-acylated BDP instead of N-alkylated BDP
into the backbone of polymers (P29–P32, Figure 6) [37]. The studies showed that the N-acylated
polymers (P30, P32) exhibit a LUMO level reduction of 0.3 eV and a 40 nm red-shift in the absorption
compared with N-alkylated polymers (P29, P31). The N-acylated polymer P32 exhibited a good OFET
device performance with an µe of 1.2 × 10−3 cm2 V−1 s−1 while the N-alkylated version (P31) showed
5.34 × 10−4 cm2 V−1 s−1. This novel method (N-acylation instead of N-alkylation) is not limited to BDP
building block and can be applied to other chromophores containing five-membered lactam unit such
as DPP, NDP and isodindigo. Later, alky- and acetal-type side chain-substituted BDP polymers were
compared and studied (P27, P28, Figure 6). The alkylated polymer (P27) showed a µh of 1.8 × 10−2 cm2

V−1 s−1 after annealing at 120 ◦C for 5 min, while the polar acetal side chain-substituted polymer (P28)
exhibited an optimal µh of 2.6 × 10−2 cm2 V−1 s−1, which was almost 1.5 times larger than P27 [76].
The solubility of P28 was improved compared to P27. This study indicated that an acetal-type side
chain substitution could not only enhance the solubility of polymers, but also has significant impacts
on the performance of OTFT. In a recent study, Zhang, et al. firstly reported the photostability of
BDP-containing polymer. The polymer was quite stable under UV-light irradiation with k value of
0.68 h−1 [39]. The BDP-based polymers seem less stable than the isoDPP-based polymers [26], but are
more stable than the DPP ones [67].

High charge mobility, low HOMO energy levels, and small band gaps, combined the broad
UV/vis absorption render the BDP-based polymers interesting as building blocks for organic solar
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cells. However, there have only two articles reported the solar cells performance based on BDP-based
polymer (P33, Figure 6), which showed PCE of 2.6% with a Jsc of −7.87 mA cm−2, a FF 44.6% and
a Voc of 0.74 V (OPV structure: ITO/PEDOT:PSS/P33:PCBM(1:2)/-LiF/Al) [77]. However, M. Yu et al.
predicted the PCE of substituted phenyl-flanked BDP-based polymers could reach up to 10% through
computation, which shows that the BDP-based polymers are great candidates for application in high
performance OSCs [78]. Further studies on solar cells device based BDP polymers, typically the
thienyl-flanked ones, should be continued soon. Compared to the polymer containing isoDPP units,
the BDP versions show lower LUMO and HOMO levels, smaller band gap, and bathochromic shift in
the UV/vis absorption.

In order to obtain a broad absorption in the near-infrared region even infrared region of low
band gap polymers, thiophene-flanked BDP was introduced to the backbone of polymers forming P34
to P39 [43,44]. The polymers exhibited UV/vis absorption maxima between 640 and 1006 nm in the
solid state, an optical band gaps between 0.79 and 1.27 eV and 5% weight loss occurring around or
above 400 ◦C. P38 OFETs showed a good µh and µe of 0.2 and 0.1 cm2 V−1 s−1, respectively, while the
value of P39 was 0.08 and 0.01 cm2 V−1 s−1 respectively. Such high charge mobility combined a strong
overlap with the solar radiation spectrum renders the thiophene-flanked BDP polymers suitable for
solar cells application.

3.3. Naphthodipyrrolidone

Polymers containing NDP unit in the main chain have received the least attention among
the three reviewed chromophore-polymers, which is likely due to the fact that the NDP pigment
was not developed until very recently (2014). Until now, only four articles have reported the
synthesis and properties of NDP-based polymers. The first NDP-polymer P40 (Figure 7) was
prepared upon Stille coupling of symmetric di-N-alkylated 3,8-di(4-bromophenyl)-NDP (NDP-2)
and 2,5-bis-(trimethylstannyl)thiophene with Mn of 7.5 kDa and PDI of 2.2 [20]. P40 is soluble in
common organic solvents showing a blue color. The maximum absorption of P40 was located at
615 in solution with extinction coefficient of 2.8 × 104 L mol−1 cm−1, which was red-shifted almost
126 and 36 nm compared by the isoDPP- and BDP-based polymers (P17) with similar in chemical
structure, respectively [19]. The bathochromic shift could be ascribed the NDP core exhibits the largest
π-conjugation in these three chromophores.
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Later, the same group reported another four D–A copolymers constructed by NDP as acceptor, and
fluorine (P42, P43) or benzo[1,2-b:4,5-]dithiophene (BDT, P46, P47) as donor units [46]. All the polymers
exhibited broad optical absorption between 400 nm and 1000 nm, and a narrow band gap (1.30 to
1.60 eV). Compared to the fluorine-based polymers, the BDT-based materials showed bathochromic
shift in the UV/vis absorption and smaller electrochemical band gap. This could be ascribed to the
stronger D–A interaction formed in the BDT polymers, which resulted in improved intramolecular
charge transfer within the polymer backbone. The photostability of the NDP-base polymers was
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studied in this work. During the light irradiation, polymers solution was extremely stable under
ambient light condition but easily decomposed during the UV light irradiation. In the solid state, the
polymers were stable even exposing UV light. Recently, Y. Zhu’s group synthesized Boc-substituted
NDP polymer (P44, Figure 7) and used it to construct OFET, which showed n-type behavior with
an µe of 2.4 × 10−4 cm2 V−1 s−1 [79]. After thermal annealing, the Boc unit could be decomposed,
while hydrogen-bonded (NH...OC) crosslinked polymers were formed (P45). The hydrogen bonded
polymer showed an µe of up to 0.01 cm2 V−1 s−1, which was almost 40 times higher than the P44.
The improvement charge transfer value could be ascribed to the hydrogen-bonding network formed
between the amide and carbonyl unit, which not only shortened the distance between the neighboring
polymer backbones, but also favored the formation of an ordered structure [80–82]. Soon after, the
same group used P47 to construct OFET showing ambipolar semiconducting behavior with a µh

of 0.015 cm2 V−1 s−1 and an µe of 0.227 cm2 V−1 s−1. In this work, another polymer (P41) using
bithiophene as donor unit was synthesized, which showed an µe of even up to 0.667 cm2 V−1 s−1 [83].
The charge carrier mobility was only one order magnitude lower when the device was exposed in air
after one week. In most cases, the n-type organic FETs are easy to be doped and sensitive in ambient
environment, implying good stability. The NDP chromophore is a promising acceptor building block
in building high performance n-type semiconductors. Due to the NDP-based polymers shows broad
optical absorption, narrow band gap and high charge carrier mobility, they show good potential for
solar cells. The optical and electrochemical properties, as well as electronic device performance based
on the part of the three small molecules are summarized in Table 2.

Table 2. List of properties of polymers based on isoDPP, BDP, and NDP.

Polymers Mn
[kDa]/PDI

UV/vis [nm]
In Solution/In

Thin Film

Band Gap
[eV]

Eg
opt/Eg

ec

µe
cm2 V−1

s−1

µh
cm2 V−1

s−1
PCE [%] Ref.

P1 7.6/1.3 328, 409/ 1.94/1.95 – – – [19]
P2 3.4/1.4 331, 360/ 2.07/1.83 – – – [19]
P3 10.1/1.9 545/548 1.83/1.87 2.0 × 10−5 – 2 [64]
P4 2.3/2.0 585/– – – – 1.24 [66]
P5 1.7/1.9 584/480 1.71/ – – 0.23 [66]
P9 21.1/1.5 569/642 1.59/1.99 – 3.4 × 10−2 5.1 [32]

P16 73.0/5.1 751,785/756,825 1.23/1.66 2.0 × 10−2 2.0 × 10−2 – [69]
P17 19.1/2.1 524/538 1.9/– 2.4 × 10−3 – – [21]

P18
7.1/2.3 579/579 1.68/– 6.4 × 10−3 3.5 × 10−3 – [21]

13.9/2.3 615/639 1.69/1.72 1.8 × 10−1 2.1 × 10−1 – [72]
P19 25.0/1.6 602/622 1.66/– 7.0 × 10−3 – – [73]
P20 37.0/1.1 611/630 1.67/1.76 1.1 × 10−2 1.2 × 10−2 – [73]
P21 74.0/1.7 611/652 1.64/1.73 1.9 × 10−2 1.7 × 10−2 – [73]
P22 17.0/2.5 602/624 1.58/– 1.0 × 10−3 – – [75]
P23 15.0/3.4 613/631 1.61/– 1.0 × 10−3 – – [75]
P24 20.0/2.3 622/647 1.49/– 2.0 × 10−3 – – [75]
P25 21.0/2.0 661/687 1.49/– 1.0 × 10−2 – – [75]
P26 24.0/1.3 543/554 1.85/ 1.0 × 10−2 – – [75]
P31 49.0/2.5 621/632 1.56/2.04 5.3 × 10−4 – – [37]
P32 23.0/2.3 645/673 1.44/1.72 1.2 × 10−2 – – [37]
P38 34.0/1.7 –/960 1.03/– 1.0 × 10−1 2.0 × 10−1 – [44]
P40 7.6/2.2 615/678 1.38/1.41 – – – [20]
P41 14.9/2.8 675/703 1.39/1.47 6.7 × 10−1 7 × 10−3 [83]
P44 18.7/2.1 626/640 1.57/1.68 2.0 × 10−4 – – [79]
P45 – –/665 1.46/1.48 1.0 × 10−2 – – [79]

Eg
opt: optical band gap; Eg

ec: electrochemical band gap; –: not available.

4. Conclusions and Outlook

In this article, small molecules and polymers based on high-performance pigments such as isoDPP,
BDP, and NDP have been reviewed. These pigments are similar in chemical structure and show similar
properties. The three reviewed chromophore exhibit electron-deficient characteristic. Using these
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monomers for polymerization, the obtained polymers exhibit often deep color with high extinction
coefficient and extremely weak luminescent with quantum yields below the detection limit. The cores
of the compounds are coplanar, which ensure full conjugation. After N-substitution, these pigments
with bi-bromine atoms exhibit good solubility properties in common organic solvents, and are thus
suitable for polymerization. For the N-substitution, N-acylation instead of N-alkylation can reduce the
LUMO levels of the compounds (P 29 and 30; P31 and 32). Acetal-type side chains can also impact
polymer OFET performance (P27 and P28). The substituted Boc unit on the amide group can be
decomposed upon thermal annealing while hydrogen bonds are forming. The formed hydrogen bonds
reassemble the molecular packing, leading to more ordered structures and cross-linking-liked materials
are formed, which result in notable improvements in electronic device performance (BDP 6 and 7; P44
and 45). However, the polymer solubility can be affected when Boc-substituted pigments are used
for polymerization.

Regarding the synthesis of the monomers, thiophene-flanked isoDPP and BDP have been
developed. The UV/vis absorption maxima of thienyl-flanked isoDPP or BDP chromophores exhibit
red shifting of almost 50 nm (between isoDPP 4 and isoDPP 5) or 101 nm (between BDP 2 and BDP
13) compared to the phenyl-flanked versions, respectively. This can be ascribed to the fact that the
thienyl unit is a more electron-rich unit compared with the phenyl unit, and a D–A system formed,
which favors a bathochromic shift. In thienyl-substituted chromophores, due to the sulfur-oxygen
interactions, the thienyl-flanked pigments show planar structures. Extending coplanar structures will
lead to strong π–π stacking, bathochromic shifts, and lower LUMO values (BDP 8 to 11). Polymers
using the thiophene-flanked chromophore as the monomer often show broad optical absorption,
a strong push-pull system, and good planarity in the backbone, where each property favors good
performance in electronic devices. It is desirable to further optimize the chemical structure of these
pigments, such as by using different electron-rich capability units, including furan, selenophene, and
thieno[3,2-b]thiophene, instead of phenyl or thiophene units to flank the core of these chromophores.

π-Conjugation extension can alter the material properties and improve pigments electronic device
performance. Even though the structures among isoDPP, BDP, and NDP are similar, their optical
properties, as well as their molecular packing and stability, are different with respect to core extension.
For instance, (i) The UV/vis maxima exhibit a bathochromic shift in order from isoDPP (348 nm, isoDPP
4) to BDP (458 nm, BDP 2), and NDP (567 nm, NDP 2). This can be ascribed to a larger π-conjugated
extension; (ii) The core extension leads to molecules with short distances between the adjacent molecules
(3.5 Å for isoDPP 4, 3.56 Å for BDP 2, and 3.38 Å for NDP 2), which favors strong π–π stacking and
increased charge transfer mobility; (iii) The chromophore stability decreased during the core-extension.
IsoDPP shows good stability under UV light, while the NDP is easily decomposed in the solution state;
(iv) With π-conjugation extension, the charge mobility can be significantly improved and the OFET
channel can be altered. NDP-based materials often exhibit n-type or ambipolar characteristics, while
isoDPP and BDP show p-channel characteristics.

For this field of research, further enlargement of the core of the chromophore or flanked units has
become favored. Compared with DPP-based materials, materials based on the reviewed chromophore
are significantly less studied. With further structure optimization, more developments in applications,
such as organic solar cells, OFETs, and dopant-free hole transfer in perovskite solar cells, can
become both desirable and attainable. In conclusion, this article reviewed polymers based on isoDPP,
BDP, and NDP chromophores, where generalized insights into structure−property relationships
of different heteroaromatic blocks in bislactam-based D−A polymers were given, which should
facilitate the continued design of high-performance polymers for the promotion in π-conjugated
materials applications.
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