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Resting-state functional magnetic resonance imaging (RS-fMRI) is used to investigate brain func-
tional connectivity at rest. However, noise from human physiological motion is an unresolved prob-
lem associated with this technique. Following the unexpected previous result that group differences 
in head motion between control and patient groups caused group differences in the resting-state net-
work with RS-fMRI, we reviewed the effects of human physiological noise caused by subject motion, 
especially motion of the head, on functional connectivity at rest detected with RS-fMRI. The aim 
of the present study was to review head motion artifact with RS-fMRI, individual and patient pop-
ulation differences in head motion, and correction methods for head motion artifact with RS-fMRI. 
Numerous reports have described new methods [e.g., scrubbing, regional displacement interaction 
(RDI)] for motion correction on RS-fMRI, many of which have been successful in reducing this neg-
ative influence. However, the influence of head motion could not be entirely excluded by any of these 
published techniques. Therefore, in performing RS-fMRI studies, head motion of the participants 
should be quantified with measurement technique (e.g., framewise displacement). Development of a 
more effective correction method would improve the accuracy of RS-fMRI analysis.
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Introduction
Resting-state functional magnetic resonance imag-

ing (RS-fMRI) is used to investigate brain functional 
connectivity in attention-deficit/hyperactivity disorder 
(ADHD),1 bipolar disorder,2 multiple sclerosis,3 major 
depression,4 epilepsy,5 preclinical Alzheimer’s dis-
ease,6 and Parkinson’s disease,7 as follows:

	 i.	 ADHD1: most studies have been consistent in 
supporting three interrelated themes: cognitive 
control—default mode network (DMN) anticor-
relations are attenuated in ADHD; connectivity 
within the DMN itself is reduced in ADHD; and 
connectivity patterns, at least based on the DMN 
and cognitive control—DMN anticorrelations, 

reveal parallel structural MRI findings in ADHD 
that suggest delayed neuro maturation.

	 ii.	 Bipolar disorder2: most studies have supported the 
theory of cortico-limbic regulation and have sug-
gested that connectivity is more complex than a 
simple increase or decrease in connectivity between 
cortico-limbic networks, on the basis that different 
subregions of one brain area may have different 
connectivities with other brain areas. Nonetheless, 
the findings are preliminary, sometimes even con-
tradictory, and do not allow a complete understand-
ing of connectivity in bipolar disorder.

	iii.	 Multiple sclerosis3: many studies have shown that 
the increased resting-state network connectivities of 
the dorsal fronto-parietal network, the right ventral 
fronto-parietal network, and the prefronto-insular 
network are correlated negatively with the multiple 
sclerosis functional composite score.
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	iv.	 Major depression4: one of the most robust patterns 
that has emerged from many studies is the abnor-
mal involvement of the cortico-limbic mood-reg-
ulating circuit in major depression. In addition, in 
depressed patients, structures in the limbic area 
that have abnormal activation include the medial 
thalamus, which is thought to be involved in emo-
tional perception and in the amygdala.

	 v.	 Epilepsy5: most studies have found that abnormal 
synchronization is widespread in medial temporal 
lobe epilepsy patients. For example, in addition 
to abnormal networks of epileptic foci, RS-fMRI 
studies have found decreased functional connec-
tivity in the attentional, perceptual, and DMNs, as 
well as in the subcortical regions.

	vi.	 Preclinical Alzheimer’s disease6: With regard to 
mild cognitive impairment, significantly decreased 
DMN connectivity has been observed in cognitively 
normal elderly persons with elevated brain amyloid. 
Furthermore, connectivity between the precuneus 
and hippocampus is significantly lower in individuals 
with amyloid plaques versus those without evidence 
of brain Aβ plaques. This finding indicates that resting 
state functional disconnection had already occurred in 
nondemented aging in the presence of Aβ plaques.

	vii.	Parkinson’s disease7: most studies have found 
dysfunction in multiple areas of the resting brain 
in individuals with Parkinson’s disease. This dys-
function in resting activity extends beyond the 
sensorimotor network to include areas across the 
fronto-parietal and visual networks, as well as the 
DMN. In addition, resting activity within the pos-
terior putamen may play a significant role in the 
motor abnormalities seen in Parkinson’s disease.

There has been a rapid increase in research with 
RS-fMRI into clinical disease. However, there are 
numerous controversial issues associated with RS-fMRI, 
including noise from human physiological factors such as 
head motion, respiratory motion, arterial carbon dioxide 
(CO2) concentration, blood pressure, cerebral autoregula-
tion, and vasomotion, as follows:

	 i.	 Head motion: head motion causes the content of each 
voxel to change, altering the uniformity of the mag-
netic field that has been shimmed for a particular head 
position. When head motion occurs during scanning, 
it alters the steady state magnetization by changing 
the time between excitations in those parts of tissue 
that have moved from one slice to the next.8

	 ii.	 Respiratory motion: changes in the magnetic field 
due to respiration can cause a shift of the MR image 
in the phase-encoding direction, and the small 
amount of head motion that occurs during breath-
ing alters the spin history in a spatially dependent 
manner.8

	iii.	 Arterial CO2 concentration: the CO2 in arterial blood 
is a potent vasodilator, producing a global increase 
in cerebral blood flow, which in turn reduces the 
deoxyhemoglobin concentration, resulting in a 
longer T2*. This change in T2* causes blood-oxy-
gen-level-dependent (BOLD) signal changes.8

Other possible sources of noise include blood pres-
sure, cerebral autoregulation, and vasomotion.

Following the surprising results of previous reports that 
group differences in head motion between control and 
patient groups cause group differences in the resting-state 
network with RS-fMRI,9–16 we became interested in the 
motion of the head in particular, in human RS-fMRI 
studies of physiological noise. Van Dijk et al. explored 
the influence of head motion on RS-fMRI estimates, and 
reported that comparisons between groups of individuals 
with subtly different levels of head motion yielded differ-
ence maps that could erroneously interpreted to indicate 
neuronal effects.15 Head motion has been found to be 
responsible for decreasing long-distance correlation and 
increasing local correlations.12,14,15 In addition, group dif-
ferences in head motion have been reported as follows: 
there was significantly more motion in an elderly group 
compared with a young group,9 there was significantly 
more motion in an early adolescence (8–9 years) group 
compared with a youth group (15–22 years),14 impul-
sivity associated with attention deficit hyperactivity 
disorder contributed to head motion,17 and there was sig-
nificantly more head motion in patient populations than 
in controls.18 Therefore, if the effects of motion artifact 
are greater than those of true brain activity, the RS-fMRI 
results might show regions of false brain activity. Our 
aims are to review head motion artifact with RS-fMRI, 
evaluate individual and patient population differences in 
terms of head motion, and investigate correction methods 
for head motion artifact with RS-fMRI.

Head motion artifact with RS-fMRI
The known affected areas and the effects of enhanced 

or diminished connectivity due to head motion artifact 
with RS-fMRI are described as follows:

	 i.	 Regions of the DMN in which artifact have been 
found include the medial prefrontal cortex, lateral 
temporal cortex, and the inferior parietal lobule. 
Dijk et al.15 analyzed the associations between 
head motion and artifact with RS-fMRI, in 10 
groups categorized by the level of head motion. 
Group 1 included subjects with the least head 
motion, and group 10 included subjects with the 
most head motion. The mean distance of motion 
(standard deviation) in group 1 was 0.027 (0.002) 
mm, and that in group 10 was 0.100 (0.021) mm. 
Functional connectivity differences between group 
1 and group 10 were observed throughout the 
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DMN, including the medial prefrontal cortex, lat-
eral temporal cortex, and the inferior parietal 
lobule. In addition, the regions showing differences 
in functional connectivity in the comparison 
between group 3 and group 8 were the same as 
those observed in the comparison between group 1 
and group 10, although the former differences were 
weaker than the latter. Dijk et al. showed that dif-
ferences in head motion yielded difference maps 
that could easily be mistaken for neuronal effects.

	 ii.	 Artifacts enhance the short-range connectivity and 
diminish the long-distance connectivity among net-
work nodes. Bright et al. reported excessive cor-
relation values across the posterior cortices near the 
posterior cingulate cortex seed region.11 Satterthwaite 
et al. showed that the inter-node Euclidean distance 
among 12,720 pairwise connections was robustly 
related to the effect of motion, and that the effect of 
motion transitions from causing increased connectiv-
ity to decreased connectivity at a distance of more 
than 96 mm.14 In their intersubject analysis, Zeng 
et al. identified a correlate of head motion consisting 
of reduced distant functional connectivity primarily 
in the DMN, in individuals who had a large amount 
of head motion.19 Yan et al. showed that high-motion 
datasets exhibited more pronounced negative-mo-
tion–BOLD relationships (esp. prefrontal areas), and 
that low-motion datasets exhibited more pronounced 
positive-motion–BOLD relationships (esp. primary 
and supplementary motor areas).20

Individual differences in head motion
The interpretation of data obtained with RS-fMRI is 

complicated by individual differences in head motion 
if the data include these effects. Meier et al. analyzed 
RS-fMRI data from 26 right-handed younger adults 
(mean age, 24.7 ± 0.9 years; range, 18–35; 12 males, 
14 females) and 26 right-handed older adults (mean 
age, 64.7 ± 1.56 years; range, 55–85; 11 males, 15 
females) obtained from the International Consortium 
for Brain Mapping dataset made publically available 
as part of the 1000 Functional Connectomes project 
(www.nitrc.org/projects/fcon_1000). The results show 
significantly more motion in the older adults compared 
with the younger adults (0.14 ± 0.013 in older adults, 
0.07 ± 0.005 in younger adults) based on the composite 
score of total motion21 for each subject.22 Satterthwaite 
et al. reported a negative correlation (r = –0.34, P = 
2.2 × 10−14) between age and in-scanner head motion 
in 456 individuals (mean age, 15.6 ± 3.4 years, range, 
8–23 years; 199 males, 257 females).14 As mentioned 
above, the effect of head motion in RS-fMRI results is 
influenced by the age of the participants.

Zuo et al. also showed individual differences in head 
motion. They analyzed the data of 234 healthy participants 

in the Nathan Kline Institute–Rockland Sample,23 and 
evaluated head motion in both nonlinear and linear reg-
istrations. The quality of the nonlinear registration was 
quantified by spatial correlation between the registered 
individual image and the Montreal Neurological Institute 
152 standard template with the functional MRI of the 
brain’s nonlinear image registration tool (FNIRT),24 
and the minimal cost of function–structure realignment 
using boundary-based registration (mcBBR) was used 
to quantify the linear registration quality.25 The resulting 
error of nonlinear registration using FNIRT (errFNIRT) 
was 0.10–0.25 and the mcBBR was 0.3–0.6.26

While Zuo et al. showed individual differences between 
inter-subjects, Power et al. evaluated head motion for the 
time course during the RS-fMRI data collection period. 
They measured head motion in 160 subjects and found 
an elevation of head motion during periods of motion.27

Head motion in patient populations and other factors
Autism spectrum disorders (ASDs), stroke, self-reported 

impulsivity scores, sedation, and resting conditions as 
factors influencing head motion are described as follows:
	 i.	 ASD: Tyszka et al. compared head motion between 

ASD and control subjects.28 The participants were 
19 high-functioning adults with ASD and 20 neu-
rotypical controls with no family history of autism. 
Frame-to-frame Euclidean displacement (Δrff) and 
total frame-to-frame angular rotation (Δθff) were 
used to quantify head motion. No significant dif-
ference between the groups were observed in either 
metric, and the effect sizes were small to negligible. 
For frame-to-frame displacements, Δrff was 60 ± 5 
μm (mean ± standard error of the mean) in controls 
and 75 ± 9 μm in ASD subjects (P = 0.1651, unpaired 
t-test, equal variance). For frame-to-frame rotations, 
Δθff was 0.031 ± 0.003° (mean ± standard error of 
the mean) in controls and 0.031 ± 0.003° in ASD 
subjects (P = 0.960, unpaired t-test, equal variance). 
Starck et al. also compared head motion between 
ASD and control subjects.29 The participants were 
30 high-functioning adolescents with ASD and 30 
age- and gender-matched control subjects. Absolute 
(referenced to middle time-point) and relative (com-
pared with previous time-point) estimations were 
used to quantify head motion. These estimates were 
taken as the root-mean-square values of transla-
tional and rotational movements. Relative motion 
was reported as 0.059 mm for control and 0.061 mm 
for ASD subjects (P = 0.37), and absolute motion 
was 0.24 mm for control and 0.37 mm for ASD sub-
jects (P = 0.03). The group averages and group dif-
ferences of the root mean square motion estimates 
were computed by FSL MCFLIRT.30

	 ii.	 Stroke: Seto et al. used task-based fMRI to 
compare head motion between stroke and control 
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subjects.18 The participants were 8 stroke subjects 
(5 males and 3 females; average age, 58 years; 
range, 22–78 years) and 7 age-matched controls (2 
males and 5 females; average age, 59 years; range, 
25–71 years). The sample standard deviation of the 
head motion (with linear drift detrended) (Msd) was 
used to quantify head motion. The metric Msd was 
defined by the formula:

	
Msd

i
N

=
−

−















=∑ (Xi Z)
(N )

2
1

1
2

1
	 (1)

where Xi is the head position measurement at time i, 
X is the mean of all the head position measurements, and 
N is the total number of data points. The average vari-
ance for Msd across all tasks was 0.026 mm2 for the stroke 
group and 0.007 mm2 for the age-matched controls, and 
the stroke group produced greater head motion than the 
age-matched controls. In the present study, we were inter-
ested in head motion in the resting phase, but the results of 
Seto et al. were for motion data obtained during the task 
phase. However, from the Msd data for the resting phase 
that were included in their figure 5, we found equivalent 
values between the stroke and control subject groups.
	iii.	 Self-reported impulsivity scores: Kong et al.17 

showed a positive correlation between the magni-
tude of head motion and self-reported impulsivity 
scores across participants (P = 0.02). Impulsivity 
was assessed using the Barratt impulsiveness 
scale,31 and the participants were 581 college stu-
dents (mean age, 20.5 years; standard deviation, 
0.95; 327 females) from Beijing Normal University, 
Beijing, China.

	iv.	 Sedation: Hlinka et al.32 showed that sedation-in-
duced low-frequency fluctuations (LFFs, 0.01–0.1 
Hz) of fMRI signal increases were mediated by 
increased head motion in 20 healthy volunteers (age 
range, 18–35 years; 18 men, 2 women). Volunteers 
were rescanned within 5 min after they stabilized 
at Ramsay level 3 (patient responds to commands 
only)33 as assessed (by the attending anesthesiol-
ogist) with the subject on the scanner table out-
side the magnet, with the head coil removed. The 
amount of head motion was measured by mean rel-
ative displacement (MRD).32

	 v.	 Resting conditions: Patriat et al.34 investigated head 
motion in three resting conditions: with the eyes 
closed (EC), with the eyes open (EO), and with the 
gaze fixed on a cross (EF) that was back-projected 
onto a screen. The subjects were 25 healthy adults 
(mean age, 35.5 ± 17.7 years; 10 females) with no 
history of neurological or psychological disorders. 
There was no significant difference in the amount 
of motion among the three resting conditions, as 
measured by the MRD. However, the authors rec-
ommended that only one condition should be used 
as the resting condition.

Correction methods for head motion artifact with 
RS-fMRI

Correction methods for head motion artifact with 
RS-fMRI are summarized in Table 1. The various 
methods are discussed as follows:

Power et al.35,36 proposed the scrubbing method for 
correcting head motion with RS-fMRI. This prepro-
cessing technique can be implemented after or as a 

Table 1.  Summary of correction methods for head motion artifact with RS-fMRI

Study Correction technique Characteristics
Power et al. (2012) scrubbing method motion-induced spikes in the RS-fMRI time 

series are identified and excised

Satterthwaite et al. (2013) “improved” preprocessing method performance of 36-parameter + single-TR spike 
regression on an ROI-wise basis

Spisák et al. (2014) regional displacement interaction method information on voxel-wise motion is incorporated 
into the population-level model

Xu et al. (2014) dual-mask sICA method separate decompositions within a brain mask and 
a head mask are applied to time series

Beall et al. (2014) SLice-Oriented MOtion COrrection 
(SLOMOCO) method

slicewise rigid-body motion parameter estimation 
and subsequent correction

Behzadi et al. (2007) anatomical CompCor method estimation of coherent noise components in same 
tissues using principal component analysis

Scheinost et al. (2014) uniform smoothing algorithm method a uniform level of smoothness is created across 
the dataset

Patel et al. (2014) wavelet despike method modeling with wavelet-based method and 
removing secondary motion artifacts from data

Details of the methods are provided in the section “Correction methods for head motion artifact with RS-fMRI.”
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part of standard RS-fMRI preprocessing.37 The scrub-
bing method identifies motion-induced spikes in the 
RS-fMRI time series. These data are excised with a 
temporal mask, and adjacent time points are tempo-
rally concatenated. Yan et al.20 evaluated the ability 
of the scrubbing method to decrease the impact of 
motion on the BOLD signal at the individual level, in 
176 adult subjects (mean age, 20.9 ± 1.9 years; 106 
females). They found that scrubbing of volumes with 
frame-wise displacement >0.2 effectively removed 
negative-motion–BOLD relationships, but posi-
tive-motion–BOLD relationships tended to cluster in 
primary and supplementary motor areas and remained 
even after scrubbing. Based on these findings, they 
concluded that positive relationships might reflect 
neural origins of motion, while negative relationships 
are likely to originate from motion artifact.

Satterthwaite et al.12 compared differences in com-
munity structure between subjects with small and 
large amounts of head motion, for both standard and 
improved preprocessing methods with RS-fMRI. 
“Standard” preprocessing included 9-parameter voxel- 
wise confound regression and a band-pass filter of 
0.01–0.1 Hz; “improved” preprocessing included 
36-parameter + single-TR spike regression performed 
on an ROI-wise basis, followed by band-pass filtering 
at 0.01–0.08 Hz. “9 parameters” included 6 standard 
motion parameters (x, y, z translations and rotations) + 
WM/CSF/global time courses. “36 parameters” addi-
tionally included the quadratic term for all parameters 
in the 18-parameter model (includes regressors from 
the 9-parameter model, plus the temporal derivative 
of each parameter across the time series). Inclusion 
of the quadratic term effectively removes the sign of 
the motion parameter and also models nonlinearities in 
the effect of motion on the BOLD signal. The results 
showed that improved preprocessing of RS-fMRI data 
can substantially reduce the burden of artifact induced 
by in-scanner head motion.

Spisák et al.38 proposed the RDI method for motion 
correction, a novel modeling approach for second-level 
brain connectivity analysis, which provides the oppor-
tunity to incorporate voxel-wise motion informa-
tion into the population-level model and to account 
for corresponding artifactual effects. The population 
sample consisted of 79 patients with autism spectrum 
disorders (age range, 7.1–39.1 years) (53 autistic disor-
der, 21 Asperger’s disorder, 5 pervasive developmen-
tal disorder, not otherwise specified) and an age- and 
gender-matched group of 105 typical control subjects 
(age range, 6.5–31.8 years). To test the efficiency of the 
RDI method, the authors performed group comparisons 
where both motion-related artifacts and real neuronal 
differences were expected to be present, and compared 
the functional networks of autistic and control patients. 

The results showed that while including RDI signifi-
cantly reduced (presumably artifactual) differences 
between voxel-wise displacement-related subject 
cohorts, differences in the autism-related comparison 
were more or less preserved. These results suggest that 
the RDI method, while effectively reducing motion 
artifacts in group comparisons, preserves the sensitiv-
ity to neural differences. The authors concluded that the 
inclusion of RDI as second-level nuisance covariates is 
generally appropriate, especially in moderate nuisance 
correction methods, and may become increasingly nec-
essary when the variable of interest is interrelated with 
altered subject kinetics.

Xu et al.39 proposed a data-driven denoising tech-
nique including a dual-mask spatial independent com-
ponent analysis (ICA) method, which involves separate 
decompositions within a brain mask and a head mask 
applied to the sagittally acquired fMRI time series of 
each subject. Eighteen healthy, right-handed, native 
English speakers (age range, 20–32 years; 7 males, 
11 females) participated in this study. All participants 
were scanned in an fMRI experiment and 17 of them 
participated in a subsequent positron emission tomog-
raphy (PET) experiment. When comparing narrative to 
pseudoword production, the results showed activations 
of the left Brodmann area 45/47 with the data-driven 
denoising technique and with PET; however, these 
were absent when no data-driven denoising technique 
was used. The authors concluded that a data-driven 
denoising technique can be applied in a variety of 
experimental paradigms for improving the reliability 
of fMRI measurements. The entire procedure is fully 
automated and has minimal impact on other features of 
conventional data processing.

Beall et al.40 developed SLice-Oriented MOtion 
COrrection (SLOMOCO) based on the theory that the 
volumetric parameters are related to the sum of the slice 
motion. SLOMOCO is not a coregistration technique, 
but rather a slicewise rigid-body motion parameter esti-
mation and subsequent correction through regression 
using these parameters. MRI data were acquired from 
a total of 7 cadaver subjects (all cadavers were scanned 
within 8 h postmortem and before any tissue removal), 
and 2 males and 1 female healthy live participants 
(mean age, 35 years; range, 33–38 years). This study 
of volumetric correction performance analysis showed 
the linear correlation between the injected motion and 
SLOMOCO detected-motion parameters. Moreover, 
a comparison of various motion-correction methods  
(for image temporal variance) showed that image 
noise was reduced by more than half (56% reduction 
in the temporal standard deviation) by the best cor-
rection technique, which was second-order correction 
using the retrospective SLOMOCO method. Based on 
these results, Beall et al. concluded that SLOMOCO, a 
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completely retrospective solution for head motion cor-
rection in BOLD-weighted MRI data, is a substantial 
new advance.

Behzadi et al.41 proposed that a method referred to as 
anatomical CompCor or aCompCor may help minimize 
the effects of head movement, in addition to accounting 
for cardiac and respiratory fluctuations. In the aComp-
Cor approach, spatially coherent noise components are 
estimated in the same tissues using principal compo-
nent analysis. A potential strength of aCompCor is that 
it can identify multiple nuisance signals from WM and 
CSF. Another benefit of aCompCor is that it does not 
make assumptions about the relationship between the 
source of noise and the resulting change in MR signal, 
potentially making it easier to account for delayed and 
non-linear effects of motion. Muschelli et al.42 per-
formed a comparative study of two motion-correction 
methods, aCompCor and the more commonly used 
mean tissue-based nuisance signal-regression method. 
The participants in their study were 130 children with 
typical development (mean age ± standard deviation, 
10.2 ± 1.2 years). The results showed that aCompCor 
attenuated the relationship between head motion and 
MR percent signal change, and also showed that aCom-
pCor improved connectivity metric specificity.

Scheinost et al.43 proposed the uniform smoothing 
algorithm method for reducing the effect of signifi-
cant differences in head motion between experimental 
groups. The method can be used without needing to 
explicitly control motion. To create a uniform level of 
smoothness across the data set (thus minimizing group 
differences associated with image smoothing), each 
subject’s functional run was smoothed with AFNI’s 3d 
Blur to full width half maximum (FWHM) (http://afni.
nimh.nih.gov/afni). In this program, a diffusion-based 
scheme is used to iteratively smooth the functional 
series until the desired level is reached. The ages of 
the 103 participants in this study lay within a narrow 
range (20–23 years; mean age, 21.5 years; standard 
deviation, 0.6 years) with the aim of minimizing any 
age-related effects on motion15 or connectivity.44,45 The 
authors then compared smoothing using the uniform 
smoothing algorithm with that using a Gaussian kernel 
with FWHM of 6 mm. The results showed that the uni-
form smoothing algorithm reduced the correlation of 
the motion time courses and the BOLD time courses, 
while no regions showed a significant increase in cor-
relation of the motion time courses and the BOLD time 
courses. Accordingly, it was concluded that the uni-
form smoothing algorithm minimizes the variance of 
spatial smoothness across subjects, and that controlling 
image  smoothness provides an effective way of con-
trolling motion confounds in functional connectivity. 
The uniform smoothing algorithm has the advantage 
that by not explicitly controlling motion, it enables the 

exploration of potentially real changes in functional 
connectivity that may lead to, or in some way be 
associated with, increased motion.

Patel et al.46 proposed the wavelet despike method, 
which is a data-driven, wavelet-based method for 
modeling and removing secondary motion artifacts 
from fMRI data, without the need for data scrubbing. 
This unsupervised method detects non-stationary 
events caused by movement as chains of scale-invariant 
maximal or minimal wavelet coefficients, and despikes 
these from the voxel time series. Importantly, because 
the algorithm can identify non-stationary events across 
different frequencies, it is able to remove slower and 
prolonged motion artifacts such as spin-history type 
effects, as well as higher-frequency events such as 
step changes in signal intensity and spikes. The par-
ticipants in this study were divided into three cohorts 
as follows: Cohort 1 was a group of 22 children with 
a mean age of 8.5 years; Cohort 2 was a group of 40 
stimulant-dependent adults that met the DSM-IV crite-
ria for stimulant dependence, with a mean age of 34.8 
years; and Cohort 3 was a group of 45 healthy biolog-
ical siblings of the Cohort 2 subjects, with a mean age 
of 32.3 years. The amount of signal variance retained 
in each gray matter time series (gray matter voxels 
identified by the Eickhoff–Zilles macrolabels atlas 
in Talairach space) after wavelet despiking was com-
pared with that after traditional 13-parameter regres-
sion, and the effects of the denoising on resting-state 
networks was assessed. The two sets of maps gener-
ated were broadly similar, indicating that the wave-
let despike method does not remove too much of the 
real signal. Moreover, the motor cortical connectivity 
map obtained following the wavelet despike pre-pro-
cessing included anatomically predictable regions of 
the contralateral cerebellum and ipsilateral thalamus, 
but these were not demonstrated in the connectivity 
maps obtained following the traditional 13-parameter 
regression. It is often difficult to assess the relative 
validity of different methods for functional connectiv-
ity analysis in the absence of a gold standard or ground 
truth; however, the results of that study are consistent 
with the view that wavelet despiking does not atten-
uate, and may indeed enhance, the demonstration of 
functional connectivity between anatomically con-
nected brain regions. The wavelet despike method out-
performs other methods, based on various previously 
published and newly developed diagnostic measures, 
and importantly, requires only one additional step to 
standard pre-processing pipelines.

Discussion
For application to population-level analysis and 

group comparisons, retrospective removal of artifact 
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related to head motion can be performed at five dif-
ferent stages of image processing38: stage 1, motion 
correction of fMRI time-series by realignment to 
a reference image (using automatic co-registration 
approaches)47; stage 2, censoring data to exclude 
periods of high motion (scrubbing, de-spiking)12,35; 
stage 3, modeling the effect of motion-related nuisance 
parameters on BOLD signal [simple linear effects (e.g., 
translation and rotation of brain regions) were mod-
eled by the six motion parameters (e.g., 3 translation, 
3 rotation), but more complex nonlinear effects (e.g., 
changes in the distortion and blurring of the image due 
to magnetic field inhomogeneities) remain as imaging 
artifact]41,48,49; stage 4, temporal filtering of BOLD 
time courses to discard frequencies encumbered by 
motion artifacts; and stage 5, correcting subject-spe-
cific motion effects at the population level (descrip-
tive summary statistics of subject-specific motion as 
second-level model regressors, a common choice for 
descriptive summary statistics is to include a measure 
of the average subject movement).14,50,51 Traditional 
realignment-based correction approaches ensure that 
different time-points of the BOLD signal correspond 
to the same location. However, such methods do not 
handle voxel-level intensity confounds originating 
from the establishment of magnetic gradients and sub-
sequent readout of the BOLD signal,35,52 and automatic 
co-registration approaches may introduce spurious dis-
placements in intervals of relatively low motion.53

One of the most commonly used methods for deal-
ing with motion-related artifacts is scrubbing,35 also 
known as frame or volume censoring,27,50 which iden-
tifies and rejects noise-contaminated images based on 
a set of criteria for estimating the degree of motion or 
amount of artifactual changes in image intensity. For 
example, framewise displacement (FD) is an empiri-
cal sum of the rigid-body motion between consecutive 
images in all directions, and DVARS is a whole-brain 
measure of the temporal derivative (D) of image inten-
sity computed by obtaining the root mean square vari-
ance across voxels (VARS). Although DVARS is easily 
understood and applied, it has at least three apparent 
limitations39: (1) statistical power is reduced because 
of the rejection of images, especially when a signifi-
cant degree of motion is present in the data; (2) artifacts 
with potential detrimental effects, though not meeting 
the threshold for rejection, still exist in the remaining 
images; and (3) an inability to derive continuous time 
series may jeopardize analytical methods that depend 
on an unbroken temporal sequence of images (e.g., 
methods utilizing causality, periodicity, phase, and 
entropy measures).

Satterthwaite et al.12 showed evidence for better 
model fit and lower effect of motion on connectivity of 
the 36-parameter model. The 36-parameter model had 

the lowest average the Akaike information criterion 
(AIC) value. However, this effect was not homogeneous. 
AIC values declined for the low motion group when six 
standard motion parameters were included, but the AIC 
in this group did not drop when derivative and quadratic 
terms were added in the 18- and 36-parameter models. 
In contrast, in the high-motion group AIC values con-
tinued to decline at each step as more parameters were 
added.

Component analysis methods are often able to remove 
some, but not all of these secondary motion artifacts. 
Notably, spin-history effects can be difficult to remove. 
The difficulty in modeling these secondary effects on 
fMRI time series from the movement parameter infor-
mation available, may be further complicated by a 
number of factors, including, but not limited to, subject 
movement in between frames, which may result in sub-
stantial non-linear and non-spatially-uniform effects in 
time series. In the case that fMRI data contain potent 
influence by the secondary effects, wavelet despike 
method may demonstrate an especially high correction 
effect compared with other correction methods.

Major limitation of the present study is that we 
cannot compare the effect for a motion correction 
between different types of RS-fMRI analysis, because 
we cannot find comparison study for it. However, 
we found comparison study for stability with several 
different types of RS-fMRI analysis methods by Li 
et al.,54 Li et al. used four different types of RS-fMRI 
analysis methods: the seed-region-based functional 
connectivity (SRFC), ICA-derived network-based FC 
(NTFC), regional homogeneity (ReHo), and the ampli-
tude of low frequency fluctuation(ALFF). And Li et al. 
reported difference of stability between different types 
of RS-fMRI analysis methods.54 Therefore, we infer 
that the effect for a motion correction is influenced by 
RS-fMRI analysis method, and an appropriate correc-
tion method may change depending on RS-fMRI anal-
ysis method. Second limitation of the present study is 
that we cannot distinguish between the head motion by 
the physiological (e.g., pulsation) noise and the head 
motion by the body motion. We think that motion 
evaluation method using the marker which was put at 
many points of the scalp may be effective for discrim-
ination of the motions. The head motion by the body 
motion induces movement of the marker at irregularity, 
but the head motion by the physiological (e.g., pulsa-
tion, etc) noise induces the movement of the marker 
at regularity. Based on this theory, analysis method 
for separation of the head motion by the body motion 
and the head motion by the physiological is target of 
future study in our team. Third limitation of the present 
study is that there is no gold standard for evaluation  
of RS-fMRI analysis methods. Therefore, sensitivity 
and reproducibility are mainly used as an index of the 
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evaluations for RS-fMRI analysis. On the other hand, 
there is a study determining that lower noise is the 
result with superior analysis method, but this index of 
evaluation for RS-fMRI analysis may be the evaluation 
method that is not correct scientifically.

Conclusion
Many previous studies (see section on “Correction 

methods for head motion artifact with RS-fMRI”) 
have reported new methods for correcting the detri-
mental influence of head motion with RS-fMRI. Based 
on the findings of the reviewed articles, we think that 
wavelet despike method is the best correction method 
for head motion46 in the RS-fMRI. However, with 
all these techniques, the influence of head motion 
is not entirely excluded from the RS-fMRI results. 
Therefore, when a study is performed using RS-fMRI, 
device (band to suppress the motion of body trunk 
and head) to lower the movement of the head must 
be used in MR data acquisition. The amount of head 
motion of the participants must be investigated with 
a motion-evaluation method (e.g., FD or DVARS). 
Development of a more effective correction method 
and improved imaging method would improve the 
accuracy of RS-fMRI analysis.
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