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Abstract: The number of Internet-connected devices grows very rapidly, with even fears of
running out of available IP addresses. It is clear that the number of sensors follows this trend,
thus inducing large sensor networks. It is insightful to make the comparison with the huge number
of processors of modern supercomputers. In such large networks, the problem of node faults
necessarily arises, with faults often happening in clusters. The tolerance to faults, and especially
cluster faults, is thus critical. Furthermore, thanks to its advantageous topological properties, the torus
interconnection network has been adopted by the major supercomputer manufacturers of the recent
years, thus proving its applicability. Acknowledging and embracing these two technological and
industrial aspects, we propose in this paper a node-to-node routing algorithm in an n-dimensional
k-ary torus that is tolerant to faults. Not only is this algorithm tolerant to faulty nodes, it also
tolerates faulty node clusters. The described algorithm selects a fault-free path of length at most
n(2k + bk/2c − 2) with an O(n2k2|F|) worst-case time complexity with F the set of faulty nodes
induced by the faulty clusters.

Keywords: fault tolerance; sensor; IoT; algorithm; information dissemination; interconnection network

1. Introduction

As mentioned, for instance, in [1,2], the number of Internet-connected devices is seeing a very
rapid growth, with even fears of running out of available IP addresses. It is clear that the number
of sensors follows this trend, thus inducing large sensor networks. The interconnection issue of
sensor networks is thus critical. Given the large number of sensors involved, it is critical that
these interconnection networks come with efficient data communication algorithms to maximise
the performance of the sensor network. Because hardware failure is highly probable given the scale of
the network, the tolerance to faults by such routing algorithms is key to data communication efficiency
and robustness.

Considering the number of network nodes involved, it is insightful to make the comparison with
the number of processors of modern supercomputers. In such large networks of processors or sensors,
the problem of faulty nodes necessarily arises, with faults often happening in clusters. The tolerance
to faults, and especially cluster faults, is thus critical as detailed below. Featuring advantageous
topological properties, the torus network [3] has become very popular as interconnection network
of supercomputers (e.g., IBM Blue Gene/L and Blue Gene/P, Cray Titan (Gemini interconnect [4])
and Fujitsu K (Tofu interconnect [5])) [6], thus proving the applicability of the torus topology for
large network interconnection. Such topological properties of an n-dimensional k-ary torus include
the network degree 2n, the diameter nbk/2c and the network order (i.e., number of nodes) kn.
This is to be compared with, for instance, the hypercube network [7] (n-cube) that was favoured
for earlier supercomputers (e.g., the Cosmic cube [8]), of degree and diameter n and network order
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2n. So, given the physical restrictions on the number of links per node, that is, on the network degree,
a torus is able to connect far more nodes than a hypercube: a small dimension n keeps the degree low,
while its arity k can be adjusted to fit the number of nodes. The formal definition of a torus is given in
the next section. Tori are also used for hierarchical interconnection networks [9].

From Menger’s theorem [10], node-to-node routing can tolerate at most d− 1 faulty nodes, with d
the network degree. By considering a special class of network, here tori, we show that more faults can
be tolerated for such a routing scenario. More precisely, in this paper we describe a node-to-node torus
routing algorithm under the cluster-fault tolerant model: in addition to faulty nodes, faulty clusters
of diameter at most one are considered. This furthermore induces new conditions on the number of
tolerable faults in such a network, thus refining the conditions stated by Menger’s theorem. And thanks
to this cluster-fault tolerant approach, the proposed algorithm is also tolerant to edge faults: given
a faulty edge (u, v), it suffices to declare the two nodes u, v as one faulty cluster.

Given the number of nodes kn and edges nkn involved in an n-dimensional k-ary torus,
solving this cluster-fault tolerant routing problem with a conventional routing algorithm such as
Dijkstra’s is clearly impractical: its worst-case time complexity is of polynomial order in the number of
nodes or edges of the network, and the same discussion holds with a breadth-first search algorithm [11].
It is thus an effective, and as shown in Section 2 a commonly relied upon approach to describe
a routing algorithm for a specific class of graph, here a torus, to provide a practical solution to this
routing problem.

As recalled earlier, large sensor networks are nowadays common, and they include thousands of
network nodes (i.e., sensor nodes). Fault-tolerance (resilience) and scalability are two key requirements
of such networks [12]. This research on the torus interconnection network brings a concrete solution
to these issues as detailed below. Indeed, we can rely on the torus network topology to interconnect
the sensors, which are themselves attached to “things” of the Internet of things (IoT). In this situation,
we assume that these things are static, that is, not moving. In order to report the data collected across
the sensor network by each sensor on its thing to the requesting device (the user) which is connected
via the Internet to one network node (the sink), the data are delivered through the torus to the requester
by forwarding the data according to the paths calculated by the proposed algorithm, paths which
connect each sensor node to the (current) network sink.

First, from its definition, and precisely the node degree that does not depend on the network arity,
the torus topology provides a high scalability, for instance when compared to other network topologies
such as hypercubes [7] and star graphs [13]. Second, considering the large number of sensors involved,
faulty sensors are unavoidable. Besides, it is usually expected that the sensor faults take place in a
cluster rather than occurring independently. By describing a routing algorithm that is tolerant to faults,
the resilience and data transmission performance of the sensor network are increased, which thus
offers a higher quality-of-service. Third, with such a connection approach, a distributed sensor network
can be easily realised: as mentioned above, a master device accesses the sensor network from the
Internet, which further increases the network resilience as none of its nodes has special powers.

In addition to increasing the fault tolerance of data transfers and thus of the whole network,
it is important to consider the cluster-fault tolerant model given hardware technical properties of
the machinery: it is indeed not rare that faults in such a system occur in clusters. For example,
one same electrical unit supplies power to a few nodes. When this power unit fails—battery lifetime is
a notorious issue of sensor nodes [14]—the corresponding nodes induce a faulty cluster. As another
example, several nodes can be managed by one same hosting or controlling device, like two IoT things
which depend on one controlling unit, or a blade inside a cabinet of a supercomputer. Failure of the
hosting device would similarly result in a faulty cluster.

Smart agriculture is one application field of our research results. For example, in south-east
Asian countries paddy fields are popular for the culture of rice. Such paddy fields are wide areas
immersed in water (see Figure 1a). The implementation of smart agriculture without interfering with
the automated farm operations, a wireless sensor network is suitable to collect information about the
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paddy field. Sensors in the field are positioned according to the points of a two-dimensional lattice
and each sensor has a transmission range so that it can at least communicate with its four neighbour
sensors. In addition, the wrap-around edges that connect the sensors placed on the periphery of the
paddy field are implemented with wires. Consequently, the sensor network forms a two-dimensional
torus structure (see Figure 1b).

Another example with respect to smart agriculture is a plant factory [15,16]. In such a facility, plant
pods are organised in a three-dimensional manner and cultivated under optimal growth conditions.
In this situation as well, a wireless sensor network is suitable to not interfere with the factory
automated operations. Precisely, in the factory the sensors are positioned according to the points of
a three-dimensional lattice and each sensor has a transmission range so that it can at least communicate
with its six neighbour sensors. In addition, on the floor, walls and ceiling, the wrap-around edges are
implemented with wires. As a result, the sensor network forms a three-dimensional torus structure.

(a) (b)

Figure 1. (a) A paddy field with young crops. (b) A sensor network for a paddy field where the small
circles represent sensors. The orange disc represents the transmission range of the sensor at its centre.
The wireless and wired interconnection network forms a two-dimensional torus structure.

The rest of this paper is organised as follows. Previous and related works are discussed in Section 2.
Graph notations and definitions together with lemmas and propositions are recalled and established in
Section 3. The proposed algorithm is described and exemplified in Section 4. The algorithm correctness
is formally established in Section 5; this is a major part of the paper. Complexity analysis, precisely the
maximum path length and worst-case time complexity, is formally conducted in Section 6 to evaluate
the theoretical performance of the algorithm, and from which the main theorem of this research is
induced. Then, in Section 7, the algorithm performance in average is empirically evaluated with
computer experimentations and compared to the theoretical values. Finally, this paper is concluded in
Section 8.

2. Previous and Related Works

The torus topology is often presented as an extension of the mesh network [3] to which
“wrap-around edges” have been added and it has been itself further extended [17], for instance
to design a hierarchical interconnection network [9].

There exist a few routing algorithms that are tolerant to faults which have been described for
a torus network. Torus fault-tolerant routing algorithms based on the simple node-fault tolerant model
(i.e., not considering faulty clusters) have been described in [18] with a node-to-node and a node-to-set
disjoint paths routing algorithm. In an n-dimensional k-ary torus (n ≥ 2, k ≥ 4), the former algorithm
selects a fault-free path of length at most nbk/2c+ 1 in O(n2) time with a fault tolerance of at most
2n− 1 faulty nodes while the latter algorithm selects f ( f ≤ 2n) fault-free paths of lengths at most
nbk/2c+ 1 in O(n3) time with a fault tolerance of at most 2n− f faulty nodes. Still based on the simple
node-fault tolerant model, an adaptive node-to-node routing algorithm for a 2-dimensional torus has
been given in [19].
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Other routing algorithms that apply to a torus network have been proposed. A torus set-to-set
disjoint paths routing algorithm has been described in [20]. In an n-dimensional k-ary torus (n ≥ 1,
k ≥ 3), this algorithm selects 2n mutually node-disjoint paths between 2n source nodes and 2n
destination nodes, without imposing a particular pairing. The paths are selected in O(kn3 + n3 log n)
time and have lengths that are at most 2(k + 1)n. Then, a torus pairwise disjoint paths routing
algorithm has been presented in [21]. In an n-dimensional k-ary torus (n < k, k ≥ 5), given c (c ≤ n)
source–destination node pairs, this algorithm finds c mutually node-disjoint paths that connect the
nodes of the c pairs. The paths are selected in O(nc4) time and have lengths at most 2k(c− 1) + nbk/2c.

In other networks, fault-tolerance under the simple node-fault tolerant model has been treated,
for instance, in hypercubes with a unicast algorithm [22] and a set-to-set disjoint paths routing
algorithm [23], in star graphs with a set-to-set disjoint paths routing algorithm [24] and in burnt
pancake graphs with a unicast algorithm [25]. Furthermore, fault-tolerant routing with an additional
constraint regarding the nodes that can be selected has been discussed, for instance, in hypercubes [26].
Finally, routing algorithms based on the cluster-fault tolerant model have been proposed for burnt
pancake graphs with a unicast algorithm [27], hypercubes with a unicast algorithm [28], a node-to-set
and set-to-set disjoint paths routing algorithm [29] and a pairwise disjoint paths routing algorithm [30],
and star graphs with a unicast algorithm [31] and a node-to-set and pairwise disjoint paths routing
algorithm [32], amongst others.

3. Preliminaries

First, general graph theory notations and definitions are recalled—the notations and definitions
that are not mentioned here are in accordance with [33].

Graphs herein are undirected. For a node u in a graph G, let NG(u) be the set of the nodes adjacent
to u in G. A path in a graph G is a connected acyclic sub-graph of G of maximum degree 2. From this
definition, a path necessarily has either one or two nodes of degree at most 1; they are called the end
nodes of the path. For the sake of readability, a path is simply denoted by a sequence of nodes and
edges as follows: u1 → u2 → . . . → ul , and is further abbreviated to u1  ul when non-ambiguous.
The node set V(p) that includes the nodes of a path p is simply denoted by p when non-ambiguous.
Two paths p, q are mutually node-disjoint (or simply “disjoint”) if and only if p ∩ q = ∅. When the
path intersection p ∩ q consists solely of end nodes, the two paths are said to be internally disjoint.
A path is fault-free if and only if it does not include a faulty node. A path is blocked if it includes at
least one faulty node. The length of a path is its number of edges.

Definition 1. An n-dimensional k-ary torus T(n, k), n ≥ 1, k ≥ 1 consists of the kn nodes induced by the
set {0, 1, . . . , k− 1}n. A node u of a T(n, k) is thus an n-tuple (u1, u2, . . . , un) with ui (0 ≤ ui ≤ k− 1) the
coordinate of u for the dimension i (1 ≤ i ≤ n). There is an edge between two nodes u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) of a T(n, k) if and only if ∃j (1 ≤ j ≤ n) such that ∀i (1 ≤ i ≤ n, i 6= j) ui = vi and
uj = vj ± 1 (mod k).

A 2-dimensional 3-ary torus T(2, 3) and a 3-dimensional 3-ary torus T(3, 3) are illustrated in
Figure 2a,c, respectively.

Definition 2. For a node u = (u1, u2, . . . , un) ∈ T(n, k) and a dimension δ (1 ≤ δ ≤ n), define the two paths

p+u,δ = u→ (u1, u2, . . . , uδ−1, (uδ + 1) mod k, uδ+1, . . . , un)

→ (u1, u2, . . . , uδ−1, (uδ + 2) mod k, uδ+1, . . . , un)→ . . .
→ (u1, u2, . . . , uδ−1, (uδ − 2) mod k, uδ+1, . . . , un)

→ (u1, u2, . . . , uδ−1, (uδ − 1) mod k, uδ+1, . . . , un)
p−u,δ = u→ (u1, u2, . . . , uδ−1, (uδ − 1) mod k, uδ+1, . . . , un)

→ (u1, u2, . . . , uδ−1, (uδ − 2) mod k, uδ+1, . . . , un)→ . . .



Sensors 2020, 20, 3286 5 of 17

→ (u1, u2, . . . , uδ−1, (uδ + 2) mod k, uδ+1, . . . , un)

→ (u1, u2, . . . , uδ−1, (uδ + 1) mod k, uδ+1, . . . , un)

In this research, we consider faulty clusters that include at most two nodes. So, a cluster is
formally defined as follows.

Definition 3. A cluster c of a graph G is a connected subgraph of G that is isomorphic either to a K1 or to a K2,
where Kn denotes the complete graph of order n. So, a cluster can be denoted simply as a node set.

Definition 4. For a graph G and a cluster set C, the set I(G, C) ⊆ C consists of the clusters of C that have at
least one node in G. That is, I(G, C) = {c | c ∈ C, G ∩ c 6= ∅}.

Next, several torus properties are recalled. First, a torus has a recursive structure; this is
Proposition 1 below.

Proposition 1. Considering a dimension δ (1 ≤ δ ≤ n), a T(n, k) consists of k sub-tori Ti,δ(n − 1, k)
(1 ≤ i ≤ k). Each sub-torus Ti,δ(n− 1, k) is induced by the kn−1 nodes (u1, u2, . . . , uδ−1, i, uδ+1, . . . , un) of
T(n, k) with uj (1 ≤ j ≤ n, j 6= δ) the node coordinate for the dimension j and i that for the dimension δ.

The three sub-tori T1,1(1, 3), T2,1(1, 3) and T3,1(1, 3) of a T(2, 3) induced by δ = 1 are shown in
Figure 2b.

(0, 0)

(1, 0)

(2, 0)

(0, 1)
(1, 1)

(2, 1)

(0, 2)

(1, 2)

(2, 2)

(a)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

T1,1(1, 3)
T2,1(1, 3)

T3,1(1, 3)

(b)

(c)

Figure 2. (a) A 2-dimensional 3-ary torus T(2, 3). (b) Illustration of the recursive structure of a torus:
a T(2, 3) consists in three 1-dimensional 3-ary sub-tori T(1, 3). (c) A 3-dimensional 3-ary torus T(3, 3).

Definition 5. For a node u ∈ T(n, k) and a dimension δ (1 ≤ δ ≤ n), Tδ
u is the sub-torus of u and tδ

u ∈ N is
such that u ∈ Ttδ

u ,δ(n− 1, k).

Definition 6. For a node u = (u1, u2, . . . , un) ∈ T(n, k), a dimension δ (1 ≤ δ ≤ n) and a sub-torus Ti,δ(n−
1, k), ρi,δ

u = (u1, u2, . . . , uδ−1, i, uδ+1, . . . , un) corresponds to the node u “projected” into Ti,δ(n− 1, k).

Second, there exist disjoint paths between sub-tori.
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Lemma 1. For a node u ∈ T(n, k) and a dimension δ (1 ≤ δ ≤ n), there exists a set Pi,δ
u of 2n− 1 internally

disjoint paths of lengths at most k− 1 between u and the nodes of a sub-torus Ti,δ(n− 1, k) with 1 ≤ i ≤ k.

Proof. A constructive proof is given. For the node set {u1, u2, . . . , u2n−2} = NTδ
u
(u), define the path set

Pi,δ
u = {{u  v ∈ Ti,δ(n− 1, k)} ⊆ p+u,δ} ∪

⋃2n−2
j=1 {u → {uj  v ∈ Ti,δ(n− 1, k)} ⊆ p+uj ,δ

}. The paths

in Pi,δ
u are internally disjoint by Definition 2.

Lemma 2. For a node u ∈ T(n, k) and a dimension δ (1 ≤ δ ≤ n), each path p ∈ Pi,δ
u has a variant p′ of

same end nodes such that the paths of the set (Pi,δ
u \ P) ∪ P′ are internally disjoint for any subset P ⊆ Pi,δ

u with
P′ = {p′ | p ∈ P}.

Proof. A constructive proof is given. For the node set {u1, u2, . . . , u2n−2} = NTδ
u
(u), define P̃i,δ

u a set of

path variants with respect to the path set Pi,δ
u as P̃i,δ

u = {{u v ∈ Ti,δ(n− 1, k)} ⊆ p−u,δ} ∪
⋃2n−2

j=1 {u→
{uj  v ∈ Ti,δ(n− 1, k)} ⊆ p−uj ,δ

}. Further define the bijection r : Pi,δ
u → P̃i,δ

u that associates each of

the 2n− 2 paths p = u → uj → . . . of Pi,δ
u to the path p′ = u → uj → . . . of P̃i,δ

u (1 ≤ j ≤ 2n− 2) and
the unique path p = u → u′ /∈ NTδ

u
(u) → . . . of Pi,δ

u to the path p′ = u → u′ /∈ NTδ
u
(u) → . . . of P̃i,δ

u .

The paths in (Pi,δ
u \ P) ∪ P′ are internally disjoint for any subset P ⊆ Pi,δ

u with P′ = {r(p) | p ∈ P} by
Definition 2.

Lemma 3. For a node u = (u1, u2, . . . , un) ∈ T(n, k) and a dimension δ (1 ≤ δ ≤ n), there exists a set Qi,δ
u

of 4n− 3 paths of lengths at most k between u and the nodes of a sub-torus Ti,δ(n− 1, k) with 1 ≤ i ≤ k.

Proof. A constructive proof is given. For the node set N =
⋃n

j=1,j 6=δ{(u1, u2, . . . , (uj + 2) mod
k, . . . , un), (u1, u2, . . . , (uj − 2) mod k, . . . , un)} and the path set P = {u → v → {w  x ∈
Ti,δ(n− 1, k)} ⊆ p+w,δ | v ∈ NTδ

u
(u), w ∈ N ∩ NTδ

u
(v)}, define the path set Qi,δ

u = Pi,δ
u ∪ P.

Definition 7. For a node u ∈ T(n, k), a dimension δ (1 ≤ δ ≤ n), the node set N =⋃n
j=1,j 6=δ{(u1, u2, . . . , (uj + 2) mod k, . . . , un), (u1, u2, . . . , (uj − 2) mod k, . . . , un)} and the path set P =

{u → v → {w  x ∈ Ti,δ(n− 1, k)} ⊆ p−w,δ | v ∈ NTδ
u
(u), w ∈ N ∩ NTδ

u
(v)}, define the set of 4n− 3

paths Q̃i,δ
u = P̃i,δ

u ∪ P.

The paths of Pi,δ
u , P̃i,δ

u , Qi,δ
u and Q̃i,δ

u are illustrated in the case of a T(2, 5) in Figure 3.

Tδ
j−1 Tδ

j Tδ
j+1

uP̃i,δ
u

Q̃i,δ
u



 Pi,δ
u


Qi,δ

u

Figure 3. Illustrating the paths of Pi,δ
u , P̃i,δ

u , Qi,δ
u and Q̃i,δ

u in the case of a T(2, 5).

4. Cluster-Fault Tolerant Routing Algorithm

Inside an n-dimensional k-ary torus T(n, k) that includes a set C of at most 2n− 1 faulty clusters
(which induce the set of faulty nodes F), we describe a routing algorithm that selects a fault-free path
between any two nodes s, d ∈ T(n, k) with s, d /∈ F.
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4.1. Algorithm Description

First, we present the assumptions made and the main idea of the proposed routing algorithm.
A T(1, k) is isomorphic to a ring, and it is thus trivial to find a fault-free path between any two
non-faulty nodes given that there is at most 2n− 1 = 1 faulty cluster. So, we can assume that n ≥ 2.

A T(n, 1) has one single node and thus it is trivial to find a fault-free s d path (s = d). It is easy
to show that this problem is not solvable when k ∈ {2, 3, 4}: see Figure 4. Hence, a torus arity k ≥ 5 is
considered hereinafter.

d

s

(a)

d
s

(b)

d
s

(c)

Figure 4. Unsolvable problem instances in the case k = 2 (a), k = 3 (b) and k = 4 (c), within a T(2, 2)
with two clusters, a T(3, 3) with five clusters and a T(3, 4) (some nodes are omitted for clarity) with five
clusters, respectively. Faulty nodes are greyed and the clusters that include two nodes are materialised
with thicker lines.

The main idea of this algorithm is to follow a divide-and-conquer approach by routing s to a node
of Tδ

d and to apply this algorithm recursively in Tδ
d . Consider an arbitrary dimension δ (1 ≤ δ ≤ n).

We distinguish the following mutually exclusive cases.

Case 0 (base case) T(n, k) is fault-free (i.e., C = F = ∅):
This is simple point-to-point routing. A path between s and d is selected with a dimension-order
routing algorithm [3].

Case 1 (special case) Tδ
d unavailable (i.e., |I(Tδ

d , C)| > 2n− 3):

Case 1.1 Tδ
s unavailable (i.e., |I(Tδ

s , C)| > 2n− 3):
We can apply the algorithm recursively in neither Tδ

s nor Tδ
d , so we use another sub-torus.

Route s and d to an available sub-torus Ti,δ(n− 1, k), that is satisfying |I(Ti,δ(n− 1, k), C)| ≤
2n− 3, with a fault-free path of Pi,δ

s ∪ P̃i,δ
s and a fault-free path of Pi,δ

d ∪ P̃i,δ
d , respectively.

Let ps : s  s′ ∈ Ti,δ(n− 1, k) (resp. pd : d  d′ ∈ Ti,δ(n− 1, k)) be the selected path that
connects s (resp. d) to a node of Ti,δ(n− 1, k). If these paths are not disjoint, consider the
node u ∈ ps ∩ pd that is the closest to s, discard the sub-paths (u  s′) ⊂ ps and (u  
d′) ⊂ pd and terminate. Otherwise, apply this algorithm recursively in Ti,δ(n− 1, k) with
s′ as source node, d′ as destination node and {c ∩ Ti,δ(n− 1, k) | c ∈ I(Ti,δ(n− 1, k), C)} as
cluster set.
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Case 1.2 Tδ
s available (i.e., |I(Tδ

s , C)| ≤ 2n− 3):
Exchange the roles of s and d; this is Case 2.

Case 2 Tδ
d available (i.e., |I(Tδ

d , C)| ≤ 2n− 3):

Define Q = Q
tδ
d ,δ

s ∪ Q̃
tδ
d ,δ

s the set of 8n− 6 paths from s to a node of Tδ
d .

Case 2.1 (special case) s not routable to Tδ
d (i.e., ∀p ∈ Q, p ∩ F 6= ∅):

Route s and d to an available sub-torus Ti,δ(n− 1, k), that is satisfying |I(Ti,δ(n− 1, k), C)| ≤
2n− 3, other than Tδ

d with a fault-free path of Pi,δ
s ∪ P̃i,δ

s and a fault-free path of Pi,δ
d ∪ P̃i,δ

d ,
respectively.

Let ps : s  s′ ∈ Ti,δ(n − 1, k) (resp. pd : d  d′ ∈ Ti,δ(n − 1, k)) be the selected path
that connects s (resp. d) to a node of Ti,δ(n− 1, k). If these paths are not disjoint, consider
the node u ∈ ps ∩ pd that is the closest to s, discard the sub-paths (u  s′) ⊂ ps and
(u d′) ⊂ pd and terminate. Otherwise, apply this algorithm recursively in Ti,δ(n− 1, k)
with s′ as source node, d′ as destination node and {c∩ Ti,δ(n− 1, k) | c ∈ I(Ti,δ(n− 1, k), C)}
as cluster set.

Case 2.2 (general case) s routable to Tδ
d (i.e., ∃p ∈ Q, p ∩ F = ∅):

Route s to Tδ
d with a fault-free path of Q. Let ps : s s′ ∈ Tδ

d be the selected path of Q that
connects s to a node of Tδ

d . If d ∈ ps (i.e., s′ = d), terminate. Otherwise, apply this algorithm
recursively in Tδ

d with s′ as source node, d as destination node and {c ∩ Tδ
d | c ∈ I(Tδ

d , C)}
as cluster set.

4.2. Routing Example in a T(3, 5)

We give a non-trivial example of execution trace for the proposed routing algorithm. Let s =

(1, 1, 0), d = (1, 0, 1) and C = {{(1, 1, 1), (0, 1, 1)}, {(0, 1, 0)}, {(1, 0, 0)}, {(2, 1, 0)}, {(1, 2, 0), (1, 2, 4)}}
be the source node, destination node and cluster set in a T(3, 5), respectively. Furthermore, δ is
arbitrarily initialised to 3. The execution trace of the algorithm is given in Table 1. The leftmost column
indicates the iteration step, and the “Sub-Torus” column the sub-torus selected for recursion. It is
recalled that the torus arity (here, k = 5) is constant throughout the execution of the algorithm; it is
thus not repeated in the table. The first iteration step falls in Case 2.1, the second in Case 2.2 and the
third in Case 0 of the algorithm.

Table 1. A sample execution trace of the algorithm for a non-trivial routing example in a T(3, 5).

	 δ n s d C Sub-Torus Selected Paths

1 3 3 (1, 1, 0) (1, 0, 1) {{(1, 1, 1), (0, 1, 1)},
{(0, 1, 0)},
{(1, 0, 0)},
{(2, 1, 0)},
{(1, 2, 0), (1, 2, 4)}}

T4,3(2, 5) s = (1, 1, 0)→ (1, 1, 4) = s′

d = (1, 0, 1) → (1, 0, 2) →
(1, 0, 3)→ (1, 0, 4) = d′

2 2 2 (1, 1, 4) (1, 0, 4) {{(1, 2, 4)}} T0,2(1, 5) s = (1, 1, 4)→ (1, 0, 4) = s′

3 - 1 (1, 0, 4) (1, 0, 4) ∅ - s = (1, 0, 4) = d

Output: s = (1, 1, 0)→ (1, 1, 4)→ (1, 0, 4)→ (1, 0, 3)→ (1, 0, 2)→ (1, 0, 1) = d

5. Proof of Correctness

In this section, the correctness of the proposed algorithm is established. Each of all the
distinguished cases is treated separately.

5.1. Case 0

There is no faulty node inside T(n, k), so a dimension-order routing algorithm can be applied.
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5.2. Case 1.1

The sub-tori Tδ
s and Tδ

d each include at least 2n− 2 clusters (possibly partially, i.e., |I(Tδ
d , C)| >

2n− 3) and are thus unavailable in order to solve the problem recursively. Here are two necessary
conditions for this situation to occur: 1) Tδ

s is adjacent to Tδ
d (i.e., tδ

d = tδ
s ± 1 (mod k)) and 2) out of

the at most 2n− 1 clusters, at least 2n− 3 of them have two nodes, with one node in Tδ
s and the other

in Tδ
d .
First, we show that there exist at least three sub-tori that are available for recursion, that is, that

include at most 2n− 3 clusters. It is recalled that both Tδ
s and Tδ

d are not. At least 2n− 3 clusters are
included (completely contained) in Tδ

s ∪ Tδ
d . Hence, for both Tδ

s and Tδ
d to satisfy |I(Tδ

d , C)| > 2n− 3,
there remains at most two faulty nodes that are included in other sub-tori (i.e., neither in Tδ

s nor Tδ
d ).

These two faulty nodes are either part of the same cluster, or, they are part of two distinct 2-node
clusters that have one node in Tδ

s and one node in Tδ
d , respectively. So, importantly, if these at most

two faulty nodes are part of two distinct 2-node clusters, these two faulty nodes are necessarily located
in different sub-tori. See Figure 5.

Tδ
s Tδ

d Tδ
s Tδ

d

Figure 5. The two possible cluster repartitions in Case 1.1 with respect to Tδ
s and Tδ

d when n = 3 and
thus at most five clusters. Ellipses separate sub-tori.

To apply the algorithm recursively inside a sub-torus, it can include at most 2n − 3 clusters.
So, one sub-torus can be made unavailable with at least 2n − 2 clusters. Therefore, either the at
most one 2-node cluster or the at most two faulty nodes located in distinct sub-tori suffice not to
make another sub-torus unavailable for recursion since they would induce at most one cluster inside
a sub-torus, and 1 < 2n − 2 given that n ≥ 2. Therefore, since there exist at least k ≥ 5 sub-tori
and at most two of them are unavailable (Tδ

s and Tδ
d ), at least three sub-tori always remain available

for recursion.
Next, we show that both s and d are routable to at least one of these three available sub-tori. If s

and d are adjacent, select s→ d and there is nothing else to prove. So, we can assume that s and d are
not adjacent. We distinguish the following mutually exclusive sub-cases which are exhaustive.

Sub-case NTδ
s
(s) ∪ NTδ

d
(d) ⊆ F. This case can occur only when n = 2 and it implies that either (a)

there are two 2-node clusters each included in NTδ
s
(s) ∪ NTδ

d
(d), or (b) there is only one such cluster

and the other two clusters respectively have at least one node in NTδ
s
(s) and one node in NTδ

d
(d).

As shown in Figure 6, the former case (a) occurs only when k = 4 and the latter case (b) only when
k = 3. Hence, given that k ≥ 5 is assumed, these two cases shall never occur and there is thus nothing
to prove.
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s

d

Tδ
s Tδ

d

(a)

s

d

Tδ
s Tδ

d

(b)

Figure 6. The two situations for Case 1.1’s sub-case NTδ
s
(s) ∪ NTδ

d
(d) ⊆ F. (a) k = 4 required; (b) k = 3

required. Ellipses separate sub-tori, faulty nodes are greyed and the clusters that include two nodes are
materialised with thicker lines.

Sub-case NTδ
s
(s) ⊂ F and NTδ

d
(d) 6⊂ F (the case NTδ

s
(s) 6⊂ F and NTδ

d
(d) ⊂ F is discussed similarly).

Since both Tδ
s and Tδ

d unavailable, at least 2n− 3 clusters each have one node in Tδ
s and the other in

Tδ
d , and either (a) at least one other cluster also has, or (b) the two other clusters each have at least

one node in Tδ
s ∪ Tδ

d . In the former case (a), at least 2n− 2 clusters each have one node in Tδ
s and the

other in Tδ
d , and those clusters thus can block at most one path of {p+s,δ, p−s,δ} and at most one path

of {p+d,δ, p−d,δ}. The remaining cluster, if any (there is at most 1), can either block at most two paths
of {p+s,δ, p−s,δ} for at most two available sub-tori, or at most two paths of {p+d,δ, p−d,δ} for at most two
available sub-tori. Since both situations cannot occur at the same time, there always remains at least
one available sub-torus to which both s and d are routable. In the latter case (b), 2n− 3 clusters cannot
block any path of {p+s,δ, p−s,δ, p+d,δ, p−d,δ} for the same reason, and the other two clusters each have at least
one node in Tδ

s ∪ Tδ
d , hence they can block at most two paths of {p+s,δ, p−s,δ} for at most one available

sub-torus, and at most two paths of {p+d,δ, p−d,δ} for at most one available sub-torus (the blocked at most
two sub-tori are necessarily distinct). Therefore, there always remains at least one available sub-torus
to which both s and d are routable.

Sub-case NTδ
s
(s) 6⊂ F and NTδ

d
(d) 6⊂ F. This is the same proof as for the previous case

(i.e., NTδ
s
(s) ⊂ F and NTδ

d
(d) 6⊂ F).

5.3. Case 1.2

Case 2 is applied, so refer to the proofs of Cases 2.1 and 2.2.

5.4. Case 2.1

We indeed need to consider the paths of Q
tδ
d ,δ

s ∪ Q̃
tδ
d ,δ

s (they are each of length at most k) given that

the paths of P
tδ
d ,δ

s ∪ P̃
tδ
d ,δ

s (they are each of length at most k− 1) may not suffice to route s to another
sub-torus as shown in Figure 7a.

So, s not routable to Tδ
d implies that the 8n − 6 paths of Q = Q

tδ
d ,δ

s ∪ Q̃
tδ
d ,δ

s are all blocked.
This situation occurs only when both 1) at least 2n − 2 clusters each have at least one node in

NTδ
s
(s) ∪ NTδ

d
(ρ

tδ
d ,δ

s ), and 2) one of these clusters includes ρ
tδ
d ,δ

s , or there is one other cluster with

no node in Tδ
s ∪ NTδ

d
(ρ

tδ
d ,δ

s ) that does. See Figure 7b.
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s

Tδ
s

(a)

s. . .

Tδ
d Tδ

s

(b)

Figure 7. Situations of Case 2 in a T(2, 5): (a) the situation in Case 2.2 where the paths of Ptδ
d ,δ

s ∪ P̃tδ
d ,δ

s

do not suffice to route s to another sub-torus; (b) the situation in Case 2.1 where s is not routable to Tδ
d .

We show the existence of a sub-torus available for recursion other than Tδ
d . Since at least 2n− 2

clusters each including at least one node in NTδ
s
(s)∪NTδ

d
(ρ

tδ
d ,δ

s ), they can induce at most two unavailable

sub-tori. If two unavailable sub-tori are so induced, they are Tδ
s and one sub-torus adjacent to Tδ

s (that

is not Tδ
d since Tδ

d available by assumption), and the remaining cluster includes ρ
tδ
d ,δ

s and thus suffices
not to make one additional sub-torus unavailable. If only one unavailable sub-torus is so induced, it is
necessarily Tδ

s since Tδ
d available by assumption, and thus exactly 2n− 2 clusters each have at least one

node in NTδ
s
(s) and the remaining cluster which has no node in Ts includes ρ

tδ
d ,δ

s . Therefore, since there
exist at least k ≥ 5 sub-tori and at most two of them are unavailable (one of which necessarily being
Tδ

s ), at least three sub-tori always remain available for recursion.
Next, we show that both s and d are routable to at least one of these three available sub-tori. If s

and d are adjacent, select s→ d and there is nothing else to prove. So, we can assume that s and d are
not adjacent. We distinguish the following mutually exclusive sub-cases which are exhaustive.

Sub-case NTs(s) ⊂ F. Exactly 2n − 2 clusters thus have at least one node in Tδ
s (Tδ

s is thus
unavailable). These clusters cannot block a path of {p+s,δ, p−s,δ} and can block at most two paths of

{p+d,δ, p−d,δ} for at most one available sub-torus. The remaining cluster necessarily includes ρ
tδ
d ,δ

s and
can thus block at most two paths of {p+s,δ, p−s,δ} for at most two available sub-tori, one being Tδ

d ; it can
block no path of {p+d,δ, p−d,δ}. Therefore, there always remains at least one available sub-torus other
than Tδ

d to which both s and d are routable.
Sub-case NTs(s) 6⊂ F. Since Tδ

d available, NTd(d) 6⊂ F. Thus, there exist two non-faulty nodes

u ∈ NTδ
s
(s) and v ∈ NTd(d). If the remaining cluster (i.e., that includes no node of Tδ

s ∪ NTδ
d
(ρ

tδ
d ,δ

s ))

includes ρ
tδ
d ,δ

s , it can block at most two paths of {p+s,δ, p−s,δ} for at most one available sub-torus. If it does
not, it can block either: at most two paths of {p+s,δ, p−s,δ} for at most two available sub-tori, or at most
two paths of {p+d,δ, p−d,δ} for at most two available sub-tori, or at most two paths of {p+s,δ, p−s,δ} and at
most two paths of {p+d,δ, p−d,δ} for at most one available sub-torus. Therefore, there always remains at
least one available sub-torus other than Tδ

d to which both s and d are routable.

5.5. Case 2.2

There is nothing to show given that Tδ
d is available for recursion and s is routable to Tδ

d .

6. Complexity Analysis

In this section, we establish the length of a longest path as selected by the proposed algorithm,
as well as the worst-case time complexity of this algorithm. It is assumed that the value of each
dimension of a node address can be accessed in constant time O(1). Let τ(c, n) be the worst-cast time
complexity of the algorithm when applied in a T(n, k) with c ≤ 2n− 1 faulty clusters, and let λ(c, n)
be the maximum length of the generated path.
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Case 0 The path is obtained with a dimension-order routing algorithm. Hence, in a T(n, k) it is of
length at most nbk/2c. This algorithm takes O(nk) time.

Case 1 It takes O(n) time to check if |I(Tδ
d , C)| > 2n− 3 holds.

Case 1.1 It takes O(n) time to check if |I(Tδ
s , C)| > 2n− 3 holds. An available sub-torus Ti,δ(n−

1, k) is found when |I(Ti,δ(n − 1, k), C)| ≤ 2n − 3 holds and both s, d are routable to it
with the defined paths. Checking for one sub-torus candidate for Ti,δ(n− 1, k) whether
|I(Ti,δ(n− 1, k), C)| ≤ 2n− 3 holds takes O(n) time. The path ps for one sub-torus candidate
for Ti,δ(n− 1, k) can be found in O(nk|F|) time since by Lemma 2 |Pi,δ

s ∪ P̃i,δ
s | = 4n− 2 and

with each path from those tried for ps being of length at most k− 1 by Lemma 1. A similar
discussion holds for pd. So, checking if one sub-torus is suitable as Ti,δ(n − 1, k) takes
O(nk|F|) time. Hence, an available sub-torus Ti,δ(n− 1, k) can be found in O(nk2|F|) by
enumerating the k sub-tori. Checking the intersection of ps and pd takes O(k2) time. If it
is not empty, sub-paths are discarded in constant time and the algorithm is terminated.
Otherwise, the algorithm is applied recursively in Ti,δ(n− 1, k), thus inducing a τ(c′, n− 1)
time complexity and a λ(c′, n − 1) maximum path length, with c′ ≤ 2(n − 1) − 1 (and
obviously c′ ≤ c). So, in total, this case is O(nk2|F| + τ(c′, n − 1)) time and induces
a 2k− 2 + λ(c′, n− 1) maximum path length.

Case 1.2 The time complexity and maximum path length induced by Case 2 apply.

Case 2 It is not needed to check again whether Tδ
d is available.

Case 2.1 It takes O(n) time to check whether s is routable to Tδ
d . An available sub-torus Ti,δ(n−

1, k) is found when |I(Ti,δ(n − 1, k), C)| ≤ 2n − 3 holds and both s, d are routable to it
with the defined paths. Checking for one sub-torus candidate for Ti,δ(n− 1, k) whether
|I(Ti,δ(n− 1, k), C)| ≤ 2n− 3 holds takes O(n) time. The path ps for one sub-torus candidate
for Ti,δ(n− 1, k) can be found in O(nk|F|) time since by Lemma 2 |Pi,δ

s ∪ P̃i,δ
s | = 4n− 2 and

with each path from those tried for ps being of length at most k − 1 by Lemma 1. A
similar discussion holds for pd. So, checking if one sub-torus is suitable as Ti,δ(n− 1, k)
takes O(nk|F|) time. Hence, an available sub-torus Ti,δ(n− 1, k) can be found in O(nk2|F|)
by enumerating the k− 1 sub-tori (Tδ

d excluded). Checking the intersection of ps and pd
takes O(k2) time. If it is not empty, sub-paths are discarded in constant time and the
algorithm is terminated. Otherwise, the algorithm is applied recursively in Ti,δ(n− 1, k),
thus inducing a τ(c′, n− 1) time complexity and a λ(c′, n− 1) maximum path length, with
once again c′ ≤ 2(n − 1) − 1. So, in total, this case is O(nk2|F| + τ(c′, n − 1)) time and
induces a 2k− 2 + λ(c′, n− 1) maximum path length.

Case 2.2 The path ps can be found in O(nk|F|) time since by Lemma 3 and Definition 7 |Qtδ
d ,δ

s ∪
Q̃

tδ
d ,δ

s | = 8n − 6 and with each path from those tried for ps being of length at most k by
Lemma 3. The algorithm is applied recursively in Tδ

d , thus inducing a τ(c′, n − 1) time
complexity and a λ(c′, n− 1) maximum path length, with once again c′ ≤ 2(n− 1)− 1.
So, in total, this case is O(nk|F|+ τ(c′, n− 1)) time and induces a k + λ(c′, n− 1) maximum
path length.

From this discussion, we can derive the following theorem.

Theorem 1. In a T(n, k) with k ≥ 5, given two fault-free nodes s, d and a set of at most 2n− 1 faulty clusters,
a fault-free path between s and d of length at most n(2k + bk/2c − 2) can be found in O(n2k2|F|) time with F
the set of faulty nodes induced by the faulty clusters.
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Proof. The existence of a fault-free path s  d is shown in Sections 4 and 5. The complexities
are derived from Section 6 which induces the following recursive expressions regarding the time
complexity and maximum path length:

τ(0, n) = O(nk)

τ(c, n) = O(nk2|F|+ τ(c′, n− 1)) if c > 0

and

λ(0, n) = nbk/2c
λ(c, n) = 2k− 2 + λ(c′, n− 1) if c > 0

with c′ ≤ 2(n− 1)− 1 (and obviously c′ ≤ c). The relation c′ ≤ 2(n− 1)− 1 is the invariant of the
recursion. Since n is decreased by one at each step, c′ is guaranteed to reach 0, that is the base case of
the recursion. Therefore, the total worst-case time complexity of the proposed algorithm is O(n2k2|F|)
and the maximum path length is n(2k− 2) + nbk/2c = n(2k + bk/2c − 2).

The described algorithm selects a fault-free path of length at most n(2k + bk/2c − 2) with
an O(n2k2|F|) worst-case time complexity with F the set of faulty nodes induced by the faulty clusters.
The maximum path length is of the same order as the network diameter: O(nk), which is thus on par
with previous works on node-to-node routing under the cluster-fault tolerant model [27,28,31].

7. Empirical Evaluation

Now that the worst-case complexities have been established in Section 6, we inspect the average
behaviour of the proposed algorithm, implemented to this end. Two experiments were conducted:
the first one aims at measuring the maximum length of a path selected by the proposed algorithm, and
the second one at measuring the average execution time taken by the algorithm to solve one instance
of the torus cluster-fault tolerant routing problem. These experiments were conducted on a computer
equipped with an Intel Core i5-1035G7 processor (clocked at 1.20 GHz) and 8 GB RAM, and running
Windows 10 Home 64-bit.

The experimental conditions for the first experiment (i.e., maximum path length measurement)
were as follows: in a T(n, 5), the source node and destination nodes are randomly selected in the set
of all the torus nodes. The torus arity k was fixed to 5 in this experiment to maximize the routing
difficulty as indeed the number of faults depends on n and not on k. Then, the maximum number of
faulty clusters 2n− 1 that can be tolerated were also randomly generated. The faulty clusters are all of
diameter one to once again maximize the routing problem difficulty (i.e., a higher number of faulty
nodes). Then, the algorithm implementation was used to solve the corresponding routing problem and
the length of the selected path output was recorded. This process was repeated 10,000 times for each
value of n with 2 ≤ n ≤ 7, each time calculating two path length values: the maximum path length
and the average path length of the 10,000 selected paths. The results of this first experiment are shown
in Figure 8, together with the theoretical maximum path length as established previously in Section 6
for reference.
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Figure 8. Empirical evaluation: average and maximum (with standard deviation) path lengths of the
paths selected by the proposed algorithm in a T(n, 5).

The second experiment (i.e., execution time measurement) was conducted in the same
experimental conditions as the first experiment at the exception that the routing problem was solved
in a T(n, max{5, n + 1}): the arity k was set to max{5, n + 1} in this time experiment to evaluate the
average time complexity as k and n both increase. The path selection algorithm was run 10,000 times
for each (n, max{5, n + 1}) pair with 2 ≤ n ≤ 7, each time measuring the real CPU time (i.e., excluding
the time for garbage collection) taken to solve the problem instance. The obtained results are given
in Figure 9, together with the worst-case time complexity as established previously in Section 6
for reference.

The following observations can be made from the obtained experimental results. First, regarding
the maximum path length, one can note that it remains at distance from the theoretical upper bound,
which is an indicator of the good performance of the algorithm. Second, regarding the average
execution time, one can note that it remains well below the worst-case time complexity, which is yet
another indicator of the efficiency of the proposed algorithm.

1 2 3 4 5 6 7 8
0

5 · 10−2

0.1

0.15

torus dimension n

ti
m

e
(m

s)

average execution time 10−5 × n2k2|F|

Figure 9. Empirical evaluation: average execution time to solve one problem instance with the proposed
algorithm in a T(n, max{5, n + 1}).
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8. Conclusions

The growing number of Internet-connected devices and their sensors, comparable to that of
computing nodes included in modern supercomputers, induces large interconnection networks.
Hence, the performance of networks on this scale is tied to efficient and robust data routing.
For example, major supercomputer makers such as IBM, Cray and Fujitsu have been relying on the
torus topology for the interconnection network for its advantageous topological properties. The torus
topology is also applicable to interconnect sensor networks, for instance, to report information collected
by sensors across the network to the network user. Given the huge number of network nodes involved,
faults are very likely to occur. A routing algorithm in a torus that is tolerant to faults is thus key for
the future of such networks and has direct implications to the quality-of-service issue by reducing the
number of failed data communications. Furthermore, hardware technical properties inducing that
faults often happen in clusters (e.g., a same power supply unit applies to a few nodes), it is critical to
not only tolerate node faults but also cluster-faults. Improving on Menger’s condition on the maximum
number of node faults that can be tolerated, and on torus fault-tolerant routing algorithms described
in previous works, we have proposed in this paper for the first time a node-to-node routing algorithm
in a torus that is tolerant to cluster-faults. In a T(n, k) with at most 2n− 1 faulty clusters of diameter
at most 1, the described algorithm selects a fault-free path of length at most n(2k + bk/2c − 2) with
an O(n2k2|F|) worst-case time complexity with F the set of faulty nodes induced by the faulty clusters.

Regarding future works, it will be meaningful to first try to consider faulty clusters of diameter 2,
possibly reducing the number of tolerated faulty clusters. Then, selecting several fault-free disjoint
paths between the source and destination nodes can be considered. Furthermore, measuring the
average performance of the proposed algorithm and comparing the results with the formally
established worst-case complexities (maximum path length and time complexity) is yet another
research route.
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