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Multiple-response regression analysis links magnetic resonance 
imaging features to de-regulated protein expression and 
pathway activity in lower grade glioma
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ABSTRACT

Background and Purpose: Lower grade gliomas (LGGs), lesions of WHO grades 
II and III, comprise 10-15% of primary brain tumors. In this first-of-a-kind study, 
we aim to carry out a radioproteomic characterization of LGGs using proteomics data 
from the TCGA and imaging data from the TCIA cohorts, to obtain an association 
between tumor MRI characteristics and protein measurements. 

The availability of linked imaging and molecular data permits the assessment of 
relationships between tumor genomic/proteomic measurements with phenotypic 
features.

Materials and Methods: Multiple-response regression of the image-derived, 
radiologist scored features with reverse-phase protein array (RPPA) expression levels 
generated correlation coefficients for each combination of image-feature and protein 
or phospho-protein in the RPPA dataset. Significantly-associated proteins for VASARI 
features were analyzed with Ingenuity Pathway Analysis software. Hierarchical 
clustering of the results of the pathway analysis was used to determine which feature 
groups were most strongly correlated with pathway activity and cellular functions.

Results: The multiple-response regression approach identified multiple proteins 
associated with each VASARI imaging feature. VASARI features were found to be 
correlated with expression of IL8, PTEN, PI3K/Akt, Neuregulin, ERK/MAPK, p70S6K 
and EGF signaling pathways.
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Conclusion: Radioproteomics analysis might enable an insight into the phenotypic 
consequences of molecular aberrations in LGGs.

INTRODUCTION

Lower grade gliomas (LGGs), those lesions graded 
II and III, comprise 10-15% of primary brain tumors [1]. 
A fraction of these tumors will progress to grade IV 
glioma, glioblastoma (GBM) [2, 3]. Treatment of LGGs 
includes surgical resection, radiotherapy and 
chemotherapy [4-6]. LGGs are classified into molecular 
subtypes based on alterations in TP53, isocitrate 
dehydrogenase (IDH) 1 or 2, telomerase reverse 
transcriptase (TERT), and the transcriptional regulator 
ATRX: the mutational status of these genes correlates with 
clinical responses and outcomes [9]. Despite these 
findings, challenges remain in the treatment of LGGs.

The complementary assessment of gliomas via 
imaging and molecular pathology approaches, for 
understanding the response to treatment and poor 
outcomes, has spurred the investigation of combining 
imaging data with molecular (genetic/genomic) 
information. This approach, termed radiogenomics or 
imaging-genomics, holds potential to improve LGG/GBM 
outcomes. Radiogenomics allows inference of molecular 
characteristics of a tumor from image features obtained via 
human or computational assessment of pre-operative MR 
[10] images. This allows study of the heterogeneity of the 
tumor both spatially and over time [11]. Features of GBM 
tumor radiology correlate with somatic mutations [12]. In 
a xenograft mouse model, genetic changes in the tumor 
resulted in radiologic effects [13]. The radiomics approach 
has been taken in lung [14], breast [15], prostate [16], as 
well as brain tumors [17-19], predicting clinical outcomes 
based on imaging features. Initial correlations were drawn 
between clinical outcomes and radiological features, and 
more recent efforts have combined genomic datasets to 
improve the predictive and prognostic value of imaging 
biomarkers [20, 21]. More recently, the availability of 
proteomics datasets permits the study of co-ordinated 
signaling activity underlying such phenotypic changes. 
Radiogenomics and Radioproteomics [22] approaches 
promise to aid characterization of the genotype-phenotype 
landscape in gliomas, coupled with understanding the 
molecular underpinnings of tumor-associated image 
features. Such paradigms also enable a whole tumor 
assessment of phenotypic heterogeneity as a complement 
to molecular heterogeneity for the characterization of 
disease state.

In LGGs however, the radioproteomics approach to 
associate proteomics measurements with radiological 
feature sets is yet to be investigated, although a small 
study of four patients showed correlations between mass 
spectra and enhancement in the corresponding tumor 
region [23]. We hypothesized that a regression-based 
association mining of whole tumor imaging and protein 

expression information would identify proteins related to 
tumor radiological features, tumor morphology 
(phenotype), and associated signal transduction activity 
for LGGs, while leveraging protein correlation structure 
(as might be observed from pathway data). To our 
knowledge, this study is the first to integrate radiological 
features with proteomic measurements in lower grade 
gliomas.

RESULTS

Multiple-response regression of the combined 
imaging and protein expression datasets from 57 patients 
(demographics given in Table 1) revealed VASARI 
imaging features significantly associated with protein 
expression levels. These expression changes were in gene 
products known to be mutated in LGGs, including EGFR, 
TP53, IDH, FUBP1, NOTCH1, ATRX, and TERT [17].

VASARI features correlate with 
differential protein levels

Based on multiple-response regression, associations 
(regression coefficients) were computed for each 
combination of imaging feature/molecule. Molecules 
(proteins and phospho-proteins) with associations that 
were statistically significant after correction for multiple 
comparisons were retained for further analysis 
(Supplementary Table 2). For example, tumor localization 
to the frontal lobes was positively correlated with 
abundance of MYH11, and was negatively associated with 
eIF4E expression. Each imaging feature was matched in 
this way with negatively-and positively-correlated lists of 
molecules from the RPPA dataset.

Ingenuity pathway analysis

Each VASARI feature was matched with a unique 
set of associated pathways and biological functions 
using Ingenuity Pathway Analysis software (Table 2 and 
Supplementary Table 3). The T1/FLAIR ratio, MRI 
Necrosis, leptomeningeal reaction, mild enhancement 
quality, edema, cysts, and tumor localization in the 
parietal lobe were relatively strongly associated with 
unique patterns of pathway activation and suppression 
based on their significant correlation with unique 
patterns of protein expression (Table 2 and Figure 1B). 
Clustering analysis of the p-values associated with each 
VASARI feature and IPA canonical pathway revealed 
two groups of VASARI features (Figure 1A). 
Leptomeningeal reaction, edema, mild enhancement 
quality, cysts, T1/FLAIR ratio, MRI necrosis, and 
localization of anatomic center of the tumor to the 
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parietal lobes tended to have lower p-values for each 
IPA canonical pathway (Figure 1A). Edema, the 
presence of cysts, T1/FLAIR ratio, Leptomeningial 
reaction, localization of tumor to Parietal lobe and MRI 
necrosis were most strongly associated with altered 
disease and biological functions (Figure 2A).

From the IPA calculation of Z-activation scores, 
correlations could be inferred that indicate up regulation 
and down regulation of a portion of IPA canonical 
pathways (Figure 1B), diseases, and biological functions 
(Figure 2B). Focusing on the strongest associations, T1/
FLAIR ratio was correlated with down regulation of 
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Table 1: Patient demographic information
Mean Age at Diagnosis (Range) 47.2 (22 - 70)

Gender - M/F 24/33

Median Overall Survival (Months) 23.3

Median Disease-Free Survival (Months) 23.3

Oligodendroglioma/Astrocytoma/Oligoastrocytoma 25/13/18

Mean KPS (Range) 89.5 (50 - 100)

Demographics are given for the 57 patients included in this study.

Table 2: Radiological features are associated with unique pathway alterations in LGG

T1/FLAIR ratio Acute Myeloid Leukemia Signaling 6.651, Cancer Drug Resistance by Drug 
Efflux 5.48, AMPK Signaling 5.38

MRI Necrosis Cancer Drug Resistance by Drug Efflux 8.968, PI3K/AKT Signaling 8.738 
14-3-3-mediated Signaling 8.614

Leptomeningeal reaction Neuregulin Signaling 15.714, Acute Myeloid Leukemia Signaling 11.297 ErbB 
Signaling 11.067

Cross-product length Glucocorticoid Receptor Signaling 3.879, IL-2 Signaling 3.602, ErbB2-ErbB3 
Signaling 3.537

Enhancing tumor Molecular Mechanisms of Cancer 3.505, GADD45 Signaling 2.745, DNA 
damage-induced 14-3-3Ïƒ Signaling 2.745

Enhancing cortical involvement ATM Signaling 3.408, Hereditary Breast Cancer Signaling 2.912, ILK 
Signaling 2.636

Mild enhancement quality 14-3-3-mediated Signaling 6.36, Aryl Hydrocarbon Receptor Signaling 6.231, 
AMPK Signaling 5.71

Edema Neuregulin Signaling 15.666, Glioblastoma Multiforme Signaling 14.801, Role 
of Tissue Factor in Cancer 14.2

Definition of the non-enhancing margin AMPK Signaling 3.326, Glucocorticoid Receptor Signaling 2.965, Notch 
signaling 2.144

Definition of the enhancing margin VEGF Signaling 4.62, PI3K/AKT Signaling 4.379, Molecular Mechanisms of 
Cancer 4.369

Cysts present Molecular Mechanisms of Cancer 8.654, Glioblastoma Multiforme Signaling 
8.568, AMPK Signaling 8.046

Tumor localization in the parietal lobe HER-2 Signaling in Breast Cancer 8.177, ErbB Signaling 7.94, Pancreatic 
Adenocarcinoma Signaling 7.533

Tumor localization to the frontal lobe UVB-Induced MAPK Signaling 2.205, FLT3 Signaling in Hematopoietic 
Progenitor Cells 2.095, Role of Tissue Factor in Cancer 1.94

Proteins with expression significantly correlated with imaging features were analyzed by IPA. Top pathways for each 
feature are shown with the associated –log (p-value).
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AMPK and acute myeloid leukemia signaling. MRI 
necrosis was associated with up regulation of PI3K/AKT/
mTOR signaling and apoptosis, while being correlated 
with down regulation of AMPK and protein kinase A 
signaling. Leptomeningeal reaction was associated with up 
regulation of signaling pathways also important in 
pancreatic and lung cancers, while being associated with 
down regulation of NGF and UVB-induced MAPK 
signaling. Edema was implicated with increased NGF 

signaling, as well as increased G1/S checkpoint regulation. 
The presence of cysts was associated with decreased 
PI3K/AKT and phospholipase C signaling. Localization of 
tumor to the parietal lobe was correlated with upregulated 
p53 signaling activity, and with downregulated IL-8 
signaling. These associations highlight the possible 
functional implications of the correlations drawn between 
each VASARI feature and protein expression.

Figure 1: Agglomerative unsupervised hierarchical clustering of Ingenuity Pathway Analysis p-values and Z-activation 
scores associated with each VASARI features and IPA Canonical Pathways reveal a subset highly-correlated with 
pathway alterations. A heat map of a representative subset of the results of the clustering of the p-values (A) and Z-activation scores (B) 
calculated in IPA for each imaging feature and IPA canonical pathway are shown.
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DISCUSSION

The integration of diverse biomedical datasets poses 
a significant analytical and computational challenge. 
Combining clinical, gene expression, protein, 

post-translational modification, and imaging datasets 
requires robust analytical approaches that minimize false-
discovery rates and yield useful correlates between model 
parameters. The development of such techniques 
would  be  a major advancement in analytics and make 

Figure 2: Agglomerative unsupervised hierarchical clustering of Ingenuity Pathway Analysis p-values and Z-activation 
scores associated with each VASARI features and IPA Diseases and Bio-functions correlated with biological dysfunction. 
A heat map of a representative subset of the results of the clustering of the p-values (A) and Z-activation scores (B) calculated in IPA for 
each imaging feature and IPA diseases and bio-functions are shown.
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novel  diagnostics and prognostics possible [44]. 
Radioproteomics and radiogenomics show potential to 
complement proteomics and genomics for understanding 
the biological underpinnings of phenotypic tumor features 
and for predicting patient response to treatment [20]. As 
this approach matures, it is conceivable that imaging could 
provide strong surrogates to potentially replace traditional 
physical biopsies, allowing signaling activity status to be 
determined non-invasively [45].

We hypothesized that integrating imaging and 
protein expression data would reveal imaging biomarkers 
tying radiological features to the proteomics of LGG. We 
have demonstrated the use of a novel multiple-response 
regression approach to integrate imaging features and 
proteomics data while leveraging the correlation structure 
between the protein expression values. In the situation 
where the responses are correlated, and there are multiple 
predictors associated with multiple responses, standard 
univariate/multivariate analysis will identify associations 
incorrectly. Thus the correlated response regression 
approach is more appropriate in this context, having direct 
biological significance since it uses the correlation 
structure of the proteins during regression.

Multiple-response regression of the combined 
VASARI feature annotations and RPPA molecular 
expression data revealed significantly correlated proteins 
and phospho-proteins indicating upregulated signal 
transduction pathways. Querying the highly-correlated 

molecules using Ingenuity Pathway Analysis probed the 
biological implications of the regression results. Clustering 
of the pathway analysis highlighted the most important 
imaging features tied with underlying molecular 
alterations. By using this analytics pipeline, corresponding 
biological hypotheses about the underpinnings of these 
phenotypic characteristics could be within the framework 
of the IPA knowledge base.

Multiple-response regression revealed associations 
between imaging features and signal transduction, 
evidenced by significant correlations with levels of 
phosphorylated signaling molecules such as Src kinase, 
Yes-associated protein YAP, ribosomal protein S6, and 
MAPK, consistent with the established role of these 
molecules in tumor cell proliferation, migration and 
invasion. Kinase activity of over-expressed Src drives 
tumor cell proliferation [43]. YAP is a downstream 
co-activator in the Hippo pathway, a developmental 
mechanism frequently co-opted in tumorigenesis and 
progression [47]. MAPK phosphorylation participates in 
signaling cell growth and proliferation, and pathways 
which include these kinases are frequently over-active in 
tumor cells [48]. Ribosomal protein S6 is a component of 
the ribosome phosphorylated by S6 kinase, which is a 
component of the PI3K-mTOR axis, over-activation of 
which is another common feature of cancer cells [49].

In conclusion, a multiple response regression 
framework with correlated errors was used to assess the 

Figure 3: Representative axial MR T1, T1 gadolinium contrast enhanced, fluid-attenuation recovery, and T2-weighted 
acquisitions with corresponding VASARI scores. Scores for the VASARI feature set for a representative set of MR scans are shown. 
MR sequences are downloaded from The Cancer Imaging Archive [47].
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relationship between image-derived radiologist 
annotations (features) and protein measurements in TCGA 
LGG cases. Pathway analysis highlighted the functional 
effects of proteomic alterations in LGGs on MR imaging 
features, revealing a unique pattern of protein expression 
and post-translational modifications associated with each 
VASARI imaging feature. The downstream effects of 
these gene expression changes were consistent with the 
current understanding of tumor biology. One such example 
is that a physiological event, such as hemorrhage, could 
cause massive cell death, inducing stress response 
signaling in affected cells. This was reflected in the results 
of the pathway analysis, which associated the LGG 
specific protein expression correlated with hemorrhage 
with top canonical pathways, including MAP kinase 
signaling induced by ultraviolet damage. Regression and 
pathway analysis implicated IL8, PTEN, PI3K/Akt, 
Neuregulin, ERK/MAPK, p70S6K and EGF signaling 
pathways, mechanisms that exert control over the cell 
cycle, growth, and proliferation and are known to be 
significantly altered in gliomas [17]. These pathway 
alterations were most significantly associated with a subset 
of the VASARI features, providing a picture of the 
molecular underpinnings of the macroscopic radiologic 
features of LGGs across biological scale.

MATERIALS AND METHODS

TCGA low-grade glioma patient dataset

MRI data for 57 patients were obtained from The 
Cancer Imaging Archive (TCIA), and protein (reverse-
phase protein array, RPPA) molecular data were obtained 
from The Cancer Genome Atlas (TCGA) data portal. 
These patients correspond to the TCGA/TCIA subset on 
whom imaging data along with matched proteomics 
(RPPA) information is jointly available. Clinical data were 
obtained from cBioPortal [24]. Institutional review board 
approval was not needed for this retrospective study of 
public TCGA data.

MR imaging feature (phenotype) analysis

Adjudicated reader (radiologist) scores of the pre-
operative MR images using an updated version of the 
standardized Visually Accessible Rembrandt Images 
(VASARI) feature-set were obtained from TCGA Glioma 
Phenotype Research Group [10]. The TCGA Glioma 
Phenotype Research Group readers scored cases using an 
updated version of the original VASARI feature-set, which 
was developed for assessment of GBMs, modified through 
expert consensus for lower grade gliomas. The imaging 
dataset included complete annotations for 27 of the 34 
standard VASARI features. The twenty-seven VASARI 
features included overall shape, tumor length cross 
product, edema, cysts, hemorrhage (this feature can also 
result from mineralization), areas of brain invasion, 

satellite tumors, enhancement quality, thickness of the 
enhancing tumor margin, definition of the non-enhancing 
tumor margin, definition of the contrast-enhancing tumor 
margin, gray-level heterogeneity, enhancing cortical 
involvement, leptomeningeal reaction, location of the 
tumor anatomic center, tumor laterality to right or left 
cerebral hemisphere, ependymal contact, T1/FLAIR ratio, 
T2/FLAIR signal crossing the midline, contrast 
enhancement crossing the midline, calvarial remodeling, 
and MRI-necrosis (presumed necrosis based upon MR 
imaging features, as opposed to histology) (Figure 3). As 
indicated in Zhou et al. [25], the inter-rater analysis via 
kappa statistic demonstrated good inter-rater agreement 
along the VASARI features.

Statistical analysis

To estimate the relationship between the LGG-
VASARI imaging features and RPPA-derived protein 
levels, we used a multiple response regression model 
developed by Bhadra and Mallick [26]. The model 
incorporates the VASARI imaging features as the 
independent variables and the protein expression data 
(across all the RPPA proteins) as the response vector. The 
framework aims to capture the associations between the 
protein expression levels (this is biologically meaningful, 
since protein expression levels might be correlated), while 
incorporating the imaging features as covariates in the 
multiple predictors, multiple responses regression 
framework (outlined below, more details in the SI). The 
regression coefficient captures the association strength 
between the imaging predictor and the protein expression. 
P-values for the regression coefficients are corrected for 
multiple testing using Benjamini-Hochberg method [27], 
and statistical significance is set at 0.05.

Multiple-response regression with correlated 
noise: novelty of the proposed framework

Variable selection is a ubiquitous problem in modern 
genomic data analysis. We provide a brief review below to 
explain the novelty of our approach more clearly. Further 
details are in the Supplementary Methods. Bayesian 
approaches typically perform this through an appropriate 
sparsity-inducing prior, e.g., spike-and-slab type prior [28, 
29], double-exponential prior [30], or the more recent 
heavy-tailed global-local shrinkage priors such as the 
horseshoe [31], horseshoe+[32] and generalized double 
Pareto prior [33]; while frequentist approaches usually 
work with penalized regression models e.g., L1-norm 
penalty of the LASSO [33], or combined l1/l2 penalty of 
elastic [34], or combined L1 and L2-norm penalty of Elastic 
Net [35]. However, in multiple responses regressions, such 
as the framework considered here, most approaches ignore 
the correlation structure in the error terms and treat them as 
independent. It is well-known that ignoring the correlation 
structure if the true errors are correlated leads to loss of 
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statistical efficiency, even in low dimensions [36]. Variable 
selection in presence of correlated errors is being studied 
only recently. In frequentist settings, Rothman et al. [37] 
applied an algorithm based on alternating LASSO and 
graphical LASSO steps to simultaneously select the 
covariates and the error precision matrix. Yin and Li [38] 
applied a similar technique to high-dimensional genomic 
data. Cai et al. [39] designed a two-step procedure for first 
estimating the residual correlations and then selecting the 
covariates. We take a Bayesian approach and follow the 
framework of Bhadra and Mallick [26] in our data analysis. 
To control for multiple testing correction in the high-
dimensional “multiple covariates, multiple responses” 
framework, we followed a two-stage procedure [26]. 

1.	 First we threshold the posterior probabilities of the 
covariates (imaging features) by controlling FDR at 
0.25, yielding a sparse set of imaging predictors. 

2.	 To determine which responses (proteomic 
measurements) this sparse set of covariates (imaging 
features) were associated with, we did another level 
of FDR control. We performed t-tests, of “no 
association” null hypothesis vs. ‘non-zero association’ 
alternative hypothesis, between a given imaging 
feature and a given protein's expression. We then 
declared those associations significant which had the 
lowest 10% of the p-values resulting from the above 
t-tests. All these associations are significant at the 
adjusted p-value of 0.05. A similar approach has 
previously been used successfully to analyze eQTL 
data [26] and glioblastoma data [41].

Ingenuity pathway analysis

Proteins from the RPPA dataset that were found to 
be strongly-associated with each VASARI feature were 
queried using the Ingenuity Pathway Analysis software 
package (IPA™ QIAGEN, Redwood City, CA, http://
www.qiagen.com/ingenuity). IPA Core Analyses were run 
on each list of mapped identifiers for each VASARI 
feature. In the IPA software, p-values were computed by 
applying the Fisher's exact test based on the number of 
biological functions, pathways, or molecules in the 
annotation as defined by the molecules in the selected 
Reference set, the number of molecules in the Reference 
set known to be associated with that function, the number 
of functions, pathways, and molecules in the Reference 
set, and the number of molecules in the Reference set [42].

Hierarchical clustering analysis of  
imaging-proteomic associations

To interpret VASARI associations with pathways, 
diseases and functions, agglomerative unsupervised 
hierarchical clustering was performed on the p-values 
associated with each VASARI feature using the “stats” 

package in R. Distance matrix calculations were 
performed using the Euclidean method, and within-cluster 
variance was minimized using Ward’s method [43].
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