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Background: Heart failure is currently divided into three main forms, HFrEF,

HFpEF, and HFmrEF, but its etiology is diverse and highly heterogeneous. Many

studies reported a variety of novel subgroups in heart failure patients, with

unsupervised machine learning methods. The aim of this scoping review is

to provide insights into how these techniques can diagnose and manage HF

faster and better, thus providing direction for future research and facilitating

its routine use in clinical practice.

Methods: The review was performed following PRISMA-SCR guideline.

We searched the PubMed database for eligible publications. Studies were

included if they defined new subgroups in HF patients using clustering

analysis methods, and excluded if they are (1) Reviews, commentary, or

editorials, (2) Studies not about defining new sub-types, or (3) Studies not

using unsupervised algorithms. All study screening and data extraction were

conducted independently by two investigators and narrative integration of

data extracted from included studies was performed.

Results: Of the 498 studies identified, 47 were included in the analysis.

Most studies (61.7%) were published in 2020 and later. The largest number

of studies (46.8%) coming from the United States, and most of the studies

were authored and included in the same country. The most commonly used

machine learning method was hierarchical cluster analysis (46.8%), the most

commonly used cluster variable type was comorbidity (61.7%), and the least

used cluster variable type was genomics (12.8%). Most of the studies used

data sets of less than 500 patients (48.9%), and the sample size had negative

correlation with the number of clustering variables. The majority of studies

(85.1%) assessed the association between cluster grouping and at least one

outcomes, with death and hospitalization being the most commonly used

outcome measures.

Conclusion: This scoping review provides an overview of recent studies

proposing novel HF subgroups based on clustering analysis. Differences were
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found in study design, study population, clustering methods and variables,

and outcomes of interests, and we provided insights into how these

studies were conducted and identify the knowledge gaps to guide

future research.
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Introduction

Heart failure (HF) is the serious manifestation and terminal
stage of many cardiovascular diseases, with a high level of
mortality and readmission rate (1). The global prevalence
of HF is about 26 million, and with the aggravation of
population aging and the increase of survival rate of acute
coronary syndrome (ACS), the prevalence of HF is increasing
continuously (2). However, the existing treatment measures are
only symptomatic support treatments to improve symptoms,
but cannot completely reverse the course of disease. One
of the reasons for this phenomenon is that the current
HF subpopulation cannot fully integrate the heterogeneity
of HF clinical manifestations and progression, which further
aggravates the serious consequences caused by inadequate or
even inaccurate phenotypic classification.

In previous guidelines for heart failure, heart failure was
classified according to the cut-off point of LVEF—heart failure
with reduced ejection fraction (HFrEF): HF with LVEF ≤ 40%;
Heart failure with preserved ejection fraction (HFpEF): HF with
LVEF ≥ 50%; Heart failure with intermediate ejection fraction
(HFmrEF): HF with LVEF > 40% and L VEF < 50% (3).
The new guideline proposed a new and revised classification
of HF according to LVEF: HF with improved ejection fraction
(HFimpEF): symptomatic HF with a baseline LVEF ≤ 40%,
a ≥ 10 points increase from baseline LVEF, and a second
measurement of LVEF > 40%. When classifying heart failure
based on LVEF, previous guidelines have used HFrEF and
HFpEF, but for the types of heart failure with EF values
between 40 and 49%, there are different terms used, and there
is no uniform standard. In the new classification, patients with
normalized EF may have decreased EF after drug treatment
was discontinued, meaning that although EF improved, cardiac
structure and function did not (4). Although large number
of studies have analyzed and summarized the structural and
functional characteristics of cardiac cells, intercellular excitation
conduction pathway, and cellular inflammation degree of
patients in each subtype under this classic classification,
there is still a situation of lack of effective treatment and
limited personalized medical care, which urgently requires more
accurate and detailed grouping strategies (5, 6). The complexity
of the development of heart failure is difficult to explain

with the emphasis on symptoms and signs in the previous
diagnostic classification. We believe that the new subtype
will give new directions in the interpretation of heterogeneity
and treatment selection. The introduction of subgroups of
patients with homogeneous characteristics is helpful to treat
patients according to their clinical and pathophysiological
characteristics, reduces the complexity of the cross influence of
data characteristics of different dimensions during the treatment
of patients, and plays a role in improving the treatment and
prognosis (7).

Machine learning (ML) has achieved good accuracy in
early diagnosis, clinical classification and risk factor prediction
of patients with HF (8, 9). However, because of the black
box feature of the algorithm, we cannot learn from the
classification process of the algorithm. Unsupervised machine
learning, specifically clustering analysis, is used to find the
similar or different features between patients groups, and
identify subgroups with homogeneous features. Clustering
studies have certain advantages in characterizing, classifying or
treating patients differently. Clustering algorithms commonly
are performed in a static way with baseline data and/or outcome
data. They are useful to answer descriptive questions (10,
11). In the early attempts, unsupervised clustering analysis
algorithms were used on clinical laboratory indexes and
demographic data characteristics of patients with heart failure
to make homogeneous inductive groups (12, 13). In recent
studies, researchers also used echocardiography, genomics
and comorbidity characteristics to explore more grouping
strategies (14). Without knowing the outcomes information (i.e.,
unsupervised learning), clustering analysis can comprehensively
reflect the association between new subgroups and heart failure
outcomes and other prognostic indicators.

There are wide variations in studies defining new heart
failure subgroups, in study design, statistical methods,
and reporting of outcomes, which makes comparing and
summarizing results from different studies very difficult.
Therefore, it is necessary to conduct a scope review to
summarize the current practice in studies on the new subgroups
of heart failure, clarify the limitations and provide direction and
planning for the future research. At present, some researchers
have discussed the application of machine learning in heart
failure subtypes. Banerjee et al. included 15 studies published
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up to 2015, and compared the symptoms of cardiovascular
diseases such as ACS, myocardial infarction (MI) and heart
failure (HF) (15); In addition, Banerjee and others evaluated the
subtype definition and risk prediction of ML in HF, ACS and
AF (Atrial Fibrillation), and systematically reviewed them (15).
However, in their research, the definitions of heart failure and
subgroups are only a part of the research, and the clustering
variables concerned are not comprehensive, and the included
research is up to December, 2019 at the latest. Therefore, it
is necessary to define the scope with a specific focus on the
subtype classification in heart failure, and fully incorporating
the latest research reports. This scoping review will integrate
the current evidence on subtype classification of heart failure
reported in the existing literature to provide a reference for
clinicians and community health care workers to manage
HF better, and identify the knowledge gaps to point out the
direction for future research.

Methods

This scoping review followed the Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) guideline (16), and a competed
PRISMA-ScR checklist was provided in Supplementary
Material. A study protocol was designed by a senior
author and agreed by all authors, and this protocol was
not registered or published.

Literature search

We performed a search in PubMed to identify primary
studies on discovery of new HF sub-types by using clustering
analysis. The search strategy contained 3 modules: the HF
module, the algorithm module, and the sub-type module,
and a filter of publication time till 31st December 2021 (see
Supplementary Material Search Strategy).

Eligibility criteria

Studies were included if they defined new subgroups in HF
patients using clustering analysis methods. Exclusion criteria
were: (1) Reviews, commentary, or editorials, (2) Studies
not about defining new sub-types, (3) Studies not using
unsupervised algorithms.

Study selection

Titles and abstracts were independently scanned by one of
the two authors and checked by the other, to identify potentially

eligible articles, which were then assessed with full texts for final
inclusion. Disagreements were resolved through discussion by
the two reviewers, and a third author made the final decision
when an agreement was not reached.

Data extraction

Data was collected on basic study characteristics including
title, name of the first author, year of publication, country,
and information and the analysis and results including
study population, sample size, clustering method(s), types
of clustering variables, and outcome(s). The data extraction
form and data extracted in this study can be found in the
Supplementary Material. All included articles were reviewed
and extracted by one of the two authors and double checked by
the other. Disagreements were resolved through discussion, if
necessary the final judgment was from a third reviewer.

Data synthesis

Data synthesis was performed with descriptive statistics
and data visualization. Categorical variables were presented
as counts and proportions, and continuous variables were
presented with median and IQR. All the statistical analyses
were performed with R version 3.6.1 and RStudio version
1.2.5001, and packages ggplot2, networkD3 (sankey diagram),
ggparliament (parliament diagram), UpSetR (upset plot) and
scatterpie (bubble chart).

Results

Search finding

A total of 498 studies were identified by the search strategy,
all of them were screened for titles and abstracts, of which 446
were excluded at this stage. Fifty-two studies entered the stage
of full-text reading to assess their qualification, and five of them
were excluded, for reasons shown in Figure 1. In the end, 47
studies were included in the review.

Characteristics of the included studies

Table 1 shows the basic characteristics of the included
studies in this review. Among the 47 included studies, 23(48.9%)
studies focused on patients with generalized HF (7, 13, 17–
31), while the rest 24 studies focused on patients with specific
categories of HF, among which 19 studies (40.4%) focused on
patients with HFpEF (32–50), and the other 5 studies (14,
51–54) (10.6%) focused on HFrEF. Of these studies, only one
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FIGURE 1

PRISMA flow diagram for study inclusion.

(2.1%) was published before 2010 (55) and four (8.5%) were
published between 2010 and 2014 (19, 20, 54, 56). Most of the
research was published after 2015, and the research after 2020
accounted for 61.7% (32, 34, 35, 37, 38, 40, 42–44), as shown in
Figure 2.

In all the included studies, the corresponding authors were
from 13 different countries, including the United States (22,
46.8%) (18–22, 24, 26–28, 33, 36, 37, 40, 41, 44, 48, 53, 54, 56–
59), the Netherlands (5, 10.6%) (23, 45, 47, 55, 60), France (5,
10.6%) (13, 17, 32, 43, 51), Spain (3, 6.4%) (25, 34, 38), China
(3, 6.4%) (7, 35, 49) and Japan (2, 4.3%) (31). Australia (52),
Germany (30), Italy (14), Poland (39), Switzerland (46), Canada
(50) and the United Kingdom (29) each had only one study (1,
2.1%). The research data were from a single country in 40 studies
(85.1%), and the rest 7 studies (14.9%) were performed with
multinational data (13, 17, 24, 28, 37, 43, 60). The relationship
between data sources and corresponding authors is shown in
Figure 3. We further classify them according to their continents,
and find that the highest number of authors and participants
are from America and Europe, followed by Asia and Oceania,
as shown in Table 1.

We analyzed the types of data source, the results showed
that in all included in the article, there are 24 articles (51.1%)
using EHR data, 9 articles (19.1%) using RCT research data, 8

articles (17.0%) using disease registration data, 3 article (6.4%)
using the observational data, 1 article (2.1%) using the claims
data. In addition, one study used EHR data and Claims data
simultaneously, and another study used EHR data, RCT data
and registries data simultaneously.

In addition, of the 47 included studies, only 6 (12.8%)
were externally validated, while the remaining 41 studies
(87.2%) were not.

Types of clustering methods in the
included studies

The clustering methods were categorized into six main
types, and the usage of each type of methods in the included
studies are shown in Figure 4 and Table 1. The most commonly
used ML method was hierarchical clustering method (32–33,
35, 38–41, 43, 44), accounting for 46.8% (22/47) of all studies,
followed by latent class analysis (11, 23.4%) (7, 17, 24, 26, 29, 30,
32, 36, 37, 47, 55) and K-Means/Medoids (9, 19.1%) (13, 28, 31,
34, 42, 50, 52, 53, 60), and two studies used mixture model-based
approach (4.3%) (46, 58). The least commonly used methods
were spectral (49), self-organizing map (23) and composite of
hierarchical and K-Means/Medoids (27).
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TABLE 1 Descriptive statistics of study characteristics.

Characteristics Studies, n (%)/M(Q1–Q3)

HF subtype

HF 23 (48.9%)

HFpEF 19 (40.4%)

HFrEF 5 (10.6%)

Years published

<2010 1 (2.1%)

2010–2014 4 (8.5%)

2015–2019 13 (27.7%)

≥2020 29 (61.7%)

Author country

Asia 5 (10.6%)

Europe 18 (38.3%)

America 23 (48.9%)

Oceania 1 (2.1%)

Data source

Asia 4 (8.5%)

Europe 14 (29.8%)

America 21 (44.7%)

Oceania 1 (2.1%)

Multinational 7 (14.9%)

Data types

EHR 24 (51.1%)

RCT 9 (19.1%)

Disease registries 8 (17.0%)

Observational data 3 (6.4%)

Claims data 1 (2.1%)

EHR and claims data 1 (2.1%)

EHR, RCT, and registries data 1 (2.1%)

Method

K-Means/Medoids 9 (19.1%)

LCA 11 (23.4%)

Hierarchical 22 (46.8%)

Hierarchical & K-Means/Medoids 1 (2.1%)

SOM 1 (2.1%)

Spectral 1 (2.1%)

Mixture model-based 2 (4.3%)

Sample size 480 (301–1619)

Number of variables 18 (11–47)

Number of clusters 3 (3–6)

Variable type

Demographic 24 (51.1%)

Clinical 25 (53.2%)

Laboratory 21 (44.7%)

Imaging 24 (51.1%)

Genetic 6 (12.8%)

Symptoms and complaints 18 (38.3%)

Comorbidities 29 (61.7%)

Outcome

Cross sectional 7 (14.9%)

(Continued)

TABLE 1 (Continued)

Characteristics Studies, n (%)/M(Q1–Q3)

Mortality 36 (76.6%)

Hospitalisation 27 (57.4%)

Other events 14 (29.8%)

External validation

Yes 6 (12.8%)

No 41 (87.2%)

Types of clustering variables used in
the included studies

We divide all the variables used by the institute
for unsupervised cluster analysis into seven categories:
demographic data (such as gender, age, education level,
etc.), clinical data (such as heart rate, respiratory rate, etc.),
laboratory data, image features (such as LEVF, etc.), genetic
data, clinical symptoms and complications, and comorbidities.
We have sorted out the frequency with which these variable
types are used and whether they are jointly used in cluster
analysis, as shown in Table 1 and Figure 5. As far as the
frequency of variable types is concerned, comorbidities are
the most frequently used in these studies 29(61.7%), and the
clinical data, imaging data, demographic data and laboratory
data are almost the same, which are 25(53.2%), 24(51.1%),
24(51.1%) and 21(44.7%) respectively. Among them, gene
data, symptoms and complications data, image data, laboratory
data and complications data are used alone in the process of
sub-grouping in some studies. Most studies combine multiple
data types to make a new subgroup classification of heart failure.

Sample size, number of clustering
variables, and number of clusters

The sample sizes in the derivation of subgroups ranged from
63 to 318,384. In all 47 studies, the median sample size was 480,
of which 23 studies (48.9%) included data sets of more than 500
people, and only 2 studies (4.3%) had a sample size of less than
100 people. The number of clustering variables involved in the
research also varies widely, the research with the least variables
was using only 7 clinical, laboratory or imaging indicators, and
the research with the most variables was using 13,000 genes
for clustering analysis to determine their molecular subgroups.
The number of clusters obtained in most studies ranged from
2 to 7 (97.9%), with a median of 3, of which 16 studies (34.0%)
finally got 3 clusters, and only one study got 11 clusters. Figure 6
shows the relationship between the number of variables (X-axis,
in log scale) and the number of clusters (Y-axis) identified in
each study, and the sample size (in log scale) is presented as
the radius of the bubble. The Spearman correlation was −0.14
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FIGURE 2

Number of publication per year by HF sub-types.

between sample size and number of clustering variables, 0.15
between sample size and number of clusters, and 0.13 between
number of clustering variables and number of clusters.

Prognostic implications of the clusters
proposed in the included studies

Many different outcomes were used to evaluate the
prognostic implication of the identified new subgroups, thus
they were classified into four categories: death, hospitalization,
other events, and cross-sectional study (i.e., no prognostication
was assessed). The most commonly used endpoints were death
(36, 76.6%) and hospital (27, 57.4%) respectively, while in
7 studies (14.9%) no analysis was performed for prognostic
implications. The outcomes evaluated in each study are shown
in Figure 6.

Discussion

In this scoping review, we summarized the current research
on identifying subgroups in HF patients with unsupervised
machine learning methods. This type of studies increased
quickly over past years, and there were 19 new publications in
2021. Differences were found in study design, study population,
clustering methods and variables, and outcomes of interests,
and we aimed to provide insights into how these studies

were conducted and identify the knowledge gaps to guide
future research.

Most of the studies were conducted by researchers from
developed countries, or in geographic, from Europe and North
America, which is not a surprising finding given their leading
position in the field of biomedical and clinical researches.
However, subgroups identified from these populations may have
poor generalizability in other part of the world. Africa, South
America, South and West Asia were under represented, since
the data availability is limited in those areas. We also noticed
that most researchers worked on data from their own country,
and only a few studies were from multinational collaboration.
Future research should consider combining datasets containing
patients from different countries and regions, to investigate the
potential application of the new subgroups worldwide.

With regarding to the clustering methods, in this scoping
review, the most commonly used unsupervised machine
learning algorithm is hierarchical clustering, followed by
K-Means or K-Medoids. Hierarchical clustering has the
advantage of not requesting predefined number of clusters,
which is useful in exploring novel subgroups. Researchers have
had long history in using K-Means or K-Medoids clustering
in analyzing data, and these methods were considered as
multivariate analysis before the term of machine learning getting
its popularity (61, 62).

The novel HF subgroups can be defined with different
types of variable, however, the application of subgroups also
depends on how difficult these clustering variables can be

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.895836
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-895836 July 15, 2022 Time: 15:0 # 7

Sun et al. 10.3389/fcvm.2022.895836

FIGURE 3

Relationship between data sources and corresponding authors.

collected. Obtaining demographic variables and underlying
comorbidities is straightforward by asking the patient’s medical
history at admission, which made them as the most frequently
used variables in clustering analysis, and laboratory data and
imaging data can also be obtained in routine examination after
admission. However, genomics or proteomics data may need
extra special examination methods, which are less common

compared with other data types, so that genomics or proteomics
are rarely used in the included studies, but this also heralds the
great potential of genomics in revealing the prognosis of heart
failure patients.

The implementation of machine learning methods relay
on data in a large degree. In the included studies, 23 studies
used datasets of less than 500 patients and only 15 studies
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FIGURE 4

Types of machine learning methods used in identifying HF subgroups.

FIGURE 5

Types of clustering variables used in identifying HF subgroups.

used data sets of more than 1,000 patients. At the same time,
the number of clustering variables is relatively big, sometime
even higher than the sample size, which may lead to overfitting

issues. A negative correlation was observed between the number
of clustering variables and the sample size, which is not as
expected. When more clustering variables are included in the
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FIGURE 6

Features of the clusters identified in the included studies.

analyses, researchers need to make sure the sample size is
sufficient to get reliable results.

Some included studies did not evaluate the prognostic
implication of the proposed subgroups, and we marked these
studies as cross-sectional studies. Unsupervised cluster analysis
does have obvious advantages in finding out the heterogeneity
among patients, and the new subgroup is also more accurate
in describing the symptoms and complications of patients, but
not connecting with the prognosis means that it is limited in
clinical application, so we hope that more researches will make
a clear plan for the clinical endpoint of patients. In addition,
we found that few studies have set the quality of life or daily
behavior ability as the research endpoint, which may be due to
the fact that similar endpoints need more detailed evaluation
scales or multi-dimensional evaluation indicators, which are
quite different in the nature of easy access compared with the
outcome endpoints such as death or readmission.

Unlike traditional prediction models, which pay more
attention to the prediction accuracy and absolute probability
of having a specific event, clustering analysis focused on
classifying complex and heterogeneous diseases and identifying
people with similar clinical characteristics. Thus, subgroups
identified with clustering analysis may have better explanation
and clinical meaning than prediction models. With these novel
subgroups, patients can be more accurately risk stratified by
more simple and easily available clinical indicators, and then
targeted treatment schemes can be formulated.

With the development of coronary intervention technology,
more patients with coronary heart disease survive and develop
into heart failure. Coupled with the aggravation of population
aging, the number of patients with heart failure is increasing
year by year (63, 64), there is a higher proportion of elderly
patients among them, and the existence mode of comorbidity is
more complicated, which is followed by the increase of medical
expenses, mortality and hospitalization rate (65). More and
more researchers are aware of the importance of comorbidity
management. The study on comorbidity of patients with heart
failure found that the number of participants suffering from
diabetes, chronic kidney disease and atrial fibrillation was higher
(66), and other common comorbidities included hypertension
and chronic obstructive pulmonary diseases. Some studies
showed that some comorbidities would change the disease
phenotype of patients with heart failure, and even become
the main cause of heart failure (67), whereas some studies
reported that the comorbidity of patients with heart failure
was more serious, which might be caused by heart failure.
Diabetes, hypertension, etc., are also associated with worse
clinical outcomes in other diseases. Therefore, it is of great
significance to carry out more personalized management for
patients with heart failure under different comorbidity modes.
These common comorbidities are important variables in our
included studies, and the emergence of new subgroups and new
treatment standards have also brought about the improvement
of clinical prognosis in these studies. In addition to the elderly
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patients with heart failure, recent studies have found that
the prevalence of cardiovascular comorbidities in middle-aged
patients with heart failure is also very high, compared with
the elderly patients with heart failure (>85 years old) (68). In
the included studies, the new grouping of patients based on
comorbidity or combined with other types of data also provided
reference for clinical treatment.

There are also some limitations of the current scoping
review. First, when searching for eligible publications, we
only performed the literature search in PubMed database.
Some other databases such as scienceDirect, Embase, IEEE,
Scopus, etc., were not searched specifically, since most of the
relevant publications are covered by PubMed, and looking
for more databases will only increase the duplicates and add
unnecessary workload. Given this is a scope review rather than
a systematic review, we strictly enforce this search strategy,
and we are confident the results presented in this scoping
review are not biased. Second, we only included publications
in English, and excluded those in other languages, which
may reduce the diversity of this scope review. Third, we did
not evaluate the evaluation criteria and external validation
of the novel subgroups, since they are seldom done in
the included studies. We believe validation or replication of
the proposed subgroups are essential before these subgroups
will be used in clinical practice, and future studies should
pay more attention to these analyses. At last, this scoping
review is only a comprehensive description of the existing
researches on subgroup identification in HF patients, thus
no formal assessment on methodological quality (or risk of
bias) or meta-analysis was performed in this review. These
analyses are usually within a systematic review, and are
beyond the scope of this scoping review. In future research,
we plan to perform a systematic review on studies with
similar subgroup definition and a meta-analysis on their
prognostic performance.
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