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Abstract: In recent years, various attempts have been made to meet the increasing demand for high
energy density of lithium-ion batteries (LIBs). The increase in voltage can improve the capacity
and the voltage platform performance of the electrode materials. However, as the charging voltage
increases, the stabilization of the interface between the cathode material and the electrolyte will
decrease, causing side reactions on both sides during the charge–discharge cycling, which seriously
affects the high-temperature storage and the cycle performance of LIBs. In this study, a sulfate
additive, dihydro-1,3,2-dioxathiolo[1,3,2]dioxathiole 2,2,5,5-tetraoxide (DDDT), was used as an effi-
cient multifunctional electrolyte additive for high-voltage lithium cobalt oxide (LiCoO2). Nanoscale
protective layers were formed on the surfaces of both the cathode and the anode electrodes by
the electrochemical redox reactions, which greatly decreased the side reactions and improved the
voltage stability of the electrodes. By adding 2% (wt.%) DDDT into the electrolyte, LiCoO2 exhibited
improved Li-storage performance at the relatively high temperature of 60 ◦C, controlled swelling
behavior (less than 10% for 7 days), and excellent cycling performance (capacity retention rate of
76.4% at elevated temperature even after 150 cycles).

Keywords: high-voltage; lithium cobalt oxide; multifunctional electrolyte additives; interfacial stability

1. Introduction

In the past decades, remarkable progress has been made in lithium-ion batteries (LIBs)
in the field of portable devices [1,2]. In addition, LIBs can be used as efficient aerospace
batteries for small satellites, and LIBs are becoming one of the most widely used energy
storage devices due to their relatively high working potential and high energy density [3–6].
However, it is well known that the energy density of cathode materials is the main factor
affecting the performance of LIBs. To meet the requirements of higher capacity and longer
cycle life for LIBs, there has been an increase in studies focusing on the development of
novel cathodes with higher working potentials [7–9]. However, the overcharge of LiCoO2
can provoke the serious oxidation of the electrolyte at higher potentials and cause a high-
resistance cathodic film to form, thus causing the capacity fade of the LIBs in the following
cycles [10–12]. Some side effects have been observed, including the dissolution of transition-
metal ions in the electrolyte and the reduced cycling stability of the cells [13]. It is well
known that the conventional organic carbonate solvents have oxidization potentials of 5 V.
In addition, the oxidation reaction is catalyzed in the presence of transition-metal ions, and
the decomposition of electrolytes is accelerated at lower potentials, leading to unexpected
rapid capacity fading [14]. Ethers such as 1,3-dioxolane (DOL) and 1,2-dimethoxyethane
(DME) also have high ionic conductivities and coulombic efficiencies [15,16]. However,
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ethers at typical salt concentrations of 0.1 or 1 M cannot be practically utilized because of
their low oxidative stability (less than 4 V vs. Li/Li+) [16–18]. Sulfone-based high-voltage
electrolytes with good oxidation resistance have low lattice energy, but their relatively
greater wettability and higher viscosity can greatly affect the performances of LIBs [19].
For cell systems containing graphite negative electrodes, sulfone-based electrolytes are also
restricted since the stable solid–electrolyte interface (SEI) at the graphite surface cannot be
formed [20]. Compared with organic carbonate solvents, room-temperature ionic liquids
(RTILs) have exhibited higher thermal stability, lower flammability and volatility, and
wider electrochemical windows [21]. However, the compatibilities of these electrolytes are
also unsatisfactory due to the low wettability. In addition, the relatively higher melting
points have also been found to degrade their low-temperature performances [22].

Electrolytes with excellent electrochemical properties always play an important role
in improving the stability of LIBs. However, researchers have had great difficulty in devel-
oping novel electrolytes for high-performance LIBs. It is worth noting that the addition
of a small amount of additive into the electrolyte is beneficial in forming a protective
layer and preventing the solvent penetration; in this way, the possible damages to the
electrode structure could be efficiently avoided. In addition, a film-forming additive for
high-voltage cathode material in LIBs undergoes oxidation and decomposition reactions
on the surface of the positive electrode, and a stable interface film is formed favoring
the solvent system, thus reducing or preventing the further oxidation of the solvent sys-
tem. Lithium bis(oxalato)borate (LiBOB) is a typical inorganic additive for high-voltage
LIBs. Phosphides (such as tris(pentafluorophenyl)phosphine (TPFPP), tris(hexafluoro-iso-
propyl)phosphate (HFiP) and N-(triphenylphosphoranylidene)aniline (TPPA)), sulfonate
esters (such as methylene methanedisulfonate (MMDS)), carboxyl anhydrides (such as glu-
taric anhydride and succinic anhydride), and fluorides (such as 1,1-difluoro-4-phenylbut-1-
ene (DF)) exhibited similar surface-film-forming characters and could enhance the perfor-
mance of high-voltage cathodes [23–29]. The oxidation of LiBOB on the cathode surface
was found to generate a cathode passivation layer that inhibited the further oxidation of
the electrolyte [30,31].

The complexing additives can form complexes with free transition-metal elements,
purify the electrolyte system, suppress the electrolyte decomposition, and improve the high-
voltage performance. For example, adiponitrile can inhibit the side reaction between the
electrolyte and the surface of the high-nickel positive electrode, and the strong coordination
between the nitrile group and Ni4+ can effectively reduce the formation of electrochemically
inert NiO-type rock-salt structure [32].

Recently, dihydro-1,3,2-dioxathiolo[1,3,2]dioxathiole 2,2,5,5-tetraoxide (DDDT) has
emerged as an efficient electrolyte additive for LIBs. DDDT has been utilized as an overall-
functional electrolyte additive for high-voltage NCM523/graphite batteries, and enhanced
electrochemical performance could be obtained [33]. In this study, to improve the interface
stability of high-voltage lithium cobalt oxide (LiCoO2), DDDT-containing electrolyte was
used as a multifunctional electrolyte additive. The physicochemical properties of the
cells were analyzed, and the underlying mechanisms were investigated. In particular, the
protective layers formed electrodes by the electrochemical redox reactions on the surfaces
of both the cathode and the anode could greatly decrease the side reactions and improve
the voltage stability of the electrodes. The research indicated that the DDDT-containing
electrolyte was beneficial for the high-voltage LiCoO2 batteries, besides the previous
breakthroughs towards LiNi0.5Co0.2Mn0.3O2/graphite batteries, which may provide a
useful reference for the preparation of more stable LIBs by the formation of high-quality
interfacial films in the cells.

2. Experimental Details
2.1. Materials, Electrolyte Configuration, and Cell Production

Battery-level component LiPF6, ethylene carbonate (EC), propylene carbonate (PC),
diethyl carbonate (DEC), ethyl methyl carbonate (EMC), n-propyl propionate (PP), and
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dihydro-1,3,2-dioxathiolo[1,3,2]dioxathiole 2,2,5,5-tetraoxide (DDDT, Figure 1) were pro-
vided by Shanshan New Materials (Quzhou) Co., Ltd. The solvent was fully dried by 4A
molecular sieve, activated, and configured in an argon (Ar)-filled glove box with water and
oxygen below 1 ppm. The electrolyte model is shown in Tables 1 and 2. The moisture and
free acid contents of the electrolyte were tested by Metrohm Coulomb Karl Moisture Meter
(below 20 ppm) and confirmed by triethylamine titration (below 50 ppm).
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Table 1. Compositions of electrolytes #1–#4.

Code
Solvent Additive

(wt.%)
Lithium Salt

(mol/L)

EC EMC DDDT LiPF6

#1 30 70 0 1.15
#2 30 70 0.5 1.15
#3 30 70 1 1.15
#4 30 70 2 1.15

Table 2. Compositions of electrolytes #5–#8.

Code
Solvent Additive

(wt.%)
Lithium Salt

(mol/L)

EC PC DEC PP DDDT LiPF6

#5 20 10 30 40 0 1.15
#6 20 10 30 40 0.5 1.15
#7 20 10 30 40 1 1.15
#8 20 10 30 40 2 1.15

The cathode formulation consisted of 95 wt.% LiCoO2 (provided by Tianjin Bamo
Tech Co. Ltd.; Tianjin, China), 2.5 wt.% carbon black, and 2.5 wt.% PVDF. A slurry with
a viscosity of about 6000 mPa·s was prepared by dispersing and mixing LiCoO2 and the
conductive agent with NMP. By an aluminum foil current collector with the slurry, a
positive electrode was obtained after drying. A conductive agent consisting of 95 wt.%
graphite (Jiangxi Zichen Tech Co., Ltd.; Yichun, China), 2.5 wt.% carbon black, 1.5 wt.% SBR,
and 1 wt.% CMC was used. By dispersing and mixing active materials and the conductive
agent with deionized water to form a slurry with a viscosity of about 3000 mPa·s and then
coating the copper foil current collector with the slurry, a negative electrode was obtained
after drying. The polypropylene separator was obtained from Shenzhen Senior Technology
Material Co., Ltd. (Shenzhen, China). The negative electrode had an active mass load
of approximately 1.07 mg cm−2, and the positive electrode had an active mass load of
approximately 1.86 mg cm−2. A three-electrode system with Pt metal as the working
electrode, lithium metal as the counter electrode, and a reference electrode was used for
linear scan voltammetry (LSV). The potential of the electrode was scanned from open-
circuit voltage (OCV) to 7.0 V, and the scanning speed was 0.1 mV/s. Cyclic voltammetry
(CV) tests of the Li/graphite half cells were performed, and a scanning voltage range of
3–0.01 V was investigated with a sweep rate of 0.01 mV/s. The cells were measured by an
eight-channel Solartron potentiostat (model 1470E; Advanced Measurement Technology
Inc.; Oak Ridge, TN, USA).
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To evaluate the reaction window of the fabricated electrolyte, we assembled the
positive and negative electrodes and a separator in a CR2032 coin cell battery. Lithium
metal was used as the reference electrode, and model #1–#4 electrolytes were utilized
(Table 1). In order to evaluate the electrical performance of the additive on the full battery,
we assembled the positive and negative pole pieces and the separator into a wound type
404,798 battery by using model #5–#8 electrolytes (Table 2).

The surface morphologies of the electrodes before and after cycle tests were inves-
tigated by a scanning electron microscope (SEM; Nova Nano SEM450). The functional
groups of the formed cathode–electrolyte interface (CEI) layers before and after cycles,
as well as their chemical compositions, were confirmed by an X-ray photoelectron spectro-
scope (XPS; R3000, VG SCIENTA). The crystal forms of the electrode materials before and
after cycle tests were investigated by X-ray powder diffraction (XRD; D8 ADVANCE).

2.2. Electrochemical Properties

Firstly, the analyses of dQ/dV curves were conducted to quantitatively evaluate the
performance of the full battery, and the high-temperature storage and the cycle characteris-
tics were also evaluated. The voltages ranged from 3.0 to 4.5 V. Secondly, the AC impedance
of the coin cells, i.e., the LiCoO2/Li and graphite/Li systems, which charge and discharge
were tested after the assembled cells were charged and discharged at 0.2 C for one cycle,
respectively. Impedance data were collected in the frequency range 0.01–100,000 Hz with
the amplitude of 5 mV. High-temperature storage tests were carried out at 60 ◦C for three
cells per group, and the hot thickness was tested regularly. The recharging currents of 0.7 C
(overall cycle 250 and 150 times) were tested at 25 and 45 ◦C, and the internal resistance of
the battery, or the discharge capacity retention (DCR), was tested at 25 ◦C.

3. Results and Discussion
3.1. Influence of DDDT on the Electrochemical Window

Figure 2 shows the CV results for the Li/graphite button-type half cells. Comparing
the cells in #1 and #2 electrolytes, it can be found that the redox peak potential of the cell
in #2 electrolyte containing 0.5% DDDT appeared at 1.0 V during the first cycle, while it
disappeared during the second and the third cycles. We speculated that the reduction
reaction occurred during the first cycle due to the addition of DDDT into the electrolyte,
which prevented further reaction due to the formation of SEI on the graphite electrode.
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Figure 2. The CV plots for the first three cycles of the Li/graphite half cells without additive and
with 0.5% DDDT.

Figure 3 shows the results of the linear sweep voltammetry (LSV) of the Li/graphite
button-type half cells. Comparing the cell in #1 electrolyte with that in #2 electrolyte, it is ob-
vious that the former showed a higher current than the latter at above 6.5 V. We speculated
that the addition of DDDT could improve the oxidation resistance of the electrolyte.
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Figure 3. The LSV plots of the different electrolytes without additive and with 0.5% DDDT over a
voltage range from the open-circuit voltage (OCV) to 7.0 V.

The dQ/dV curve of the full battery containing 1–2 wt.% DDDT electrolyte shows a
characteristic peak at around 2.8 V, which is lower than the reference group, indicating that
the addition of DDDT is more beneficial than the addition of EC to the formation of the
protective film on the negative electrode (Figure 4).
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Figure 5 shows the AC impedance data and the equivalent circuit model of LiCoO2/Li
and graphite/Li, and Table 3 shows the fitting experimental results in different electrolytes
(#1–#4 EL). The pattern in the impedance spectra is explained by an equivalent circuit
diagram (Figure 5c). The Re represents bulk resistance, which indicates the ohmic resistance
of the electrolyte and electrodes. Rf and Cdl1 are the charge-transfer resistance and the
double-layer capacitance between the electrolyte and lithium metal corresponding to the
semicircle at high frequencies, respectively. Rct and Cdl2 are the charge-transfer resistance
and the double-layer capacitance between the electrolyte and cathode corresponding to
the semicircle at medium frequencies, respectively. When the capacitances of the electrical
double layer and the film are close to each other, the two semicircles will be merged
into one semicircle in impedance spectra. W is the Warburg impedance related to the
diffusion of lithium ions in the electrode, which is indicated by a slopping line at low
frequencies. The combination of Rct and W is called faradic impedance, which reflects the
kinetics of the cell reactions. The charge transfer (Rct) resistance of LiCoO2/Li decreased
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with an increase in the addition amount of DDDT, while no significant differences in the
passivation film (Rf) resistance of graphite/Li could be observed. The decomposition
products would be accumulated on the electrodes, resulting in poor electrical contact and
remarkable increase of resistance. Obviously, the full cells with DDDT additive in the
electrolytes exhibited relatively lower resistance after storage and cycling tests, and we
proposed that a newly generated interfacial film guaranteed the higher stability due to
the possible decomposition reactions toward the electrolyte being efficiently inhibited.
The degeneration of the electrode material could be minimized during the cycling and
storage processes, and the parasitic interfacial reactions would be greatly reduced. The AC
impedance tests of the half-cells reflected that the DDDT additive could facilitate the
formation of the protective layers on the positive electrodes. The results were consistent
with the relatively more excellent cycling stability and storage performances of the cells.
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Table 3. The EIS fitting data of the coin half-cells.

Electrolyte
Model

Graphite/Li LiCoO2/Li

Rf (mΩ) Rct (mΩ) Rf (mΩ) Rct (mΩ)

#1 EL 4.07 5.62 4.4 11.95
#2 EL 4.11 5.53 4.09 9.52
#3 EL 4.21 5.69 4.07 8.39
#4 EL 3.99 5.63 3.76 7.15

3.2. Electrical Performance of DDDT in Batteries Fully Charged to 4.5 V
3.2.1. Effect of DDDT on DC Impedance

The results of DCR discharge at room temperature indicated that the DC internal
resistance decreased with an increase in the addition amount of DDDT in the electrolyte
(Figure 6). It is obvious that the smallest DC resistance could be obtained by the addition
of 2 wt.% DDDT into the electrolyte.
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Figure 6. Discharge capacity retention (DCR) discharge at room temperature.

3.2.2. Effect of DDDT Additive on High-Temperature Storage

The additive DDDT could significantly improve the high-temperature storage perfor-
mance of the cells. The cells were stored at 60 ◦C for 23 days, and the thickness increased
by 19.8%, 27.3%, and 36.2% when the amount of DDDT added into the electrolyte was
2 wt.%, 1 wt.%, and 0.5 wt.%, respectively. The thickness of the cell with the base electrolyte
even increased by up to ~50%, indicating the addition of the appropriate amount of DDDT
into the electrolyte was beneficial to the high-temperature storage performance of the
cells (Figure 7). The thickness of the battery in 60 ◦C storage reflected the differences
between positive electrode and electrolyte with and without DDDT, and the thickness of
electrolyte with 2% DDDT was the smallest in electrolyte groups, reflecting that 2% DDDT
can improve the stability of the positive electrode.
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Figure 7. High-temperature storage test of the full battery at 60 ◦C.

The surface morphological changes of the electrodes (in #5 EL or in #8 EL) stored
at 60 ◦C for 23 days were further investigated (Figure 8). It can be seen that obvious
cracks are presented on the LiCoO2 particles in the base electrolyte without additive DDDT,
while the surface of the LiCoO2 particles in the 2% DDDT electrolyte group was uniformly
covered with a protective layer without any cracks. The results were consistent with the
high-temperature (60 ◦C) storage performance of the full battery in different electrolytes
(Figure 7). Table 4 shows the surface elemental distributions of the electrodes after the full
battery was stored at 60 ◦C for 23 days. Sulfur could be detected on both the positive and
the negative electrodes of the battery groups with additive DDDT, confirming the sulfide
generated on their surfaces. The difference in the elemental distribution of cobalt (Co) on
the negative electrode surface indicated that DDDT could be used as a positive electrode
protection additive to prevent cobalt leaching and reduce the possible deposition on the
negative electrode.
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Figure 8. Morphological changes of the electrodes in different electrolyte groups before and after
high-temperature (60 ◦C) storage: (a) in #5 EL before storage; (b) in #8 EL before storage; (c) in #5 EL
after storage (the red arrow indicates the obvious cracks presented on the LiCoO2 particles in the
base electrolyte without additive DDDT); (d) in #8 EL after storage.

Table 4. Surface elemental distributions of the electrodes before and after high-temperature storage.

Elements
#5 EL #8 EL

Before Storage
(ppm)

After Storage
(ppm)

Before Storage
(ppm)

After Storage
(ppm)

Cathode

C 18.9 16 17.4 15.6
O 26.3 27.74 25.46 26.1
Co 51.82 50 52.72 52.95
P 0.34 0.56 0.44 0.25
Al 0.42 0.36 0.39 0.44
S / / 0.12 0.57
F 2.22 5.34 3.47 4.09

Anode

C 74.89 30.07 76.18 48.59
O 10.2 5.94 12.41 13.9
P 0.59 0.76 0.54 0.69

Cu 0.9 0.81 0.92 0.89
S / / 0.14 0.31
F 13.42 37.32 9.81 23.52

Co / 25.1 / 12.1

Figure 9 shows the structural changes of the positive electrodes in #5 EL and #8
EL groups before and after 60 ◦C storage for 23 days. No obvious differences could be
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observed for the (006), (102), and (104) peaks of XRD curves, but the 003 peak of the cell
group (the insert illustrated in Figure 9) without DDDT additive was split, while the cell
group with 2 wt.% DDDT electrolyte after high-temperature storage showed no significant
changes in the peak shape in comparison with that before high-temperature storage. This is
because the crystal structure of the positive electrode tended to be destroyed under high
voltage and high temperature, and the addition of DDDT into the electrolyte could prevent
the positive electrode from damage during the high-temperature storage.
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of the battery with 2 wt.% DDDT additive before cycle tests were slightly lower than 
those of the reference group without additive DDDT. The Rf and the Rct resistances after 
50 cycle tests were lower than previous data due to the improved infiltration of electro-
lyte in the pole piece, and the SEI film formed on the electrode was more stable after cy-
cling over a period of time. As the number of cycle tests increased, the Rf and the Rct re-
sistances increased more significantly. After 200 cycle tests, the Rf and the Rct resistances 
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Figure 9. XRD characterization of the positive electrodes before and after high-temperature storage
in different electrolyte groups (the inset illustrates the narrow scan of 003).

3.2.3. Effect of DDDT Additive on Cycle Performance

DDDT might have a significant impact on the cycle performance of the battery
(Figure 10). After 250 cycles at room temperature, the capacity retention rate remained
about 77.7% for the battery in #6 electrolyte group (containing 0.5 wt.% DDDT), while the
capacity retention rate in #8 electrolyte group (containing 2 wt.% DDDT) remained up
to 84.5%. In contrast, for the battery with the base electrolyte #5 group without additive
DDDT electrolyte, the capacity retention rate remained only about 62.1%. After 150 cycles
at 45 ◦C, the capacity retention rate of the battery with the #8 electrolyte group (containing
2 wt.% DDDT) remained around 76.4%, while the battery with the base electrolyte #5 group
had a relatively lower value of 52.5%.
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In order to further reveal the underlying mechanisms of the improved cycle per-
formance of the battery with DDDT additive, AC impedance analyses were performed.
Figure 11 shows the AC impedance spectra before and after cycle tests. Table 5 shows the
fitted data of the Rct and Rf resistances. From the fitted data, the Rf and the Rct resistances
of the battery with 2 wt.% DDDT additive before cycle tests were slightly lower than those
of the reference group without additive DDDT. The Rf and the Rct resistances after 50 cycle
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tests were lower than previous data due to the improved infiltration of electrolyte in the
pole piece, and the SEI film formed on the electrode was more stable after cycling over
a period of time. As the number of cycle tests increased, the Rf and the Rct resistances
increased more significantly. After 200 cycle tests, the Rf and the Rct resistances of the
battery with base electrolyte increased to 22.46 and 14.05 mΩ, which were much higher
than the original values of 17 and 10.2 mΩ, respectively. In contrast, the Rf and the Rct
resistances of the battery 2 wt.% DDDT additive only decreased to 11.43 mΩ and 3.49 mΩ
compared with the original values of 13.59 and 9.02 mΩ, respectively. The results again
confirmed that the protective layer formed by DDDT was beneficial in reducing the possible
side reactions, thereby greatly reducing the AC impedance.
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the base electrolytes without any additive. When 2 wt.% DDDT was added into the elec-
trolyte, the interface seemed more normal, again confirming that the DDDT additive had 
a significant protective effect on the positive electrode at a high voltage of 4.5 V (Figure 
12a–d). The morphological changes of the negative electrode with DDDT additive were 
also relatively more unobvious than those of the negative electrode with the base elec-
trolyte (Figure 13). TEM analyses further indicated that nanoscale SEI layers were 
formed, and the SEI layer formed in #8 EL was thicker than that in #5 EL (Figure 12e,f). 
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Figure 11. Representative EIS Nyquist plots measured and the fitting curves before and after cycling in different electrolyte
models: (a) #5 EL (without additive DDDT); (b) #8 EL (containing 2 wt.% additive DDDT); (c) fitting curves of #5 and #8 EL;
(d) equivalent circuit model.

Table 5. Fitted data of the EIS Nyquist plots.

Electrolyte
Code

Newly Prepared Cell After 50 Cycles After 250 Cycles

Rf (mΩ) Rct (mΩ) Rf (mΩ) Rct (mΩ) Rf (mΩ) Rct (mΩ)

#5 10.2 17 4.09 11.34 14.05 22.46
#8 9.02 13.59 3.43 9.81 3.49 11.43

Figures 12 and 13 show the changes in the surface morphologies of the positive and
negative electrodes with different electrolytes before and after 250 cycle tests. After 250 cy-
cles of high-temperature cycling, cracks could be found for the LiCoO2 particles with the
base electrolytes without any additive. When 2 wt.% DDDT was added into the electrolyte,
the interface seemed more normal, again confirming that the DDDT additive had a signifi-
cant protective effect on the positive electrode at a high voltage of 4.5 V (Figure 12a–d). The
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morphological changes of the negative electrode with DDDT additive were also relatively
more unobvious than those of the negative electrode with the base electrolyte (Figure 13).
TEM analyses further indicated that nanoscale SEI layers were formed, and the SEI layer
formed in #8 EL was thicker than that in #5 EL (Figure 12e,f). The obtained results were
consistent with the cycle performance tests of the battery, indicating that the DDDT additive
had an improvement effect in both the positive and the negative electrodes.
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Figure 12. Morphological changes of electrode materials on cathodes with different electrolytes
before and after cycle tests: (a) SEM image in #5 EL before cycling; (b) SEM image in #8 EL before
cycling (the red arrow indicates the obvious cracks presented on the LiCoO2 particles in the base
electrolyte without additive DDDT); (c) SEM image in #5 EL after cycling; (d) SEM image in #8 EL
after cycling; (e) TEM image in #5 EL before cycling (nanoscale SEI layer was formed); (f) TEM image
in #8 EL before cycling (the SEI layer formed was thicker than that in #5 EL).
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Figure 14 shows the structural changes of the positive electrode before and after the
cycling at 45 ◦C for the batteries with #5 and #8 electrolyte groups. No obvious differences
could be observed in the (006), (102), and (104) peaks of XRD curves, but the 003 peak of the
positive electrode without DDDT additive was split, and the electrode with 2 wt.% DDDT
additive after storage showed no significant changes in the peak shape in comparison
with that before cycling. This was because the positive electrode crystal structure was
easily destroyed under high voltage and high temperature, and the addition of DDDT
undoubtedly could protect or stabilize its structure.

To assess the composition changes of the electrode surfaces cycled in the base and
DDDT-containing electrolytes, XPS analyses of the cycled LiCoO2 and graphite electrodes
after 150 cycles at 45 ◦C were performed. The XPS spectra of the cycled LiCoO2 cathode
elucidated the effect of the DDDT additive on the CEI composition (Figure 15). In the C 1s
spectra (Figure 15a), the C–C (284.9 eV) and C–H (285.3 eV) peaks of the cathode from
the cells cycled in the electrolyte containing DDDT retained higher intensity than the cell
cycled in the electrolyte without DDDT. The severe decomposition of electrolytes without
DDDT during the cycling process was also confirmed by the C 1s spectra. For the O 1s
spectra (Figure 15b), the obtained results of the C–O and C=O peaks were consistent with
the C 1s peak analyses. These results could be compared with the intensity of the C–O
(286.6 eV) and C=O (289.0 eV) peaks obtained for the cycled cathode in the electrolyte
containing DDDT additive, which belonged to the decomposition products including
ROCO2Li and polycarbonates [33]. Moreover, the Co–O peak of the cathode with DDDT
additive was more obvious, indicating that the addition of DDDT promoted the formation
of the thinner interfacial layer which relieved the severe oxidative decomposition of the
electrolyte and reduced the coverage of decomposition products on the cathode surface.
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The cycled cathode in the electrolyte without DDDT possessed higher C–O and C=O
intensities, indicating that the addition of DDDT additive can relieve the severe oxidative
decomposition of the electrolyte on the cathode surface during the cycling process.
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Figure 15. XPS spectra of the LiCoO2 cathodes cycled in the electrolyte without DDDT additive and
in 2 wt.% DDDT after 150 cycles at 45 ◦C: (a) C 1s; (b) O 1s; (c) F 1s; (d) S 2p.

Due to the interactions between LiCoO2 and PVDF, Li–F (684.9 eV) and C–F (687.2 eV)
peaks appeared (Figure 15c). In addition, the intensity of Li–F peak for the cathode in the
DDDT-containing electrolyte was much lower than that in the electrolyte without additive,
further indicating that the cathode surface in the electrolyte containing DDDT was covered
with fewer electrolyte decomposition products, which was consistent with the results of
the C–O and C=O peak analyses.
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In the S 2p spectra (Figure 15d), no peak could be observed for the cycled cathode
in the electrolyte without DDDT, while the peak corresponding to Li2S could be detected
in the case in the electrolyte containing DDDT, indicating that the addition of DDDT
promoted the formation of sulfide on the cathode [29]. For S 2p spectra of the cathode in
#8 EL, the peak at 169.2 eV corresponds to ROSO2Li, and the peaks at 169.2 and 163.3 eV
belong to ROSO3Li and Li2S, respectively, indicating the additive DDDT was preferentially
oxidized to facilitate the formation of the SEI on the cathode.

Furthermore, the changes in the XPS patterns of the graphite electrodes in the elec-
trolytes without DDDT and with DDDT additive were confirmed (Figure 16). In the C
1s photoelectron spectra, the peak of the C–C can be attributed to the graphite, and the
peaks of C–O and C=O are assigned to the carbonate species such as RCH2OCO2Li due
to the reductive decomposition of the electrolyte. In the O 1s spectra, the intensities of
the C=O and C–O peaks for the graphite surface decreased when DDDT was added into
the electrolyte compared with the graphite surface with the base electrolyte, indicating
that the reductive decomposition of the electrolyte was alleviated and that the DDDT
additive facilitated the formation of a passivation layer on the graphite surface. In addition,
the graphite anode cycled in the electrolyte containing DDDT showed the lowest Li2CO3
peak intensity, suggesting less electrolyte was decomposed when the DDDT was added.
In the F 1s photoelectron spectra, the LixPOyFz, LixPFy, and LiF would be generated
from the decomposition and hydrolysis of LiPF6. The peak intensities of LixPOyFz and
LixPFy from the graphite surface without DDDT were stronger than those cycled in the
DDDT-containing electrolytes, which suggests that the superior SEI layer promoted by the
additive can effectively relieve the LiPF6 decomposition on the anode. Furthermore, in the
S 2p photoelectron spectra, sulfur-containing species were formed on the graphite surface
with the DDDT additive, further indicating that the DDDT additive might have a reduction
reaction on the graphite surface. Sulfur-containing species such as ROSO2Li and Li2SO4
could alleviate the reductive decomposition of electrolytes and promote the diffusion of
lithium ions at the electrode–electrolyte interface, and the results were consistent with the
dQ/dV analyses [34–36].
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4. Conclusions

For the LiCoO2 system, the stability of the battery system deviates significantly as
the voltage increases. Meanwhile, the impedance increases obviously and the storage
and cycle performances deteriorate. To prevent side reactions and improve the high-
pressure/high-temperature performance and cycle performance of the system, the addition
of DDDT to the conventional carbonate solvent system was investigated. Protective layers
could be effectively formed on the LiCoO2 or the graphite electrode surfaces, and the
high-temperature storage performance of the battery was significantly improved. From the
dQ/dV plots and AC impedance tests, the most appropriate addition amount of DDDT
into the electrolyte was 2 wt.%. SEM, TEM, XRD, and XPS analyses confirmed the forma-
tion of stable nanoscale SEIs on both the positive and negative electrodes. LiCoO2 with
2 wt.% DDDT additive exhibited more excellent high-temperature Li-storage performance,
controlled swelling behavior, and cycling performance.
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