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Abstract

Kawasaki disease (KD) is the most common acquired pediatric heart disease. We ana-

lyzed Whole Genome Sequences (WGS) from a 6-member African American family in

which KD affected two of four children. We sought rare, potentially causative genotypes by

sequentially applying the following WGS filters: sequence quality scores, inheritance

model (recessive homozygous and compound heterozygous), predicted deleteriousness,

allele frequency, genes in KD-associated pathways or with significant associations in pub-

lished KD genome-wide association studies (GWAS), and with differential expression in

KD blood transcriptomes. Biologically plausible genotypes were identified in twelve vari-

ants in six genes in the two affected children. The affected siblings were compound hetero-

zygous for the rare variants p.Leu194Pro and p.Arg247Lys in Toll-like receptor 6 (TLR6),

which affect TLR6 signaling. The affected children were also homozygous for three com-

mon, linked (r2 = 1) intronic single nucleotide variants (SNVs) in TLR6 (rs56245262,

rs56083757 and rs7669329), that have previously shown association with KD in cohorts of

European descent. Using transcriptome data from pre-treatment whole blood of KD sub-

jects (n = 146), expression quantitative trait loci (eQTL) analyses were performed. Sub-

jects homozygous for the intronic risk allele (A allele of TLR6 rs56245262) had differential

expression of Interleukin-6 (IL-6) as a function of genotype (p = 0.0007) and a higher eryth-

rocyte sedimentation rate at diagnosis. TLR6 plays an important role in pathogen-associ-

ated molecular pattern recognition, and sequence variations may affect binding affinities

that in turn influence KD susceptibility. This integrative genomic approach illustrates how

the analysis of WGS in multiplex families with a complex genetic disease allows
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examination of both the common disease–common variant and common disease–rare

variant hypotheses.

Introduction

Although the ability to generate whole genome sequences (WGS) from individual subjects has

existed for over a decade, the use of such methods to discover novel disease-causing variants in

multiplexed families affected by complex genetic disease has been limited [1]. However, robust

methods have been developed to identify rare, disease causative variants in WGS of families

with monogenic diseases [2, 3]. Furthermore, such methods have proven useful in identifying

individual patients with common diseases that are caused by rare, highly penetrant variants

[4]. Individuals with rare Mendelian forms of common complex diseases are often distin-

guished by extreme phenotypes–such as very early onset, or disease refractory to usual treat-

ments–and by multiple affected members in single families [5]. Here we sought to test this

hypothesis in a multiplexed family with Kawasaki disease (KD).

Susceptibility to KD, the most common cause of acquired heart disease in children, is pos-

tulated to result from a complex set of genetic variants of which only a limited number have

been validated to date [6]. This self-limited illness of unknown etiology presents with the sud-

den onset of fever and mucocutaneous signs and is associated with coronary artery vasculitis.

Inflammation in the arterial wall can compromise the structural integrity, which leads to aneu-

rysm formation in 25% of untreated children [7]. The major sequelae of aneurysms include

thrombosis, scarring with stenosis, myocardial ischemia, infarction, and death [8–11]. KD is

over-represented among children of Asian descent. In Japan, the country of highest incidence

(306/100,000 children <5 years; one in every 60 male and 75 female children affected, respec-

tively), there are more than 14,000 new cases each year and rates continue to rise [12]. In the

United States, system dynamic models suggest that by 2030, one in every 1600 adults in the U.

S. will have suffered from KD [13]. Data from limited patient series suggests that African

American is disproportionately affected by KD [14–16]. Despite their apparent increased sus-

ceptibility, children of African American descent has been excluded from previous KD genetic

analyses. As with other complex disorders, elucidation of the genetic determinants of KD has

hitherto relied on candidate gene and genome-wide association studies (GWAS) using

matched population controls and family linkage studies [17–27]. Thus far, many of the associ-

ated genetic variants have been located in introns with no associated molecular function iden-

tified [6]. Only the C allele of SNV rs28493229 in the inositol 1,4,5-trisphosphate 3-kinase C

(ITPKC) gene on chromosome 19q13.2 has been shown to affect gene transcription and impact

intracellular calcium signaling and inflammasome activation [22, 28].

Here, we examined the common disease–rare variant hypothesis in KD in an African

Americans family with two affected and two unaffected siblings and their unaffected, biologic

parents. We report rare, likely pathogenic genotypes in biologically plausible genes that co-seg-

regated with disease in whole genome sequences.

Results

The genomes of all six family members were sequenced with paired, short reads to an aligned

mean read depth of 33.2-fold. Unique nucleotide variants (8,018,553) were identified in the

family, of which 7,592,729 were of high quality (Fig 1). We created three filter pipelines for fur-

ther analysis. First, we applied the following filters: recessive homozygous only in the affected
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children, potentially deleterious (located in an exon, promoter region, splice site, or 3’UTR),

and rare (allele frequency <1% or not available in 1,000 Genomes database). To these 34 vari-

ants in 31 genes, we applied two additional filters: gene found in KD pathway (defined by Inge-

nuity Pathway Analysis) and differentially expressed (p<0.05) in our KD transcriptome

database [29]. This identified a CAG repeat variant (CAG10 homozygosity in the two affected

siblings) in myocyte enhancer factor 2A (MEF2A). The reference allele for this variant is CAG11

Fig 1. Workflow of variant discovery and validation. The diagram illustrates a discovery and validation

workflow starting from called variants in an African American family of six members with two KD-affected

children as a discovery analysis on WGS followed by knowledge-based filtering derived from published

GWAS, disease pathogenesis, and gene-level validation using differential transcript abundance. Confidence

filter: a call quality at least 20 and read depth at least 10. Differentially expressed:� 1.2-fold change between

acute and convalescent whole blood transcripts. Abbrv.: AF: allele frequency; NA: not available, GWAS:

genome-wide association study; KD: Kawasaki disease; TLR6: Toll-like receptor 6; MEF2A: myocyte

enhancer factor 2A; ARRDC4:arrestin domain containing 4; SLK: STE20 like kinase; TACSTD2: tumor-

associated calcium signal transducer 2.

doi:10.1371/journal.pone.0170977.g001
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and the variant was predicted to be deleterious. The deletion was confirmed by resequencing

all six family members (S1 Table).

An alternative set of filters was applied to the 7,592,729 high quality variants: compound

heterozygous in two affected siblings only, allele frequency <3% in 1000 Genomes database,

found in KD pathway, and differentially expressed in the KD transcriptome database. This

resulted in only two rare variants (p.Leu194Pro and p.Arg247Lys) in a single gene (TLR6) that

were compound heterozygous only in the affected siblings (Table 1). The MEF2A and TLR6
rare and potentially pathogenic variants that were found in KD pathways were grouped

together in Tier 1 (Fig 1 and Table 1). Both TLR6 and MEF2A were differentially expressed in

acute and convalescent whole blood RNA samples, with the highest expression levels in the

acute phase of KD (Fig 2a and 2b).

To explore whether common, deleterious variants were also preferentially associated with

KD, we analyzed 302 recessive homozygous and deleterious variants in 180 genes. Of these,

nine variants in four genes were significantly associated with KD in an imputed European

descent, KD GWAS dataset (nominal p<0.05), and were differentially expressed in whole

blood during acute versus convalescent KD [19, 29]. We used our European descent GWAS

because no published association studies of African Americans KD subjects were available.

These nine common variants were grouped in Tier 2 (Fig 1). Interestingly, TLR6 was one of

the four Tier 2 genes, as well as arrestin domain containing 4 (ARRDC4), STE20 like kinase
(SLK), and tumor-associated calcium signal transducer 2 (TACSTD2). The Tier 2 TLR6 variants

were located either in the promoter or 3’UTR and had population allele frequencies greater

than 3% in the 1,000 Genomes database (risk allele frequency 4.2–63.3%) (Table 1).

eQTL analysis of common TLR6 variants in KD

Among the six genes in the two tiers, TLR6 had multiple variants in both tiers, suggesting that

TLR6 may contribute both to common, sporadic KD as well as uncommon, familial KD. To

explore if there were any additional TLR6 variants for which only the affected children were

homozygous, we re-analyzed the original unfiltered TLR6 WGS from all six family members.

We found 34 additional variants for which only the affected children were homozygous (2

Table 1. Genetic variants found in Tiers 1 and 2.

Tier Mode of inherit Gene Symbol Chr. rs ID Gene Region Risk allele Allelefreq.* GWAS p-value

1 CH TLR6 4 35220466 Exonic C 0.6 NA

1 CH TLR6 4 5743809 Exonic A 1.5 NA

1 HR MEF2A 15 373652230 Exonic CAG deletion NA NA

2 HR TACSTD2 1 14008 Exonic T 15.7 0.01

2 HR TLR6 4 12650224 3’UTR A 21.3 0.002

2 HR TLR6 4 6822503 3’UTR A 63.3 0.008

2 HR TLR6 4 12645200 3’UTR T 63.3 0.008

2 HR TLR6 4 5743826 3’UTR T 4.2 0.003

2 HR TLR6 4 6837101 Promoter A 38.4 0.03

2 HR SLK 10 6584583 Promoter C 83.1 0.01

2 HR SLK 10 10786779 Promoter G 79.3 0.02

2 HR ARRDC4 15 1552673 Promoter C 76.2 0.03

RH = Homozygous Recessive, CH = Compound Heterozygous, TLR6: Toll-like receptor 6, MEF2A: Myocyte Enhancer Factor 2A, TACSTD2: tumor-

associated calcium signal transducer 2, SLK: STE20 like kinase, ARRDC4: arrestin domain containing 4,

* 1000 genome allele frequencies for All, GWAS: European descent GWAS [19], NA: not available

doi:10.1371/journal.pone.0170977.t001

Whole genome sequencing in Kawasaki disease

PLOS ONE | DOI:10.1371/journal.pone.0170977 February 2, 2017 4 / 17



synonymous exonic SNVs and 32 intronic SNVs)(S2 Table). All were common variants with

allele frequencies of 0.32–0.75 in African datasets in the 1,000 Genomes database. Next, we

looked for association of these 34 variants with KD susceptibility in the imputed European

descent GWAS dataset [19]. There were three intronic SNVs (rs56245262, rs56083757 and

rs7669329) associated with KD susceptibility with p = 6.9x10-6 (S2 Table and Fig 3). These

three intronic SNVs and the seven SNVs in TLR6 from Tiers 1 and 2 are shown in Table 2. The

two SNVs in the 3’UTR (rs6822503 and rs12645200) were in linkage disequilibrium (LD, with

r2 = 0.97 in Africans, r2 = 1 in European descendants) in the imputed European descent

GWAS dataset, as were the three intronic SNVs (rs56245262, rs56083757 and rs7669329), with

r2 = 1 in both African and European descent cohorts. We chose rs6822503 and rs56245262

(earlier chromosome position) as representative SNVs for additional analysis.

To understand the possible effects of common variants in TLR6 in KD pathogenesis, we

performed an eQTL analysis for the two representative SNVs (rs56245262 and rs6822503) and

Fig 2. Paired acute and convalescent whole blood gene expression levels for 131 KD subjects for the

six genes implicated in KD susceptibility. P values are uncorrected. Transcript levels from microarray

database as previously described, not corrected for cell number [29]. Abbrv.: TLR6: Toll-like receptor 6;

MEF2A: myocyte enhancer factor 2A; ARRDC4:arrestin domain containing 4; SLK: STE20 like kinase;

TACSTD2: tumor-associated calcium signal transducer 2.

doi:10.1371/journal.pone.0170977.g002

Fig 3. Location of SNVs associated with KD susceptibility in TLR6. Association results using the imputed

GWAS database were plotted against chromosome location and gene structure of TLR6. Red dots show the

SNVs for which only the affected children were homozygous recessive. SNVs above the blue line were

associated with a P-value <0.05. TLR6 is encoded on the negative strand so the gene structure is shown 3’ to

5’.

doi:10.1371/journal.pone.0170977.g003
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one SNV (rs6837101) in the promoter region of TLR6. Since TLR2/6 activates the transcrip-

tion factors, NFKB and AP1, we focused the eQTL analysis using only the 415 genes targeted

by these transcription factors. For the intronic variant (rs56245262), only one gene (IL6)
among 415 NFKB and/or AP1 targets showed a significant difference in acute whole blood

transcript levels as a function of genotype (nominal p< 0.001). IL6 transcript levels were lower

in subjects homozygous for the risk allele (p = 0.0007 vs. non-risk allele homozygotes, and

p = 0.007 vs. heterozygotes) (Fig 4). For variants in the 3’UTR (rs6822503), no gene showed

significantly different transcript levels as a function of genotype with a p< 0.001. No genes

were regulated as a function of the genotype of the promoter SNV (rs6837101).

Analysis of patient characteristics as a function of genotype

Since the TLR6 intronic SNVs were associated with differential expression of IL6, we reasoned

that patient clinical characteristics related to inflammation might also vary as a function of

genotype. We used our published dataset of 161 subjects [30] with detailed demographic and

clinical information and 7,602,343 imputed genotypes (from the Illumina HumanOmni1-

Quad1 chip) to analyze differences in clinical parameters as a function of genotype for the

Table 2. TLR6 variants in African American family with two affected siblings.

rs ID Gene Region Ethnicity Risk allele Family members WGS GWAS p-value

AA* HIS** ASN CEU KD 1 KD 2 Non-KD 1 Non-KD 2 M F

12650224 3’UTR 0.23 0.17 0.28 0.03 A Hom Hom Het - Het Het Tier2 0.002

6822503 3’UTR 0.77 0.46 0.76 0.52 A Hom Hom Het - Het Het Tier2 0.008

12645200 3’UTR 0.77 0.45 0.76 0.52 T Hom Hom Het - Het Het Tier2 0.008

5743826 3’UTR 0.08 0.02 0 0.01 T Hom Hom Het - Het Het Tier2 0.003

35220466 Exon (p.Arg247Lys) 0.01 0 0 0 T Het Het Het - - Het Tier 1 ND

5743809 Exon (p.Leu194Pro) 0.08 0 0 0 G Het Het - - Het - Tier 1 ND

56245262 Intronic 0.42 0.37 0.62 0.23 A Hom Hom Het - Het Het NA 6.9E-06

56083757 Intronic 0.42 0.37 0.62 0.23 G Hom Hom Het - Het Het NA 6.9E-06

7669329 Intronic 0.42 0.37 0.62 0.23 C Hom Hom Het - Het Het NA 6.9E-06

6837101 Promotor 0.45 0.34 0.35 0.29 A Hom Hom Het - Het Het Tier2 0.03

AA: African American, HIS: Hispanic, ASN: Asian, CEU: European descent, KD: Kawasaki disease affected child, Non-KD: unaffected child, M: mother, F:

father, GWAS: European descent GWAS [19], Hom: homozygous of risk allele, -: homozygous of non-risk allele, NA: not applicable,

* 1000 Genomes African Ancestry in Southwest US,

** 1000 Genomes:Phase_3:AMR

doi:10.1371/journal.pone.0170977.t002

Fig 4. Transcript levels for IL6 in whole blood samples from KD subjects as a function of genotype for

rs56245262 in TLR6. TLR6 rs56245262 risk allele (A) is shown in red. Transcriptome data from a. Acute, pre-

treatment (n = 146: T/T n = 54, T/A n = 69, A/A n = 23), b. Paired acute, pre-treatment and convalescent

(n = 131: T/T n = 53, T/A n = 58, A/A n = 20). P-values were calculated using Mann Whitney test for (a) and

Wilcoxon matched-paired test for (b).

doi:10.1371/journal.pone.0170977.g004
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intronic variant (rs56245262)(Table 3). Homozygosity for the risk allele was more common

among self-declared Asians (10 of 24 (44%) A/A genotype). This result was consistent with the

observation that the A allele frequency is higher in Asian populations (A allele frequencies in

1000 Genome database: Asian 0.62, A/A 0.42, Hispanic 0.37, European descent 0.23). Of inter-

est, the pre-treatment erythrocyte sedimentation rate (ESR) was higher in subjects homozy-

gous for the risk allele (A/A) (median ESR 80 mm/h for A/A vs. 59 mm/h for T/T, p = 0.01).

Discussion

Analysis of WGS of an African Americans family with two affected and two unaffected siblings

and their unaffected, biologic parents highlighted genetic variation in TLR6 in KD susceptibil-

ity. These TLR6 variants included both compound heterozygosity for two rare, likely deleteri-

ous SNVs and homozygosity for common KD risk SNVs. Subsequently, using an acute KD

whole blood transcriptome data set, eQTL analysis of the common SNVs suggested decreased

transcript levels of IL6 and higher ESR at diagnosis in individuals homozygous for the risk

allele. This integrative genomic approach illustrates how WGS in families with multiple

Table 3. Characteristics of subjects (n = 161) by genotype of TLR6 rs56245262.

TLR6 rs56245262 p*

A/A

n = 24

A/T

n = 78

T/T

n = 59

Male, n (%) 15 (63) 48 (62) 33 (56) NS

Age, years median (IQR) 2.7 (0.9–3.8) 2.6 (1.4–4.1) 2.2 (1.2–4.4) NS

Illness Day, median (range)** 6 (3–9) 6 (3–10) 6 (2–10) NS

Ethnicity, n (%)

Asian 10 (44) 13 (17) 5 (8) 0.002***

African-American 1 (0) 5 (6) 0 (0) NS

Caucasian 3 (12) 18 (23) 21 (36) NS

Hispanic 3 (24) 22 (28) 17 (29) NS

More than race 7 (20) 20 (26) 16 (27) NS

Coronary artery status

Aneurysms, n (%) 3 (13) 7 (9) 8 (14) NS

Dilated, n (%) 4 (16) 19 (24) 13 (22)

Normal, n (%) 17 (71) 52 (67) 38 (64)

Z-worst, median (IQR) 1.5 (1.0–2.6) 1.7 (1.1–2.9) 1.9 (1.3–2.9) NS

IVIG resistant, n (%) 4 (17) 19 (25) 12 (20) NS

Lab data, median (IQR)

WBC, ×103/mm3 16.3 (11.6–19.4) 13.2 (10.5–18) 13.9 (11.7–18.7) NS

Absolute neutrophil, ×103/mm3 10.7 (7.4–15.2) 9.0 (6.7–12.5) 8.4 (6.4–11.6) NS

Platelet count, ×103/mm3 401 (334–462) 400 (292–500) 392 (312–472) NS

ESR, mm/h 80 (57–105) 59 (41–80) 59 (44–78) 0.01****

CRP, mg/dl 7.9 (4.3–13.6) 8.4 (4.7–16.8) 8.2 (5.2–16.1) NS

GGT 34 (25–96) 48 (18–134) 41 (22–101) NS

* p-values were calculated by Mann–Whitney U test for continuous variables and chi test for categorical variables except ethnicity comparison.

** Illness day 1: first calendar day of fever.

*** Fisher-Freeman-Halton test. Asian comparing to all other ethnicities combined.

**** Mann-Whitney test for the levels of A/A vs. T/T genotype. IVIG: Intra venous immunoglobulin G therapy CRP: C-reactive protein, ESR: Erythrocyte

sedimentation rate, WBC: White blood count

doi:10.1371/journal.pone.0170977.t003
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members affected with a complex genetic disease can yield insights into both the common dis-

ease–common variant and common disease–rare variant hypotheses.

TLR6- NFKB signaling pathway

TLRs recognize pathogen-associated molecular patterns (PAMPS), lead to activation of the

transcription factors, NFKB and AP1, and transcription of genes that control inflammation.

TLR6 forms a heterodimer with TLR2 that recognizes peptidoglycan, diacyl lipoproteins, and

zymosan derived from Gram positive bacteria, mycoplasmas, and fungi, respectively [31].

TLR6 is constitutively expressed in humans on myeloid dendritic cells, monocytes, B cells, cor-

onary artery endothelial cells (EC), and coronary artery vascular smooth muscle cells [32, 33].

In contrast, TLR2 is widely expressed on immune cells but only expressed on human EC and

vascular smooth muscle cells following induction by pro-inflammatory cytokines. Population

differences in downstream cytokine production have been observed following TLR stimula-

tion. In a study of African children, higher levels of TNFα were produced following in vitro
stimulation with a specific TLR2/6 ligand in a whole blood assay when compared to children

of European descent [34].

We found 41 TLR6 variants located in the promoter, intron 1, exon 2, and the 3’UTR asso-

ciated with KD susceptibility. The three common intronic SNVs (rs56245262, rs56083757 and

rs7669329) influenced the transcription of IL6 and were associated with KD susceptibility both

in the European descent GWAS and the African Americans family. IL6, a key cytokine con-

trolled by the transcription factors NFKB and AP1 among others, is reported to be high in the

serum of acute KD patients [35]. Our transcriptome data show that IL6 transcripts are low in

risk allele carriers during the acute disease (Fig 4) [29]. The variants were located in a 1.5kb

region in the middle of the single 28kb intron, 11kb from the splice donor site and 17kb from

the splice acceptor site. Five transcripts of TLR6 have been predicted to result from alternative

splicing (https://www.ncbi.nlm.nih.gov/nuccore?LinkName=gene_nuccore_refseqrna&from_

uid=10333) and it is possible that the intronic SNVs could influence splicing efficiency of these

variants (S1 Fig). The eQTL database, GTEx (http://www.gtexportal.org/home/), showed that

there were tissue-specific effects of these intronic SNVs with the risk allele decreasing TLR6
transcripts in transformed fibroblasts but increasing TLR6 transcripts in a transformed B-cell

line (S2 Fig). No data were available for other tissues of potential interest in KD including

endothelial cells, vascular smooth muscle cells, and cardiomyocytes.

Two of the four TLR6 3’UTR SNVs (rs12645200 and rs6822503) were in LD. We failed to

find any microRNAs that were predicted to bind these four loci according to the miRdSNV

data base (http://mirdSNV.ccr.buffalo.edu/index.php [36] and miRNASNV V2 (http://bioinfo.

life.hust.edu.cn/miRNASNV2/index.php) [37, 38]. For one of the 3’UTR variants, rs6822503,

the risk allele was in weak LD (r2 = 0.58, D’ = 0.94) with the C allele of the exonic variant c.

G1083C (rs3821985) in Africans, and the two affected siblings were homozygous for the C

allele at this locus (S1 Table). Shey et al stimulated whole blood from 70 healthy Africans with

the diacylated lipopeptides, FSL-1 and PAM2 (TLR6/2 ligands), and found reduced IL6 levels

in cells from subjects homozygous for the C allele of rs3821985 compared to G homozygotes

[39]. This finding suggests that our KD-affected siblings might produce lower levels of IL6

upon TLR2/6 stimulation.

The two affected children were compound heterozygotes for the two SNVs in TLR6 exon 2

(p.Leu194Pro and p.Arg247Lys) having inherited the former from the mother and the latter

from the father. These SNVs change amino acids located on the extracellular surface of TLR6

in a region predicted to be involved with ligand binding, which could influence ligand-binding

affinity (Fig 5). 3D proteomic structure modeling of the two non-synonymous mutations was
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computationally predicted (SNPs3D: http://www.snps3d.org/modules.php?name=

SnpAnalysis&locus_ac=10333). p.Leu194Pro is predicted to be deleterious due to loss of an

intramolecular hydrogen bond and p.Arg247Lys is a variant classified as non-deleterious but

on the protein ectodomain. The functional impact of these TLR6 variants was tested using an

NF-κB luciferase reporter assay in human embryonic kidney 293T cells expressing the TLR6
variants and stimulated with TLR agonists [40]. p.Arg247Lys showed a 15.6% decrease in abil-

ity to respond to the TLR2/6 agonist, PAM2CSK4. Cells transfected with p.Leu194Pro con-

structs showed a more marked decrease in NF-kB activation (25.4%). Thus, compound

heterozygosity for these SNVs in the affected children is expected to reduce NF-kB activation.

Role of NFKB and IL6 in the modulation of immune responses

A self-limited inflammatory disease like KD must activate potent anti-inflammatory pathways

that ultimately lead to the resolution of inflammation. TLR2/6 stimulation initiates inflamma-

tion but also stimulates the regulatory compartment of the immune response. In mice, stimu-

lation of TLR2/TLR6 expressed on dendritic cells leads to their differentiation into tolerogenic

dendritic cells secreting IL-10 and promotes T cell differentiation into a regulatory (Treg) phe-

notype [41]. Work by Franco et al. has highlighted the importance of IL-10 secretion by natu-

ral regulatory T cells and tolerogenic myeloid dendritic cells in the resolution of inflammation

in KD patients [42, 43]. Downstream of TLR2/6, both NFKB and IL6 have complex immune

functions [44, 45]. In the carrageenan-induced rat pleurisy model, blocking NFKB led to pro-

tracted inflammation with reduced leukocyte apoptosis and decreased release of the anti-

inflammatory molecule, TGFβ1, thus highlighting the important role of NFKB in the resolu-

tion of inflammation [44].

IL6 functions by binding the IL6 receptor (R) and gp130, a transmembrane signal transduc-

tion protein. The IL6R is expressed only on hepatocytes and a subset of inflammatory cells

including macrophages, neutrophils, and naïve T cells. However, gp130 is ubiquitously

expressed [45]. During acute inflammation, neutrophils infiltrate tissues and undergo apopto-

sis with shedding of IL6-sIL6R. This complex binds gp130 on endothelial cells leading to signal

transduction that results in monocyte/macrophage recruitment and removal of apoptotic neu-

trophils. Thus, reduced levels of IL6 might be expected to allow persistence of neutrophils in

the arterial wall and in the circulation. Although IL6 levels in the serum are high in acute KD,

Fig 5. TLR6 exonic SNV positions. Positions of the exonic SNVs rs5743809 and rs3522046 on the TLR6

protein diagrammed using NCBI Molecular Modeling database (MMDB). The replaced amino acids (p.

Leu194Pro and p.Arg247Lys) are shown in green. Variants are located in the extra-cellular domain in the

predicted ligand-binding region and may alter hydrogen binding.

doi:10.1371/journal.pone.0170977.g005
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this may represent synthesis of IL6 by hepatocytes as part of the acute phase response rather

than synthesis by circulating immune cells as eQTL are often tissue-specific [35]. This could

have important implications for persistence of the acute inflammatory state in KD (Fig 6). Of

interest, a pilot study of tocilizumab (monoclonal antibody against human IL6R) plus IVIG for

treatment of acute KD was terminated for safety concerns when the first three patients enrolled

developed CAA (Prof. Emeritus Shumpei Yokota, Yokohama City University, Japan, personal

communication).

Tier 1 genes

TLR6 and the transcription factor, MEF2A, were the two Tier 1 genes. They were found in KD

pathways and were differentially expressed in the KD transcriptome database with significantly

higher levels in the acute phase. MEF2A plays a critical role in transcriptional activation of IL-

2 during T cell activation [46]. Our associated SNV, rs373652230, was a (CAG) deletion at

amino acid 420 in a poly-lysine tract and multiple studies have reported (CAG)n variants asso-

ciated with coronary artery disease, although the mechanism underlying this association has

not been elucidated [47]. Although the Ingenuity Variant Analysis identified the CAG10 vari-

ant as rare (allele frequency<1%), studies in European descent, Asian, and Turkish popula-

tions found allele frequencies from 12.7–21.9%. We were unable to find data regarding the

allele frequency of the (CAG) repeats in African Americans populations. Of interest, the intro-

nic TLR6 SNV, rs56083757 and the promoter SNV rs6837101, were also predicted to influence

the DNA binding of MEF2A (HaploReg: http://www.broadinstitute.org/mammals/haploreg/

detail_v4.1.php?query=&id=rs56083757). No other functional significance could be assigned

to the other SNVs.

The nature of the PAMP that might stimulate TLR6/TLR2 in KD is unknown although a

hypothesis has linked KD to inhalation of Candida antigens carried on aerosols arising from

agricultural areas in China [48]. Of speculative interest, the glucans from the Candida cell wall

are potent ligands for TLR2/6. In addition, C57BL/6 mice are homozygous for the p.

Fig 6. Hypothetical role of decreased IL6 signaling in the persistence of vascular inflammation in

acute KD. The TLR6 variants associated with KD are predicted to yield lower levels of NFKB upon

stimulation, thus resulting in lower levels of IL6. During vascular inflammation, neutrophil apoptosis is

associated with shedding of the soluble IL6R-IL6 complex, which binds to gp130 on endothelial cells. This

stimulates a signaling pathway that switches the adhesion molecule and chemokine profile to one that favors

attraction of monocytes to the vessel wall with subsequent downregulation of vascular inflammation. In KD,

lower levels of IL6 may lead to persistence of neutrophil recruitment to the vessel wall and prolonged

inflammation.

doi:10.1371/journal.pone.0170977.g006
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Leu194Pro variant in TLR6 and two murine models of coronary artery vasculitis in this species

use intraperitoneal injection of either Candida albicans or Lactobacillus casei cell wall extracts,

both of which are potent ligands for TLR2/6[49, 50].

Tier 2 genes

Six genes harboring nine variants met the criteria of homozygous recessive, predicted deleteri-

ous, significantly associated in the imputed GWAS, and differentially expressed in acute versus

convalescent KD (Fig 2). The TLR6 promoter and 3’UTR SNVs were discussed above.

The Tier 2 gene, TACSTD2, is involved in calcium signaling and may be linked in this way

to KD pathogenesis. Validated calcium signaling genes linked to KD pathogenesis currently

include ITPKC, ORAI1, and SLC8A1 [22, 30, 51]. TACSTD2 encodes for Trop2, a membrane-

spanning protein that transduces an intracellular calcium signal. The protein is over-expressed

in many epithelial cancers and is thought to be involved in metastasis and malignant cell inva-

sion [52]. Its transcription is regulated by a number of transcription factors including NFKB

and its expression was high in acute versus convalescent KD.

The serine/threonine Ste-like protein kinase, SLK, belongs to the family of germinal center

kinases, is ubitquitously expressed, and is involved with stress-induced apoptosis, cytoskeletal

remodeling, and cell motility [53]. ARRDC4 is a member of the α-arrestin family, which, as a

class, is involved with fine-tuning cellular responses to cell surface signals [54]. Both SLK and

ARRDC4were transcriptionally upregulated in acute KD but the mechanism through which

these genes may participate in KD susceptibility is unclear.

Strengths and limitations

This is the first analysis of WGS in an African Americans family and provides a database that

can be mined for future studies of genetic structure in this population. Many different filters

can be applied for subsequent analyses that may uncover additional variants that influence sus-

ceptibility to KD. Neither affected child developed coronary artery aneurysms, so only variants

affecting susceptibility can be analyzed from this dataset. We recognize that using a whole

blood transcriptomic database from a mixed ethnic population could miss transcripts that are

only differentially expressed in relevant cardiovascular tissues and among African Americans.

This analysis underscores the need to focus genetic and genomic studies on minority popula-

tions such as African Americans who are disproportionately affected by KD compared to chil-

dren of European descent.

Conclusion

The first analysis of WGS from an African Americans family with two siblings affected with

KD revealed genetic variation in TLR6 that may be linked to the pro-inflammatory state during

acute KD. Previous GWAS and linkage association studies had not identified this gene as influ-

encing susceptibility to KD. Another variant, in TACSTD2, has an intriguing link to calcium

signaling that will need to be pursued in future studies. The analytic approach presented here

is a novel method for finding potentially relevant variants in WGS in families with individuals

affected by complex genetic diseases.

Materials and methods

Subjects

Members of the African American family selected for whole genome sequencing included two

affected sons, an older unaffected son and daughter, and unrelated/unaffected father and
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mother, all of whom provided written informed consent for study participation. The study was

approved by the Institutional Review Board at the University of California San Diego. The two

affected subjects were both diagnosed by one of the co-authors (JCB). Neither developed coro-

nary artery abnormalities by echocardiogram and both responded to a single dose of IVIG

with defervescence and resolution of inflammation.

Whole genome sequencing

Whole blood samples or Scope1 mouthwash rinses were obtained from family members and

10 μg of genomic DNA was extracted and submitted to Illumina Clinical Services Laboratory

in San Diego, CA, USA for sequencing using HiSeq 2000. DNA was fragmented and attached

to the surface of glass microscope slides. Fluorescently labeled nucleotides were used to

sequence the fragments. Laser excitation of the nucleotides was followed by digital imaging.

The sequence fragments were assessed for quality scores.

Sequence processing and variant calling

Raw images were processed by Illumina’s CASAVA version 1.8 pipeline to generate six sample

FASTQ files for a downstream analysis. The FASTQ files were aligned to a human reference

genome (hg19), PCR duplicates marked and variants called using Edico Genome’s DRAGEN

pipeline [55], using default parameters.

Variant prioritization

VCF files were uploaded to Ingenuity Variant Analysis™ (QIAGEN Redwood City, CA) for ter-

tiary analysis. Variant prioritization was performed by sequentially applying filters in 7 steps of

confidence, genetics (recessive homozygous and compound heterozygous), predicted deleteri-

ous, rare, found in KD pathway, significant in published KD GWAS, and differentially

expressed in KD transcriptome database (Fig 1). The Confidence filter retained variants with a

call quality at least 20, read depth at least 10, and eliminated the top 5% of the most exonically

variable genes or 100-bp regions in 1000 Genomes to remove false positive variants such as

mucin and olfactory receptor genes. The annotated variants were imported into an in-house

MySQL database to perform genetic analysis of two inheritance types, recessive homozygous

and compound heterozygous. The Homozygous filter required homozygous variants to be pres-

ent exclusively in the two KD affected children but not in any of the four unaffected individu-

als. The Compound heterozygous filter was constructed based on the following rules [56]:

1. A variant is in a heterozygous state in both of KD affected children.

2. A variant must not occur in a homozygous state in any of the four unaffected individuals,

i.e. two siblings and two parents.

3. A variant that is in a heterozygous state in an affected child must be heterozygous in exactly

one of the parents but not both.

The Predicted deleterious filter followed the guideline classification of American College of

Medical Genetics (ACMG) and loss-of-function in terms of frameshift, in-frame in/del, start/

stop codon change, missense, or splice site loss all implemented in IVA. The Rare filter
retained variants whose allele frequency was less than 1% (for recessive homozygosity) or 3%

(for compound heterozygosity) in any of three public datasets; 1000 genomes, Exome Aggrega-

tion Consortium (ExAC), and NHLBI ESP Exomes. The Pathway filter generated by Ingenuity

program retained genes implicated in pathways relevant to KD pathogenesis. These were

defined using the Ingenuity system with the key terms “susceptibility to KD”, “calcium
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signaling pathway, coronary artery aneurysm”, and “coronary artery abnormalities”. The

GWAS filter retained variants that were significantly (nominal P-value < 0.05) associated in

405 KD subjects versus 6,252 normal controls in our previously published KD GWAS dataset

genotyped on the Illumina HumMap 550 SNV array [19]. Since GWAS targets common SNVs

with an allele frequency > 5%, the GWAS filter was applied to variants surviving the Deleteri-
ous filter in Fig 1. Quality control was performed with missing rate, minor allele frequency

(MAF) and Hardy-Weinberg Equilibrium (HWE) cutoff values. The original dataset was

expanded through imputation using SHAPEIT2 for phasing and IMPUTE2 for imputation

with the most recent versions of 1000 Genomes version 3 and HapMap3 CEU panels (hg18) as

reference data. LiftOver tool from UCSC Genome Browser (Kent et al. Genome Res 2002

PMID:12045153) was used to convert genomes coordinates from assembly hg18 to hg19. The

new imputation with updated reference panels increased the total number of imputed SNVs to

7,602,343 from 4,545,265. The Transcriptome filter set gene-level prioritization by retaining

differentially expressed genes between 131 paired acute and convalescent whole blood RNA

samples (PAXgene).[29] Transcript levels were measured using the Illumina HumanRef-12 V4

BeadChip with 47,000 probes and quality control and analysis were as described. The cutoff

for differential expression was an adjusted P-value < 0.05.

Validation genotyping

MEF2A. The six family members were re-sequenced for the MEF2A (CAG)n variant.

Primers were designed using Primer 3: forward primer (caagtccgaaccgatttcac) and reverse

primers (gccaagcacaattggagaat) (product size 247 bp). Fifty nanograms of DNA from each

sample was amplified using high-fidelity Taq polymerase (Platinum1 Taq DNA Polymerase

High Fidelity, Life Technologies) for 35 cycles following the manufacturer’s instructions. PCR

products were resolved on 2% agarose gels, excised, and purified (QIAquick Gel Extraction

Kit, Qiagen). PCR products were sequenced using forward and reverse primers (Eaton Biosci-

ence Inc., San Diego).

eQTL analysis

Detailed methods were described previously [30]. A total of 673 probes from 415 genes from

the database of literature-curated human TF-target interactions for NFKB and AP1 were used

for eQTL analysis [57].

Data sharing

Data is available upon request. Users wishing to access our data should contact us.
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