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Diabetes affects a continuously growing population of already 
over 350 million patients worldwide. The disease causes 
close to five million deaths per year and accounted for global 
healthcare expenditures of 465 billion USD in 2011 alone.1 
To improve both preventive measures and economic disease 
management options, more research efforts are required that 
cover all relevant aspects of the glucose insulin metabolism 
(GIM). These can range from disease prevention to manage-
ment by identification of novel targets for type 1 diabetes mel-
litus (T1DM) and type 2 diabetes mellitus pharmacotherapies 
and automation of blood glucose control, that is, developing 
artificial pancreas systems.2–5

The complex system of interacting hormonal and meta-
bolic signaling networks on the molecular level regulating 
whole-body blood glucose homeostasis, however, remains 
challenging. Model-based research is a standard approach 
for gaining a deeper understanding of diabetes for over half 
a century now and has since become the state-of-the-art 
approach. Mathematical models of the GIM are developed 
mainly for two reasons: as a tool for fundamental research 
to analyze the underlying mechanistics of the GIM in healthy 
individuals and individuals with diabetes, or as a model ker-
nel for automatic blood glucose control in T1DM.

Structures of early mathematical models of the GIM6,7 give 
only an abstract reflection of the underlying physiological 
properties and mechanisms involved in hormonal glycemic 
control. However, detailed mechanistic representations of 
physiology are useful for research, for example, identifica-
tion of drug targets and pharmaceutical intervention strate-
gies, and modern model-based glucose control algorithms 
can benefit from model kernels with increased accuracy and 
predictive power.4,5,8

In recent years, semi-mechanistic modeling approaches 
with an increased level of detail have gained in popularity. 
The UVa/Padova simulator, based on a model by Dalla Man 
et al.,9 accepted by the Food and Drug Administration to 
replace animal testing of glucose controllers,10 and the Cam-
bridge Model, developed by Hovorka et al.11 for closed-loop 
glucose control contain physiological aspects and represent 
the current state-of-the-art in glucose modeling used for 
model-based glucose control. However, to date, no system 
for automatic glucose control has been brought to market.12

Current state-of-the-art models contain semi-mechanis-
tic aspects, but are not physiologically based, e.g., do not 
explicitly consider blood flows or organ volumes. A state-
of-the-art model developed more than 25 years ago by 
Sorensen13 already included such details for the distribution, 
metabolization and excretion dynamics of glucose, insulin, 
and even glucagon, which is neglected in most other models. 
Drawbacks of Sorensen’s approach are missing detail on the 
organ level, and a missing framework for model individualiza-
tion, making model adjustments to interindividual variability 
(IIV) cumbersome, if not impossible. This may be the reason 
why on the one hand this model was used only for in silico 
studies in closed-loop control,14 but has never been used as 
a kernel for automated closed-loop control in a clinical trial, 
and why on the other hand current state-of-the-art models 
rely on a more parsimonious but easy to individualize model 
structure.

Over the years, the availability of highly informative but 
complex physiological data over multiple scales has steadily 
increased, paving the way for detailed modeling approaches. 
Current models only partly accommodate to this trend with 
augmented model structures or by only analyzing subsystems 
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leaving the following issues: (i) the lumped design of semi-
mechanistic models results in a coarse mechanistic structure, 
which makes the integration of multiscale data and related 
translation steps required for fundamental research difficult. 
However, integration of multiscale data can strengthen the 
extrapolative properties of the simulation models, which is 
also a critical aspect in automatic glucose control. (ii) Analy-
sis of subsystems in isolation neglects the effect of interact-
ing subsystems. (iii) The abstract relation between important 
physiology and its mathematical representation, that is, model 
structure and parameterization, hinders the identification 
and direct quantification of detailed (metabolic) processes 
to distinguish physiologic differences in healthy and diabetic 
populations. Abstraction also (iv) masks the lag-times of dis-
tribution processes and (v) does not allow the integration of 
an individualization framework based on patient physiology.

Models of increasing complexity require an extensive 
database. Otherwise, they require additional assumptions 
which can introduce error. Physiologically based pharmaco-
kinetic (PBPK) models are based to a large extend on prior 
information, taken from extensive databases of anatomical 
and physiological data, dependent on the organism and its 
changes associated with age, weight, height, gender and 
race and data calculated from drug-dependent properties. 
These properties are directly reflected in the parameteriza-
tion of the model, for example, through organ volumes or 
blood flows, or drug-property dependent membrane perme-
ability. PBPK models thus provide the structural (and spatial) 
detail as well as the mechanistic and structural framework to 
address the above raised issues. These models can then be 
used to simulate drug concentration profiles in all relevant 
organs and tissues.15 Once a reference PBPK model has 
been established, it can be used to extrapolate between spe-
cies or individuals outside the selected cohort16 and allows 
a straightforward extension to additional mechanistic details 
such as target-side pharmacokinetic/pharmacodynamic (PK/
PD) interaction.

We developed an integrated physiologically based whole-
body model of the glucose-insulin-glucagon regulatory sys-
tem consisting of three PBPK models for glucose, insulin, 
and glucagon. The integrated PBPK/PD approach presented 
here will address above raised issues with a generic widely 
applicable physiological model providing (i) the necessary 
structural detail for the integration of multiscale data, and (ii) 
detailed mathematical descriptions of physiologic processes 
and properties. (iii) It combines subcellular systems in one 
single model, (iv) including distribution and action processes 
associated with lag-times and (v) it provides a generic frame-
work for a priori model individualization. The generic mecha-
nistic approach of PBPK models is therefore well suited to 
mechanistically link PK and PD at an organ and molecular 
level.

RESULTS

The concept of translating whole-body GIM physiology into a 
PBPK model structure is depicted in Figure 1a,b and, on an 
organ and molecular level regarding mechanistic modeling, 
in Figure 1c. The glucose PK model features a detailed com-
partmental oral absorption model17 reflecting gastrointestinal 

physiology such as anatomical dimensions and mucosal 
blood flow with explicit representations of facilitating- and 
sodium dependent glucose transporters 2 and 1 (GLUT2 
and SGLT1). To reflect known glucose distribution physiol-
ogy the model features tissue specific facilitating transport-
ers (Figure 1c; 7). The PBPK model for insulin was extended 
by an adapted version of a published subcutaneous (s.c.) 
absorption model18,19 to account for s.c. administrations. 
For insulin PK, we implemented receptor-mediated trans-
cytosis as model simulations and literature data20 suggest 
that extravasation is an insulin receptor mediated process21 
(Figure 1c; 6). The PBPK description of glucagon, a gener-
ally omitted7,11,22 or lumped13,23 component in state-of-the-art 
models, was also extended by a s.c. absorption model.

The PBPK models are interlinked via detailed molecular 
PD mechanisms (Figure 1a,c). As in Sorensen,13 the mathe-
matical representation of the PD interactions is based on sig-
moidal transfer-functions. Key PD components are a model 
representing the incretin mediated effects following oral 
absorption of carbohydrates and an insulin receptor model in 
the insulin sensitive tissues, fat, muscle, and liver. The insu-
lin receptor acts as the key driver for insulin action but also 
clearance. It thereby couples PK with PD and reflects in a 
natural physiological way the observation that insulin action 
in insulin sensitive tissues correlates with degradation better 
than with delivery.27,28 Standard compartmental GIMs do not 
explicitly represent this dependency.

Model development was based on datasets from standard 
tolerance tests (glucose and insulin)13 and a published clin-
ical-trial dataset by El-Khatib et al.29 The respective simula-
tion results are presented in the following. First, we describe 
the performance of mean models for healthy volunteers and 
T1DM patients. In a second part, evaluation results for indi-
vidualized models based on the clinical-trial data are pre-
sented. Here, data from the first visit was used for parameter 
identification, and data from the second visit was used for 
model evaluation. For more details on model development 
see the “Methods” section and Supplementary Texts S1 
and S2 online.

Dynamics of the glucose metabolism model
The parameterization of a mean model for healthy subjects 
and subjects with T1DM was initialized with boundary con-
ditions and parameter values over multiple scales extracted 
from literature. Values included tissue clearance fractions,28 
tissue concentration gradients,20 protein properties (i.e., Km-
values),30 and expression levels.26 The PK model basis and 
the PD functions were then continuously refined using exper-
imental data. Based on their IIV the parameters were divided 
into three sets: (i) a global set displaying the lowest variability 
and assumed equal for all subjects, (ii) a set of parameters 
distinguishing healthy volunteers and T1DM patients, and (iii) 
a set of parameters for patient individualization (see Sup-
plementary Tables S1–3 online). All model parameters are 
time-invariant.

For parameterization of the mean models, we used data-
sets from intravenous (i.v.) glucose (healthy and T1DM) and 
insulin tolerance tests (IVGTT, IVITT), oral glucose tolerance 
tests as well as continuous i.v. insulin infusion as displayed 
in Figure 2.
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Figure 1  GIM structure overview. (a) Overview on PD interactions: Glucose has self-regulating effects consisting of suppression of endogenous 
glucose production, insulin-independent glucose uptake, renal glucose clearance, and stimulation of pancreatic insulin secretion (4), as well as, 
during episodes of low glucose concentrations, the stimulation of pancreatic glucagon secretion. Insulin, as a glucoregulatory hormone, maintains 
glucose homeostasis by insulin dependent glucose uptake in muscle and adipose tissue and suppression of endogenous (hepatic) glucose 
production as well as activation of hepatic glucose uptake. Glucagon, released at low glucose levels, counter-regulates low blood glucose levels, 
that is, hypoglycemia, through stimulation of hepatic glucose production. Interactions of glucose, insulin, and glucagon vary depending on the 
type of glucose challenge and pathological conditions. In contrast to intravenous (i.v.) glucose (1), oral glucose (2) additionally triggers the incretin 
effect (3), which affects insulin secretion (4) via the secretion of gastric hormones (e.g., GLP-1) prior to glucose appearance in the blood. In 
T1DM insulin secretion (4) is no longer functional, necessitating the infusion of exogenous insulin (5) via the i.v. or subcutaneous (s.c.) route. (b) 
Organ-level structure of whole-body model: each physiological organ translates to a compartment with several sub-compartments interconnected 
with convection and diffusion flows (see c). (c) Sub-organ-level and molecular details (1–10): organs are divided into five sub-compartments 
(blood plasma and cells, endothelial endosomes, interstitial, and intracellular). All compartments are interconnected via passive convection and 
diffusion flows (1–5) and facilitative transports (7). Distribution of compounds is ultimately dependent on for example, concentration gradients, 
flow rates, permeability, partition coefficients, transporter properties, and target protein binding properties.24 Both insulin distribution and its 
glucoregulatory PD effects are influenced or mediated at the molecular level. Bound to insulin receptors (IR) insulin is eliminated from the plasma 
by trans-endothelial transport (6), and in the interstitial space (9) triggering molecular signaling in target tissues inherently coupling its PK and 
PD (9, 10). Two receptor models from literature (Quon et al.,25 dashed lines; Koschorreck et al.,26 solid shaded lines) were evaluated. Adapted to 
the same organism and tissues (human fat, muscle, and liver), both models display similar dynamic properties (data not shown). Therefore, the 
less complex model by Quon et al. was implemented in the PBPK model, curated and adapted to human physiology (un-shaded receptor-states, 
see Supplementary Information online). At the molecular level, downstream signaling of the insulin receptor model in fat and muscle triggers 
translocation of insulin sensitive glucose transporter GLUT4, increasing peripheral glucose uptake (7, 10).
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The identified mean models for healthy subjects and sub-
jects with T1DM agree well with the experimental datasets 
with only a minor delay in the recovery of glucose levels after 
an IVITT.

The key result here is the distinguishing parameterization for 
healthy subjects and subjects with T1DM. Dynamics in healthy 
individuals, especially with respect to insulin action, are faster 
as compared with subjects with T1DM. This is reflected in the 
difference in receptor recycling and internalization rates but 
also insulin receptor expression levels (Supplementary Table 
S2 online). For T1DM, model fits showed a 50% increase in liver 
receptor concentrations with minor changes in concentrations 
in muscle and adipose tissue. Moreover, receptor recycling- 
and internalization rates were reduced by 20–30% in T1DM.

Post hoc evaluation of T1DM model predictions
We parameterized and validated the PBPK/PD model 
for T1DM in a post hoc in silico study using the published 
dataset by El-Khatib.29 The cohort investigated in this 

study covers a broad range of individual PK/PD properties 
for validation of the model. Although, the individuals in the 
study were sedated, the dataset is challenging, as the time 
between the two visits spanned up to several months. For 
each subject, the dataset obtained in the first visit was used 
for model individualization. This individualized model was 
then used to predict the outcome (i.e., dataset) of the second 
visit of the same subject. Differences between the two visits 
in their experimental setup (i.e., time-course and amount of 
injection rates) were considered. Without a treatment plan for 
each subject in between visits, estimates on long-term intra-
individual changes in patients cannot be obtained and were 
neglected in the following.

We present model results for a single representative patient 
(Subject 117; ref. 13, Figure 3), as well as the summarized 
results for the whole cohort (Figure 4). The fitted individual-
ized PBPK/PD model of the single subject accurately cap-
tures the measurement data of all three compounds, glucose, 
insulin, and glucagon (Figure 3a).

Figure 2  Model development steps including fits to different tolerance test data sets in healthy individuals (a–d)13 and individuals with T1DM 
(e–f).31 (a) IVGTT: 3 min intravenous (i.v.) glucose infusion of 0.5 g/kg glucose in 110 normal adult males. The datasets were used to identify 
the systemic distribution behavior of glucose and for validation of the adapted insulin secretion model. (b) IVITT: 15 subjects received a 3-min 
infusion of 0.04 U/kg i.v. insulin, used to identify the systemic distribution behavior of insulin and the PD effect of insulin, especially the response 
times to and recovery times from insulin. (c) CIVII: At t = 20 min an infusion of 0.25 mU/min/kg was started in six normal subjects. This test 
evaluates the shift in steady state behavior during a forced prolonged hypoglycemic state. (d) Oral glucose tolerance test (OGTT): data was 
obtained from 145 normal adult males who received a 100g oral glucose challenge. This dataset was used for the identification of the oral 
glucose absorption and the incretin effect model. (e,f) IVGTT of 250 mg/kg glucose in six T1DM subjects; once with an imitated physiological 
insulin response using the biostator algorithm (e) and once without insulin response (f). The dataset triggered the reevaluation of glucose 
effectiveness and was necessary for the identification of the vascular and cellular insulin receptor parameterization in T1DM (Supplementary 
Table S2 online).
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Starting with the resulting model fits, the residual error 
over time of the fitted trajectories throughout the cohort 
(visit 1, Figure 4a) is comparable with Subject 117 (11% 
absolute normalized fit error, cohort: 12%). In Figure 4c, 
the quality of model fits for glucose is displayed as a sum-
marized visual predictive check. For the visual predictive 
check plot, we used the Clarkes Error Grid, although it is 
commonly used to evaluate glucose monitoring devices 
rather than models, to give an idea of model accuracy for 
dosing decisions in clinical practice. The visual predictive 
check shows that the average absolute value of the fit error 
is evenly distributed around the line of identity indicating no 
systematic bias and a suitable description along the whole 
concentration range.

The residual error of the model fits, although small, shows 
minor systematic characteristics. In some cases subjects, 
including Subject 117, received large infusions of gluca-
gon (Figure 3a, bottom, t = 6–8 h; 3B, bottom, t = 8–10 h) 
following postprandial hypoglycemia (Figure 3a, top, t = 
6–7 h; Figure 3b, top, t = 8–9 h). Measured glucose then 
quickly rise to normo-glycemic levels (Figure 3a, top, t = 
8 h; Figure 3b, top, t = 10 h). The corresponding simulated 
effect of glucagon in this situation is too small indicating 
that the modeled effect of glucagon in this situation is too 
low. A second point is that postprandial rise of measured 
glucose levels is slightly delayed and absorption is in some 
cases prolonged when compared with simulations. Outside 
these observations, however, the dynamics of glucose lev-
els (Figure 4a, top) show no systematic error suggesting 
no further structural shortcomings of the glucose PBPK/
PD model.

For insulin (Figure 4a, center) the residual error of fits 
show a minor overshoot (Figure 4a, center, i.e., t = 4 h) at 

times of steep increases in insulin infusion rate (following 
a meal). During these occasions, simulated insulin levels 
rise too quickly. The insulin error peaks in Figure 4a,b (cen-
ter, t = ~4, 17, and 22 h) suggest that this behavior seems 
systematic for the whole cohort and likely associated with the 
s.c. absorption model. Overall, the fitted trajectories of insulin 
are very accurate.

For glucagon, only one systematic error, the overestima-
tion of glucagon levels after the last meal, was observed. 
Establishing a physiological interpretation for this observa-
tion remains challenging. Moreover, this behavior was not 
observed during model predictions. Otherwise, the residual 
mean error of glucagon fits and predictions is nonsystematic 
(Figure 4a,b, both bottom plots) but with a larger absolute 
error during high infusion rates likely reflecting inter-occa-
sional variability (IOV) of s.c. absorption. Overall, the resid-
ual error shows a noise-like behavior with faster changes 
in measured than in simulated concentration values and 
thus may be attributable to measurement noise, but other-
wise shows no large deviations for both Subject 117 and the 
whole cohort.

For a single subject (Subject 122; ref. 13) the total plasma 
insulin was ~20-times higher than for all other individuals and 
the Subject can be considered as an outlier in that respect. 
Although quality of fit for Subject 122 with respect to the rela-
tive error is comparable with the other subjects, the resulting 
absolute error distorts the average results (compare light and 
dark shadings Figure 4a,b, center).

During model predictions, all parameters, including meal 
parameters, were left at their fit values. The second half of 
the glucose prediction (i.e., second visit) of Subject 117 cor-
responds well with the measurement data (Figure 3b, top), 
whereas the first half is characterized by a large error during 

Figure 3  Simulated fitted (a) and predicted (b) trajectories of Subject 117 (ref. 13) from the first (a) and second (b) visit, respectively. Simulated 
trajectories are displayed as blue lines; data for comparison is displayed as black squares. Displayed are peripheral venous blood plasma 
concentrations of glucose (top), insulin (center), and glucagon (bottom).
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absorption of the first meal (average error: Individual 117: 
25% absolute normalized prediction error, cohort: 29%). 
In average, the variations in meal absorption become appar-
ent for the prediction of the second visit (Figure 4b, top). 
Although the patients received the exactly same meals with 
respect to carbohydrate, fat and protein content, the qualita-
tive shape of the measured glucose curves during a meal 
were strikingly different, reflecting IOV of glucose absorp-
tion from meals. In the Clarkes Error Grid, by contrast to the 
model fits, the predictions show a larger absolute error in 
the hyperglycemic range than in the normo-glycemic range. 
This indicates that the predictions during meal absorption 
are less reliable as compared with predictions in the fasted 
state.

Prediction of glucagon and insulin profiles are equally 
good as the model fit, indicating a reduced long-term IOV of 
PK properties but also underlining the very good long term 
predictive power of the model when taking into consideration 
that the two visits were months apart.

DISCUSSION

This study describes the development of a physiologically 
based PK/PD model for glucose, insulin, and glucagon. 
Application to clinical data showed that the model is able to 
predict the time-courses of these three substances with one 
consistent time-invariant parameter set with an overall good 
accuracy. Whereas this clearly demonstrates the power of 

Figure 4  Mean error residuals of simulated fitted (a,c) and predicted (b,d) trajectories of peripheral venous blood plasma concentrations of 
glucose (top), insulin (center), and glucagon (bottom) from all eight subjects from the first (a) and second (b) visit, respectively, displayed in 
comparison to the exemplary residual error from Subject 117. Visualized as time-concentration-error curves (a,b, for glucose (top), insulin 
(center), and glucagon (bottom) concentrations) and in a Clarkes Error Grid Analysis styled visual predictive check (c,d, only glucose 
concentrations). Displayed are for the eight subjects the mean error residuals (red solid lines, a,b), standard deviation of mean error residuals 
(light grey shaded area, a,b), all individual residual errors of glucose (c,d) as well as the single residual error from Subject 117 (blue dashed 
line, a,b, and large blue dots, c,d). For insulin concentration curves (a,b, center), the dark shaded area represents the mean error residuals 
without the outlier Subject 122.

10

100

50

0

0

0
0 2 4 6 8

Reference concentration (mmol/l)

10 12 14 16

2

4

6

8

10

P
re

di
ct

ed
 c

on
ce

nt
ra

tio
n 

(m
m

ol
/l)

12

14

16

0
0 2 4 6 8

Reference concentration (mmol/l)

10 12 14 16

2

4

6

8

10

P
re

di
ct

ed
 c

on
ce

nt
ra

tio
n 

(m
m

ol
/l)

12

14

16 E

D

A

C

B

B

D

CE B

B

D

D

C EA C E

3 6

Stdv w/o outlier Mean w/o outlier

Stdv Mean Subject 117

Fit error

Meal Meal Meal Meal Meal Meal

Prediction error

12

Time (h)

PBPK/PD model fits PBPK/PD model predictions

Time (h)

16 21 24 0 3 6 12 16 21 24
−50

0

−100

0

G
lu

co
se

 (
m

m
ol

/l)
In

su
lin

 (
m

U
/l)

G
lu

ca
go

n 
(p

m
ol

/l)

−10

a

c d

b



www.nature.com/psp

Physiologically Based Model of the Glucose-Insulin-Glucagon System
Schaller et al.

7

the PBPK/PD modeling approach, a full quantification of the 
quality of fit and predictions of the model presented here in 
comparison to state-of-the-art model implementations of the 
GIM is difficult as no validations of individual model predic-
tions of full-day trials are published, but only pure predictions 
without data22 or only fitted trajectories.32 In summary, our 
modeling approach distinguishes itself from state-of-the-art 
models by its generic concept separating compound and 
organism properties, the detailed whole-body physiological 
compartmental structure, the a priori individualization frame-
work, and the integration of detailed cellular mechanistic pro-
cesses. Although the resulting models are computationally 
demanding, they were solved on standard laptop computers 
within a minute and the steady increase in computational 
power makes this a minor drawback.

Given the individualization framework and the detailed 
model structure, the developed model captures IIV and 
IOV. With respect to the numbers of parameters, the lion’s 
share of IIV is captured by a priori parameterization of the 
individual physiology, which is mapped by the modeling 
platform based on the individual’s anthropology. With over 
600 unique parameters in the whole model, only 38 for the 
global mean and 26 distinctive parameters for healthy and 
T1DM mean population models were fitted. Ultimately, only 
ten parameters were used for model individualization. As 
the results clearly show, each of the patients was fitted 
successfully.

Whereas the development of a global generic integrated 
GIM model with parameters representing explicit physi-
ological detail, for example, transporter expression and 
parameterization, is new, a key result is the distinguishing 
parameterization for healthy and T1DM individuals. Cur-
rent state-of-the-art models of glucose metabolism merely 
change basal hepatic glucose production to distinguish these 
groups.13,33 However, considering subjects with T1DM, where 
insulin secretion and the incretin effect are lacking, a key dif-
ference to healthy subjects is from a modeling perspective 
the distinctive route by which insulin is provided to the body. 
In healthy subjects large amounts of endogenous insulin 
first pass the liver before being distributed to other tissues, 
whereas in subjects with T1DM, where insulin is exogenous, 
the liver is exposed only downstream to a lower level of insu-
lin and insulin may exert only a fraction of its regulatory (e.g., 
glucose lowering) effect on the liver.

It is known that stimulation with insulin reduces receptor 
expression but increases receptor recycling rates.34–36 The 
detailed description of the human physiology and distributive 
fluid flows within the PBPK/PD model result in the naturally 
expected change in insulin concentration levels at the tar-
get tissue following a shift from endogenous to exogenous 
insulin supply. Model fits show that the reduced hepatic insu-
lin levels in T1DM result in an increased receptor expres-
sion but reduced recycling rate, in-line with the experimental 
observations.

To predict concentration levels or even to fit data over a lon-
ger time-scale, the model also needs to capture IOV, that is, 
dynamics on a separate time-scale than plasma glucose or 
insulin levels, for example, insulin receptor dynamics or vas-
cular endosomal transit of insulin. In current state-of-the-art 
models IOV is captured by time-variant parameter-sets.22,37 

However, to improve the predictive power of the model, a 
mechanistic, preferably also physiologic description of IOV 
is paramount. The here integrated insulin receptor model 
is a first step in this direction, as it directly couples insulin 
clearance with insulin action as a dynamic system with long-
term changes in surface receptor levels dependent on long-
term cellular insulin load due to the slow receptor recycling 
rates. However, long-term changes in postreceptor signal-
ing may also be a yet unresolved issue. The rationale for 
the distinguishing parameter set for T1DM and healthy indi-
viduals is a self-regulating feedback-loop of insulin recep-
tor transcription and recycling rates.38 As insulin levels were 
predicted with high accuracy, the lion’s share of the residual 
error of glucose predictions in Figure 4b probably arises at 
the postreceptor level. indeed, the observed average drift, 
caused by a major deviation of fasting glucose levels in only 
one single subject out of eight, can be compensated by a 
change in the single parameter insulin sensitivity (data not 
shown).

In general, model components, which self-adapt on a 
long time-scale, for example, insulin signal transduction or 
transcription and degradation dynamics of insulin receptors 
adjusting to average cellular insulin load,39 and on a short 
time-scale, for example, an exercise model with metabolic 
and regulatory networks,40,41 to exogenous influences would 
be beneficial. Here, however, the subjects were sedated, 
experiencing only little change in physical activity and varia-
tion in metabolic rate.

One of the largest sources of IOV is probably the absorp-
tion of carbohydrates of a meal as already outlined in 
the “Results” section. The most likely explanation for the 
changes observed in meal absorption is the high variability 
in the characteristic properties of meal absorption, depend-
ing on nutrient content. Different types of carbohydrates, 
with varying glycemic indexes define how quickly glucose 
is available for absorption,42 that is, in the “dissolved” state. 
The effects of amount and types of fat and proteins, meal 
texture as well as fiber content influence stomach empty-
ing rates as well as intestine transit rates.43 Due to a lack 
of information, only total carbohydrates, caloric content, 
meal texture (fraction solid) and total meal volume is con-
sidered. Detailed a priori food characterization, with respect 
to covariates influencing gastric emptying (i.e., through 
the incretin effect itself), intestinal transit and absorption, 
integrated within a reliable mechanistic model describing 
effects of nutrition could likely improve predictions of meal 
absorption.

Another source of IOV (mainly glucagon) but also IIV is 
subcutaneous absorption. The reduced-order adaptation for 
continuous infusion of the s.c. absorption model also reduces 
the effect on the time delay of insulin appearance by local dis-
tribution at the injection site. However, implementation of the 
full model, adapted to continuous infusions seemed exces-
sive as the time delay is only minor and shows high variability. 
Possibly, variability could be reduced if a better understand-
ing of insulin distribution and degradation at the s.c. injection 
site is obtained.44 For s.c. glucagon absorption this could be 
due to changing s.c. properties over time or changing injec-
tion sites with different s.c. diffusion/absorption properties 
and/or additional subcutaneous degradation.45
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Not only insulin absorption, but also action and/or secre-
tion in healthy subjects are reported to be subjected to a 
circadian rhythm leading to additional variation.46 However, 
our results within this post hoc study including only indi-
viduals with T1DM do not further support this observation. 
A plausible explanation could be that these circadian prop-
erties are a property of insulin secretion or are otherwise 
disturbed in T1DM.47 Another unresolved issue is the effect 
on hepatic glucose production of high hepatic glucagon 
levels in the presence of increased insulin levels (Figure 
3a, top). This strongly indicates that insulin inhibition of 
glucagon action is too strong or too prolonged. This indi-
cates a necessity for stronger dynamic decoupling either 
at the interstitial or intracellular level. Solutions for dynamic 
decoupling of insulin and glucagon could be decoupling 
of plasma and interstitial dynamics in general or the inclu-
sion of an intracellular cAMP pool affected by both hor-
mones,48,49 instead of the direct multiplicative inhibition as 
adapted from Sorensen.13

Lastly, for the outlier Subject 122, a consistent explanation 
has to be validated with respect to the abnormally high insu-
lin levels. Possible reasons could be differences in insulin 
receptor levels or insulin antibodies, both strongly affecting 
the distribution and clearance. During model development, 
both hypotheses were tested, latter being carried forward 
as it both resulted in better predictions and was supported 
in discussions with El-Khatib (data not shown; personal 
communication). A fraction unbound of 1% was necessary 
for Subject 122 to achieve the observed 20-fold increase 
in total plasma insulin levels. Plausibility of the low fraction 
unbound for insulin in Subject 122 remains to be confirmed 
and requires trials where antibody levels are measured.

With all the remaining issues considered, overall, the GIM 
model presented here agrees well with the datasets used 
for model validation. The model was developed in such a 
way that its purpose of use is versatile. The generic model-
ing concept provides a rigorous framework for individualiza-
tion (even across organisms), data integration and model 
extension. It can be used for (i) fundamental research to 
uncover physiological properties and the relevance of 
biological mechanistics in whole-body physiology, that is 
integration of sub-models for exercise, (ii)  prediction and 
automatic control of blood glucose in T1DM and (iii) due 
to the high level of detail including for example, proteins 
like SGLT1 and GLP-1 which are currently under investiga-
tion as drug targets and analogs in the R&D community, 
the model would also provide an ideal framework for funda-
mental research on diabetes related drug targets and cor-
responding pharmaceutical intervention strategies.

Our work thus provides a powerful model to the medical 
scientific, pharmaceutical and device R&D community for 
the development and validation of novel diabetes treatment 
strategies.

Methods

Physiologically based PK/PD modeling. The coupled 
PBPK/PD model of glucose metabolism was developed 

using Computational Systems Biology Software Suite® 
5.1.3 (PK-Sim 5.1.3 and MoBi 3.1.3), commercial software 
packages for PBPK and molecular biology modeling.15,24,50 
For details on the model structure, the reader is referred to 
Supplementary Texts 1 and 2 online.

PK-Sim provides a framework to efficiently implement 
all-important absorption, distribution, metabolization and 
excretion processes with a number of different basic model 
structures available for choice.

MoBi is a tool for mechanistic and dynamic modeling 
of biological processes. It is fully compatible with PK-Sim. 
Models that were created in PK-Sim can be exported to 
MoBi to be modified, extended, and/or coupled. By con-
necting PK-Sim models in MoBi it is possible to develop 
complex PBPK/PD models of models with interacting 
compounds such as glucose, insulin and glucagon in the 
glucose-insulin-glucagon regulatory system.15 In this work, 
all models created with PK-Sim were exported to MoBi for 
coupling via the known PD interactions, integration of an 
insulin receptor and secretion model and the addition of the 
s.c. absorption model of insulin and glucagon.

Patient data and model individualization. Iterative model 
improvement and individualization (i.e., parameter iden-
tification) have been conducted using the MoBi Toolbox 
for MATLAB in combination with MATLAB (optimization 
toolbox). The different parameter-sets used for model 
parameterization evolved from experience, ranking the 
parameters depending on their sensitivity and IIV (data 
not shown). The range of distribution of parameter values 
were adjusted manually, guided by experience and litera-
ture data (see Supplementary Tables 1–3 online). For the 
initial conditions of each patient, we simulated the steady 
state  with two-thirds of the total daily insulin dose (see 
SupplementaryTable S4 online) given s.c. over 24 h.
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