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Activation of the endoplasmic reticulum (ER) stress and ER stress response, also

known as the unfolded protein response (UPR), is common to various degenerative

disorders. Therefore, signaling components of the UPR are currently emerging as

potential targets for intervention and treatment of human diseases. One UPR signaling

member, activating transcription factor 4 (ATF4), has been found up-regulated in many

pathological conditions, pointing to therapeutic potential in targeting its expression. In

cells, ATF4 governs multiple signaling pathways, including autophagy, oxidative stress,

inflammation, and translation, suggesting a multifaceted role of ATF4 in the progression

of various pathologies. However, ATF4 has been shown to trigger both pro-survival and

pro-death pathways, and this, perhaps, can explain the contradictory opinions in current

literature regarding targeting ATF4 for clinical application. In this review, we summarized

recent published studies from our labs and others that focus on the therapeutic potential

of the strategy controlling ATF4 expression in different retinal and neurodegenerative

disorders.

Keywords: activating transcription factor 4, ER stress response, unfolded protein response (UPR),

neurodegenerative diseases, retinal diseases, neurons, photoreceptor cells, vertebrate

INTRODUCTION

Mammalian cells activate the unfolded protein response (UPR) in response to various internal and
external cellular stimuli that disturb the balance in the endoplasmic reticulum (ER). These stimuli
include, but are not limited to, accumulation of misfolded proteins, glucose deprivation (Roth et al.,
2010; Csala et al., 2012), calcium dysfunction (Krebs et al., 2011; Shinde et al., 2016), hypoxia
(Zheng et al., 2012), inflammation (Wang et al., 2016), redox potential changes (Hagiwara and
Nagata, 2012), and mechanical stress (Husa et al., 2013). The normal physiological process involves
activation of a signaling cascade, mediated by dissociation of the stress sensors protein kinase
R (PKR)-like endoplasmic reticulum kinase (PERK), inositol requiring enzyme I (IRE-1), and
activating transcription factor 6 (ATF 6) from glucose regulated protein 78 (Grp78), a key regulator
of the UPR (Patil and Walter, 2001). This activation results in adjustment of the ER capacity
to assist protein in the folding, activation of the ER-associated degradation (ERAD) pathway
for degradation of abnormal proteins, and re-establishment of cellular homeostasis. However, a
stimulus of long-lasting duration may cause a chronic ER stress. In this case, the cell experiences
a “pathological” UPR that triggers programmed cell death, usually through sustained activation of
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the PERK UPR arm and pro-apoptotic components of cellular
signaling (Figure 1; Woehlbier and Hetz, 2011). Detection
of the physiological UPR could be challenging in cells due
to the dynamics of downstream molecular events and quick
equilibration of cellular homeostasis. By contrast, pathological
UPR could be traced by accumulation of the UPR hallmark
proteins and histological observation of consequent cell death
(Hiramatsu et al., 2011). Recognition of a molecular switch
operating between cell life and death decisions is perhaps a
cornerstone of contemporary cell physiology and potentially will
be a focus of future investigations.

At themolecular level, a cell under chronic ER stress continues
to activate the PERK signaling pathway (Woehlbier and Hetz,
2011). Following transduction of information regarding the
protein capacity of the ER, the IRE1 pathway is turned off
(Woehlbier and Hetz, 2011). At the same time, the activation of
the PERK downstream mediator activating transcription factor 4
(ATF4) induces the expression of a transcriptional factor C/EBP
Homologous Protein (CHOP), which is, in turn, responsible
for the activation of apoptosis through, Bcl-2-like protein
11 (BIM), p53 upregulated modulator of apoptosis (PUMA),
and Noxa up-regulation (Huang et al., 2015). Therefore, the
expression, activation, and duration of ATF4 activity could be an
important parameter that determines cell fate. In this review, we
summarized the latest discoveries on the role of the ATF4 protein
in various retinal and neurodegenerative diseases.

ATF4: EXPRESSION AND
POST-TRANSLATIONAL MODIFICATION

ATF4 is a 351 amino acid cAMP-response element binding
protein that belongs to the cAMP response element-binding
protein (CREB)-2 family of proteins (Vattem and Wek, 2004).
The protein is structured into several domains that are essential
for ATF4 function and degradation. The N-terminal of ATF4
contains a p300/CBP associated factor (PCAF) domain for p300
interaction, a leucine zing finger region II for the binding of
neuronal cell death putative kinase, and a prolyl-4 hydroxylase
domain (Hai and Curran, 1991; Karin and Smeal, 1992; Chérasse
et al., 2007; Chan et al., 2013). The leucine zipper is essential for
the dimerization of twoDNA binding regions and for recognition
of 5′-TGACGTCA-3′ DNA sequence within promoters(Vincent
and Struhl, 1992). Two other domains, the oxygen dependent
degradation (ODDD) domain and βTrCP motif, are involved in
ATF4 degradation.

At the C-terminal, ATF4 contains the basic/leucine zipper
domain (bZIP domain) that serves as a DNA binding sequence
for interaction with abraxas brother 1 (Abro1), CCAAT/enhancer
binding protein β (C/EBPβ), factor-inhibiting ATF4-mediated
transcription (FIAT), AT-rich sequence-binding protein 2
(SATB2), death-associated protein Ser/Thr kinase 3 (DAPK3),
and nuclear factor (erythroid- derived 2)-like 2 (Nrf2) (He et al.,
2001). The ATF4 mRNA is transcribed ubiquitously at low levels,
but its protein expression depends on various stress conditions,
such as hypoxia, anoxia, and lack of nutrition, as well as glucose
deprivation. The mouse ATF4 mRNA contains two upstream

open reading frames (uORFs): the uORF1 and uORF2 located
at 5′ of coding sequence. ATF4 expression involves a differential
contribution of each upstream ORF(Vattem and Wek, 2004).

The uORF1 is a positive acting element that facilitates
ribosome scanning (Wek et al., 2006), whereas the uORF2
acts as an inhibitory element that blocks the ATF4 expression
that promotes ribosome scanning and re-initiation at the ATF4
coding sequence. As a part of a translational complex, the
eukaryotic initiation factor 2 alpha (eIF2a) forms a ternary
structure with GTP and Met-tRNA to bind the 40S ribosomal
subunit and initiate translation (Kilberg et al., 2009). Under
non-stress conditions, when eIF2a-GTP is plentiful due to
the absence of stress, the complex binds a ribosome, GTP is
hydrolyzed, and eIF2a-GDP is released from the complex for
further association with eIF2b, an eIF2a GDP-GTP exchanger.
This results in re-initiation of downstream ribosome scanning
at the next uORF2 (Vattem and Wek, 2004; Wek et al.,
2006). After translation of uORF2, ribosomes dissociate from
the ATF4 mRNA. This leads to a reduction in expression
of the ATF4-coding region and a weak ATF4 expression
(Vattem and Wek, 2004). Under stress conditions, eIF2a
is phosphorylated by four different kinases [PERK, protein
kinase R(PKR), general control nonderepressible 2 (GCN2),
and heme-regulated eIF2α kinase (HRI) kinases; (Vattem and
Wek, 2004; Wek et al., 2006)], and this phosphorylation
inhibits eIF2b-mediated eIF2a GDP-GTP exchange and represses
global protein synthesis (Vattem and Wek, 2004). Meanwhile,
eIF2a-GTP levels are lowered, and this deficit causes further
ribosome scanning to be performed more carefully through
negative-acting ORF2 positions at the initiation of the ATF4-
coding region (Vattem and Wek, 2004). Therefore, translation
of ATF4 is significantly enhanced in response to cellular
stress.

In addition to the bZip domain, the ATF4 protein contains
multiple sites for post-translational modification, including
phosphorylation sites and sites for ubiquitination, SUMOylation,
and acetylation. Protein kinase A (Karpinski et al., 1992),
ribosomal S6 kinase 2 (Li et al., 2014), protein kinase CK2
(Manni et al., 2012), and RET tyrosine kinase (Bagheri-
Yarmand et al., 2015) are all known to phosphorylate ATF4.
At many positions, phosphorylation leads to ATF4 degradation
(Lassot et al., 2001). ATF4 degradation also relies on a
phosphorylation-dependent interaction with the SCF (betaTrCP)
ubiquitin ligase (Lassot et al., 2001). Along with phosphorylation,
another mechanism that controls the ATF4 activity is the
binding of p300, NAD-dependent deacetylase sirtuin-1 (SIRT1),
and FIAT. Histone acetyltransferase p300 binds to the N-
terminal of ATF4, thereby stabilizing and enhancing ATF4
transcriptional activity (Lassot et al., 2005). Conversely, FIAT
protein blocks the ATF4 activity by binding to a leucine
zipper motif and preventing ATF4 from further associations.
This motif is directly responsible for ATF4 inhibition when
FIAT is over-expressed in cells (St-Arnaud and Elchaarani,
2007; Yu et al., 2009; St-Arnaud et al., 2010). In addition,
NAD+-dependent deacetylase SIRT1 also downregulates ATF4
synthesis during proteasome inhibition in cells (Woo et al.,
2013).
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FIGURE 1 | Activation of the PERK UPR signaling under physiological and pathological ER stress conditions. Abnormally folded proteins within the ER are sensed by

GRP78 chaperone that in turn activates PERK pathway program. Under acute ER stress, the PERK kinase activates downstream mediator, phosphorylated eIF2a

leading to up-regulation of ATF4. The latest together with CHOP protein activates transcription of ER stress chaperones that can regulate the transition from

adaptation and neuronal cell survival via temporal translation inhibition leading to reestablishing of cellular homeostasis. After prolonged pathological ER stress, ATF4

can regulate the transition from adaptation/survival in neuronal cells to a pro-apoptotic phase via provoking aberrant autophagy signaling, translational program, and

inflammatory response. Sustained malfunction of these cellular signaling may contribute to neuronal cells death through activation of apoptosis and leads to

neurodegeneration seen in Parkinson disease, Alzheimer Disease, Huntington Diseases, Prion Disease and Retinal Degeneration.

ATF4 ACTIVATES PRO-SURVIVAL AND
PRO-DEATH SIGNALING DURING
NEURODEGENERATION

The activity of ATF4 is associated with its cellular localization.
Under conditions of ER stress, ATF4 migrates to the nucleus,
using the nucleus targeting KKLKK signal (amino acids 280
to 284) located within the basic region of the ATF4 gene. In
the nucleus, ATF4 binds targeted DNAs and regulates their
transcription (Han et al., 2013). The C/EBP homologous protein
(CHOP, also known as GADD153) is one of the targeted genes.
Together with ATF4, this protein regulates the expression of
various cellular genes (Han et al., 2013). The list of shared
targets includes 218 proteins. CHOP and ATF4 regulate multiple
cellular processes, including the cellular response to ER stress

(chaperones), protein biosynthesis, translation, and amino-tRNA
synthetase activity. In addition, ATF4 controls the expression
of 254 genes independently of CHOP (Han et al., 2013). These
genes mostly govern cellular metabolism, including amino acid
biosynthesis and transporter activity.

Multiple studies have identified ATF4 downstream targeted
genes, but very few in vivo experiments have investigated up-
and down-regulation of ATF4 in the brain or in eye tissues.
We recently over-expressed ATF4 in the mouse retinal and
rat dopamine nigral neurons (Bhootada et al., 2016; Gully
et al., 2016). To do this, we leveraged the ability of the adeno-
associated viruses with serotype 5 to deliver ATF4 cDNA, and we
efficiently transduced the cDNA in photoreceptors of the retina
or dopaminergic neurons of the substantia nigra pars compacta
(SNc). We revealed that a 2.3-fold increase in ATF4 triggers
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retinal degeneration in wild type mice and mimics conditions
with ATF4 over-expression in transgenic T17M rhodopsin
retinas. Analysis of ERG recordings demonstrated a significant
reduction in the functional tests in both types of retina (Bhootada
et al., 2016). The functional loss in the retina was associated with
a higher rate of photoreceptor cell death in mutant retinas over-
expressing ATF4. Therefore, both the wild type and the mutant
retinas experienced activation of apoptotic pathway.

We also conducted a second study, in which we investigated
rats with a 3.2-fold increase in ATF4 in the SNc. These rats
showed a loss of TH-positive cells when compared to control
rats given AAV5-GFP injections (Gully et al., 2016). Cell loss was
associated with a drop in the dopamine level and an increased
activation of caspase-3/7. Taken together, our data on retinal and
nigral neurons have demonstrated that over-expression of ATF4
results in progressive neurodegeneration. This discovery led to
the next intriguing question regarding the cause of death of the
neuronal cells over-expressing ATF4. We detected activation of
caspase 3/7 in both studies, but we have not yet identified a
direct molecular path that leads to neuronal cell death. The ATF4
and the ATF4→ CHOP signaling together can modulate the
expression of 575 genes, which could eventually lead to neuronal
death in these tissues (Han et al., 2013). Therefore, conducting
further experiments with ATF4 titration and CHOP knockdown
in these cells would be interesting in order to obtain a precise
answer to this question.

ATF4 AND RETINAL DEGENERATIVE
DISEASES

Retinal degeneration is a progressive deterioration of retinal
cells that eventually leads to their demise. The group of retinal
degenerative disorders includes inherited, trauma-associated,
diabetic, and age- related retinal degenerations. The cellular
mechanism of retinopathies is complex and is often linked to
multiple molecular markers of autophagy, oxidative stress, and
inflammation. The UPR PERK→ p- eIF2a→ ATF4 pathway
seems to play a significant role in photoreceptor deterioration
in mice expressing aberrant proteins. Thus, we and other
investigators have recently proposed that the UPR contributes
markedly to retinal pathogenesis under various degenerative
conditions (Gorbatyuk and Gorbatyuk, 2013; Zhang et al.,
2014; Hiramatsu et al., 2015; Karthikeyan et al., 2017). Some
investigators have suggested that “ER stress is a general upstream
mechanism for neurodegeneration” and that “targeting ER stress
molecules is a promising therapeutic strategy for neuroprotection
(Huang et al., 2017).”

Research conducted over the past 5 years has identified
ATF4 as one of the cellular markers that is elevated by various
stress conditions in the retina. We have demonstrated that mice
expressing mutant and truncated rhodopsins show dramatically
elevated ATF4 levels (Kunte et al., 2012; Rana et al., 2014;
Bhootada et al., 2016), while other investigators have detected
ATF4 upregulation in different models of inherited retinal
degeneration (Comitato et al., 2016; Lobo et al., 2016; Ooe et al.,
2017). ATF4 regulates inflammatory signaling by governing the

expression of multiple inflammatory genes. For example, in wild
type mice, we found that ATF4 over-expression significantly
increased the production of pro-inflammatory IL-1β (Rana et al.,
2014). Huang et al. reported that ATF4 is a novel regulator
of monocyte chemoattractant protein-1 (MCP-1) (Huang et al.,
2015). These cytokines are all overproduced in the mouse retina
during retinal degeneration. Therefore, not surprisingly, ATF4
downregulation in the T17M rhodopsin retina diminishes the
ER stress response and prevents of loss of retinal function and
photoreceptor cell death (Bhootada et al., 2016).

In degenerating retinas, enhanced ATF4 expression could be
provoked by excessive light. Kuse et al. reported that blue light
triggers photoreceptor cell death through activation of an ER
stress response and ATF4 over-production (Kuse et al., 2014).
This group subsequently demonstrated that light-induced S-
opsin aggregation could be responsible for the activation of ATF4
(Ooe et al., 2017). Taken together, these findings would imply
that mislocalization of opsin in the photoreceptors, on its own,
is capable of triggering the ER stress response through activation
of ATF4 signaling.

ATF4 plays a critical role in the progression of diabetic
retinopathy (DR). Studies of proliferative DR have proposed
ATF4 as one of the bio-markers of DR and suggest that it
may represent a new therapeutic target for proliferative DR
(Wang et al., 2017). Support for this proposal comes from
a mouse model of type 1 diabetes with an activated ER
stress response that inhibits ATF4 activity; these mice show
a marked attenuation of the high–glucose-induced production
of Intercellular Adhesion Molecule (iCAM), Tumor necrosis
factor (TNFa), and vascular endothelial growth factor (VEGF)
and a significant overall amelioration of retinal inflammation
(Chen et al., 2012). Similarly, ATF4 over-expression triggers an
inflammatory response in endothelial cells through activation of
the Signal transducer and activator of transcription 3 (STAT3)
pathway (Chen et al., 2012). This could explain why T17M
rhodopsin mice with inherited retinal degeneration experience
a preservation of retinal function and photoreceptor cell death
when their retina is deficient in TNFa, a downstream ATF4 target
(Rana et al., 2017).

Another hallmark of proliferative DR, and of the wet form
of age-related macular degeneration, is angiogenesis. Our study
of the hypoxic retina demonstrated that ATF4 deficiency could
alleviate hypoxia-driven neovascularization in mice (Wang et al.,
2013). Other investigators have also confirmed that ATF4 is
a powerful promoter of angiogenesis (Liu et al., 2015; Chen
et al., 2017). Taken together, these studies emphasize the need
for further studies to determine the role of ATF4 in various
neovascularization conditions.

ATF4 AND CNS NEURODEGENERATIVE
DISEASES

Neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and
prion disease, are characterized by the slow and progressive
loss of neural cells and subsequent dysfunction of the

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 December 2017 | Volume 11 | Article 410

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Pitale et al. ATF4 and Neurodegeneration

nervous system. Accumulation of misfolded proteins has been
proposed as a common link in many neurodegenerative
disorders (Li et al., 2013; Roussel et al., 2013; Scheper
and Hoozemans, 2015; Remondelli and Renna, 2017). Thus,
a study of neurodegeneration in a mouse model of AD
revealed an activation of ATF4-mediated intra-axonal translation
and identified ATF4 as a mediator of the spread of AD
neurodegeneration (Baleriola et al., 2014). The AD brain (Ohno,
2014) and the brain of this AD-like mouse model (Jankowsky
et al., 2004) both showed significant upregulation of the protein
level of ATF4. This is perhaps associated with the fact that ATF4
upregulation “may not only act as the downstream effector of
Aβ but also as an upstream initiator for the memory deficit
and pathological hallmarks in AD (Wei et al., 2015).” An
association is possible between ATF4 elevation and increased
phosphorylation of tau, through Glycogen Synthase Kinase 3
(GSK-3) and Protein phosphatase 1 (PP1) kinases, and this could
give rise to neuronal damage.

Sbodio et al., in their studies on the pathogenesis of HD, have
demonstrated that dysfunction of ATF4, as a master regulator
of amino acid homeostasis in cells, significantly contributes to
molecular neurodegeneration. They postulated a disruption of
cysteine biosynthesis in cells with polyglutamine repeats due to
low activity of the cystathionine γ-lyase enzyme, which is due, in
turn, to low ATF4 activity (Sbodio et al., 2016). They proposed
that, under conditions where the oxidative stress persists or
exceeds a certain level in a cell, ATF4 loses its ability to restore
cellular responses and homeostasis. This implies that patients
with HD might benefit from restoration of ATF4 activity that
regulates a diverse spectrum of amino acid metabolism.

The cellular mechanism of PD pathogenesis involves the
aggregation of α-synuclein (αS) in the neurons in the form of
Lewy bodies and substantial loss of nigral dopaminergic neurons
in the SNc. Studies in a PD transgenic mouse model expressing
αS120 (Bellucci et al., 2011) and in patient brain biopsies (Sun
et al., 2013) have reported elevated levels of ATF4 in the SNc. For
example, Sun et al. demonstrated that 50% of all studied human
PD brain sections contained nearly 80% neuromelanin-positive
neurons that showed strong ATF4 immunostaining (Sun et al.,
2013). The remaining 50% of the sections showed ATF4 staining
compatible with that observed in control brains. The authors
proposed that the mean duration of the disease significantly
affected ATF4 expression and that a longer PD progression gave
rise to a higher ATF4 expression.

The role of ATF4 has been further explored by Imai et al.
and Bouman et al., who proposed that the PD-like progression
in mice could involve the binding of activated ATF4 to the E3
ligase parkin promoter (Imai et al., 2000, 2001) and themediation
of parkin expression in response to ER and mitochondrial
stress (Bouman et al., 2011). The authors suggest that increased
expression of parkin is beneficial in the context of protection
of cells from ER stress and mitochondrial damage, so that
ATF4 may play a cytoprotective role during PD development.
Notably, in our previous work, we showed the association
between experimental PD progression and ATF4 protein level
(Gorbatyuk et al., 2012). We found that recombinant adeno-
associated virus r(AAV)- mediated overexpression of human αS

results in a seven-fold induction of the ATF4 protein. Our study
of α-synucleopathy progression in rats demonstrated that the
elevation of ATF4 occurring during PD progression is associated
with a loss of TH positive cells, a reduced dopamine level, and an
increased behavior deficit (Gorbatyuk et al., 2012). We therefore
hypothesized that elevation of ATF4 could have a deleterious
role in the brain in patients with PD. To this end, we used
AAV to overexpress ATF4 in the SNc of the rat and compare
human αS over-expression.We found that the loss of TH positive
cells and the reduction in dopamine levels were greater in the
SNc of rats over-expressing ATF4 than in those over-expressing
αS. Moreover, the animals overexpressing ATF4 demonstrated
substantial behavior deficits when compared to a control group
(Gorbatyuk et al., 2012).

ATF4 AND AGING

Age affects the human body by altering proteostasis and
enzymatic activity, thereby modulating multiple cellular
pathways (Kaushik and Cuervo, 2015). Unfortunately, wide-
ranging studies have mainly reported ATF4 over-expression
under neurodegenerative conditions, which are prominent
in aged tissues and organs. By contrast, ATF4 expression in
healthy aged tissues has not received proper attention, with
a few exceptions. Our study of aged retinas demonstrated a
higher ATF4 expression in retinas from 24-month-old rats
than from 4-month-old rats (Lenox et al., 2015). This increase
was associated with elevated levels of GADD34 and CHOP
proteins. In addition, Rantes/CCL5 expression was enhanced
in aged retinas as well. The latest findings for CCL5 support
the proposed ATF4 regulation of Rantes secretion through its
interaction with the c- Jun molecule of the toll-like receptor 4
(TLR4)- signaling pathway (Zhang et al., 2013). In a further study
of naive aged rats, we also demonstrated that 24-month-old rats
show significant two-fold elevation of nigral ATF4 levels, which
are associated with increases in endogenous α-syn in males and
declines in GRP78 in both male and female aged brains (Salganik
et al., 2015).

ATF4 has recently been proposed as a potential mediator
of age-related muscle weakness and atrophy, as ATF4
downregulation by ursolic acid and tomatidine treatment
significantly reduced age- related deficits in skeletal muscle
strength, quality, and mass (Ebert et al., 2015). Other studies
on age-related muscular dystrophy have revealed that increases
in ATF4 expression alone are sufficient to induce fiber atrophy
(Ebert et al., 2010). Therefore, ATF4 downregulation could be a
potential therapeutic target for restoring skeletal muscle deficit
in the elderly.

CONCLUSIONS

In this review, we have presented the latest findings concerning
ATF4 involvement in retinal and neurodegenerative disorders.
An analysis of the existing literature indicated contradictory
opinions on the role of ATF4 in triggering the pro-survival
or pro-death trend during developing experimental pathologies.
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The discrepancy could be due to the specificity of the activated
molecular signaling, the stages of neurodegeneration, and the
environmental conditions.Moreover, it is noteworthy tomention
that the downstream targets and cellular signaling, including
autophagy, oxidative stress, inflammation, and translation
regulated by ATF4 are quite diverse. However, we believe
that the major discrepancy between these studies’ results lies
in the use of in vivo and in vitro systems. Importantly,
the therapy we are seeking has to define the potential
of ATF4 to regulate the progression of neurodegeneration
during chronic ER stress, which apparently is difficult, if
not impossible, to reproduce in cell-culture disease models.
This is also indicated by the fact that most, if not all,
published works that have studied the consequences of
direct modulation of ATF4 in animal disease models indicate
that restriction of the excessive protein production can
significantly diminish retinal and neurodegenerative disorders
(Sidrauski et al., 2013; Halliday et al., 2015; Rozpedek

et al., 2015; Wei et al., 2015; Bhootada et al., 2016; Gully
et al., 2016). Therefore, future experiments are necessary
to investigate whether downregulation of ATF4 would be
a feasible therapeutic strategy for varied neurodegenerative
pathologies.
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