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Learning Long Temporal Sequences
in Spiking Networks by Multiplexing
Neural Oscillations
Philippe Vincent-Lamarre*, Matias Calderini and Jean-Philippe Thivierge

School of Psychology and Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada

Many cognitive and behavioral tasks—such as interval timing, spatial navigation, motor

control, and speech—require the execution of precisely-timed sequences of neural

activation that cannot be fully explained by a succession of external stimuli. We show how

repeatable and reliable patterns of spatiotemporal activity can be generated in chaotic

and noisy spiking recurrent neural networks. We propose a general solution for networks

to autonomously produce rich patterns of activity by providing a multi-periodic oscillatory

signal as input. We show that the model accurately learns a variety of tasks, including

speech generation, motor control, and spatial navigation. Further, the model performs

temporal rescaling of natural spoken words and exhibits sequential neural activity

commonly found in experimental data involving temporal processing. In the context of

spatial navigation, the model learns and replays compressed sequences of place cells

and captures features of neural activity such as the emergence of ripples and theta phase

precession. Together, our findings suggest that combining oscillatory neuronal inputs with

different frequencies provides a key mechanism to generate precisely timed sequences

of activity in recurrent circuits of the brain.

Keywords: neural oscillations, spiking neural networks, recurrent neural networks, temporal processing,

balanced networks

1. INTRODUCTION

Virtually every aspect of sensory, cognitive, and motor processing in biological organisms involves
operations unfolding in time (Buonomano and Maass, 2009). In the brain, neuronal circuits
must represent time on a variety of scales, from milliseconds to minutes and longer circadian
rhythms (Buhusi andMeck, 2005). Despite increasingly sophisticated models of brain activity, time
representation remains a challenging problem in computational modeling (Grondin, 2010; Paton
and Buonomano, 2018).

Recurrent neural networks offer a promising avenue to detect and produce precisely timed
sequences of activity (Abbott et al., 2016). However, it is challenging to train these networks due to
their complexity (Pascanu et al., 2013), particularly when operating in a chaotic regime associated
with biological neural networks (van Vreeswijk and Sompolinsky, 1996; Abarbanel et al., 2008).

One avenue to address this issue has been to use reservoir computing (RC) models (Jaeger,
2002; Maass et al., 2002). Under this framework, a recurrent network (the reservoir) projects onto
a read-out layer whose synaptic weights are adjusted to produce a desired response. However,
while RC can capture some behavioral and cognitive processes (Sussillo and Abbott, 2009; Laje
and Buonomano, 2013; Nicola and Clopath, 2017), it often relies on biologically implausible
mechanisms, like strong feedback form the readout to the reservoir or implausible learning rules
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required to control the reservoir’s dynamics. Further, current
RC implementations offer little insight to understand how the
brain generates activity that does not follow a strict rhythmic
pattern (Buonomano and Maass, 2009; Abbott et al., 2016). That
is because RC models are either restricted to learning periodic
functions, or require an aperiodic input to generate an aperiodic
output, thus leaving the neural origins of aperiodic activity
unresolved (Abbott et al., 2016). A solution to this problem is
to train the recurrent connections of the reservoir to stabilize
innate patterns of activity (Laje and Buonomano, 2013), but this
approach is more computationally expensive and is sensitive to
structural perturbations (Vincent-Lamarre et al., 2016).

To address these limitations, we propose a biologically
plausible spiking recurrent neural network (SRNN) model that
receives multiple independent sources of neural oscillations
as input. The architecture we propose is similar to previous
RC implementations (Nicola and Clopath, 2017), but we use
a balanced SRNN following Dale’s law, which are typically
used to model the activity of cortical networks (van Vreeswijk
and Sompolinsky, 1998; Brunel, 2000). The combination of
oscillators with different periods creates a multi-periodic code
that serves as a time-varying input that can largely exceed
the period of any of its individual components. We show
that this input can be generated endogenously by distinct sub-
networks, alleviating the need to train recurrent connections
of the SRNN to generate long segments of aperiodic activity.
Thus, multiplexing a set of oscillators into a SRNN provides an
efficient and neurophysiologically groundedmeans of controlling
a recurrent circuit (Vincent-Lamarre et al., 2016). Analogous
mechanisms have been hypothesized in other contexts including
grid cell representations (Fiete et al., 2008) and interval timing
(Miall, 1989; Matell and Meck, 2004).

This paper is structured as follows. First, we describe a
simplified scenario where a SRNN that receives a collection of
input oscillations learns to reproduce an arbitrary time-evolving
signal. Second, we extend the model to show how oscillations
can be generated intrinsically by oscillatory networks that can be
either embedded or external to the main SRNN. Third, we show
that a network can learn several tasks in parallel by “tagging”
each task to a particular phase configuration of the oscillatory
inputs. Fourth, we show that the activity of the SRNN captures
temporal rescaling and selectivity, two features of neural activity
reported during behavioral tasks. Fifth, we train the model
to reproduce natural speech at different speeds when cued by
input oscillations. Finally, we employ a variant of the model to
capture hippocampal activity during spatial navigation. Together,
results highlight a novel role for neural oscillations in regulating
temporal processing within recurrent networks of the brain.

2. METHODS

2.1. Integrate-and-Fire Networks
2.1.1. Driven Networks
Our network consists of leaky integrate-and-fire neurons, where
Nrnn = 1, 000 for the SRNN projecting to the read-out units
and Nosc = 500 for each oscillatory network, by default. Eighty
percent of these neurons are selected to be excitatory while the

remaining 20% are inhibitory. The membrane potential of all
neurons is given by

C
dV

dt
= 1

R
(EL−V)+gex(Eex−V)+gin(Ein−V)+Itonic+Iext (1)

where C and R are the membrane capacitance and resistance,
EL is the leak reversal potential, gex and gin are the time-
dependent excitatory and inhibitory conductances, Eex and Ein
are the excitatory and inhibitory reversal potentials, Itonic is
a constant current applied to all neurons and Iext is a time-
varying input described below. Parameters were sampled from
Gaussian distributions as described in Table 1. The excitatory
and inhibitory conductances, gex and gin, respectively, obey the
following equations:

τexi
dgexi
dt

= −gexi +
Nrnn
∑

j = 1

Wi,jGexiδ(t − t(j) − T
(j)

delay
) (2)

τini
dgini
dt

= −gini +
Nrnn
∑

j = 1

Wi,jGiniδ(t − t(j) − T
(j)

delay
) (3)

where τex and τin are the time constants of the excitatory and
inhibitory conductances, and Gin and Gex are the change in
conductance from incoming spikes to excitatory and inhibitory
synapses. Vθ is the spiking threshold, t(j) denotes the time since
the last spike of the pre-synaptic neuron j, after which V is set to
Vreset for a duration equal to τref . Tdelay is the propagation delay
of the action potential. The SRNN connectivity is defined as a
Nrnn×Nrnn sparse and static connectivitymatrixW with a density
prnn (probability of having a non-zero pairwise connection). The
non-zero connections are drawn from a half-normal distribution
f (0, σrnn), where σrnn = γrnn√

Nrnn×prnn
. All ODEs are solved using a

forward Euler method with time-step 1t = 0.05 ms. This results
in an asynchronous regular network (Figure S1).

Each SRNN neuron is connected to each of the Ninp input
units with probability pinp. The external inputs (Iext) follow:

Iext(t) = M(
A

2
(sin(2π ft + φ)+ 1)) (4)

where Iext ∈ IRNrnnand f ,φ ∈ IRNinp . The frequency of the
sine waves and their initial phase are represented by f (hz)
and φ are drawn from the uniform distributions U(−π ,π) and
U(fmin, fmax), respectively (fixed for each realization of a task).
The sine wave is then transformed by adding 1 and dividing by
2 to limit its range to [0,A]. The full input-to-SRNN connectivity
matrixM is a Nrnn ×Ninp sparse and static matrix, with a density
of pinp. The non-zero connections ofM are drawn from a normal
distribution N (0, 1) and A is the amplitude of the input (30 pA
by default).

All of the SRNN’s excitatory neurons project to the readout
units. Their spiking activity r is filtered by a double exponential:

τd
drj

dt
= −rj + hj (5)
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TABLE 1 | SRNN parameters.

Main SRNN Input (oscillatory networks)

N 1,000 500

R 100 M� 100 M�

C 200 pF 200 pF

EL µ = −60 mV, σ = 1.2 mV µ = −60 mV, σ = 0.6 mV

Vθ µ = −50 mV, σ = 0.5 mV µ = −50 mV, σ = 0.5 mV

Vreset µ = −60 mV, σ = 1.2 mV µ = −60 mV, σ = 0.6 mV

Itonic 90 pA 90 pA

Tdelay µ = 1 ms, σ = 0.02 ms µ = 1 ms, σ = 0.01 ms

τref µ = 2 ms, σ = 0.04 ms µ = 2 ms, σ = 0.02 ms

Gex µ = 20 pS, σ = 0.4 pS µ = 30 pS, σ = 0.03 pS

Gin µ = 160 pS, σ = 3.2 pS µ = 140 pS, σ = 1.4 pS

τex µ = 20 ms, σ = 0.4 ms µ = 20 ms, σ = 0.2 ms

τin µ = 20 ms, σ = 0.4 ms µ = 80 ms, σ = 0.8 ms

Eex 0 mV 0 mV

Ein −80 mV −80 mV

prnn 0.1 1

pinp 0.3 1

γrnn 1 1

τr
dhj

dt
= −hj +

1

τd

N
∑

j = 1

δ(t − t(j)) (6)

where τr = 6 ms is the synaptic rise time and τd = 60 ms is the
synaptic decay time.

2.2. Output and Target Functions
The signal derived from Equations (5) and (6) is sent to the Nout

linear output units resulting in the final output ŷ = WT
out(t)r(t).

Wout is initialized as a N
(ex)
rnn × Nout null matrix that is modified

according to the learning rule described below (see training

procedure). Nout is the number of readout units and N
(ex)
rnn is the

number of excitatory neurons in the SRNN.
Unless otherwise stated, the target functions y ∈ IRNout

employed to train the model were generated from white noise
with a normal distribution N(0, 30), then low-pass filtered with a
cut-off at 6 Hz. To assess network performance, we computed the
Pearson correlation between the output of the network (ŷ) and
the target function (y).

2.3. Learning Algorithm for the Readout
Unit
We used the recursive least square algorithm (Haykin, 2002) to
train the readout units to produce the target functions. TheWout

weight matrix was updated based on the following equations:

Wout(t) = Wout(t − 1t)− P(t)r(t)e(t)T , (7)

e(t) = ŷ− y(t). (8)

Where the error e(t) was determined by the difference between
the values of the readout units obtained with the multiplication

of the reservoir’s activity with the weights Wout , and the target
functions’ values y at time t. Each weight update was separated
by a time interval 1t of 2.5 ms for all simulations. P is a running
estimate of the inverse of the correlation matrix of the network
rates r (see Equation 5), modified according to Equation (9) and
initialized with Equation (10).

P(t) = P(t − 1t)− P(t − 1t)r(t)rT(t)P(t − 1t)

1+ rT(t)P(t − 1t)r(t)
, (9)

P(0) = I

α
. (10)

where I is the identity matrix and α is a learning rate constant.

2.4. Oscillatory Networks
2.4.1. External Drive
Each oscillatory network obey the same equations as the SRNNs.
However, the Iext term in Equation (1) is replaced by a summation
of the following step functions:

I(ex) =
{

0 if tstim > t, or t > tex
end

AWin otherwise
(11)

I(in) =
{

0 if tstim > t, or t > tin
end

AWin otherwise
(12)

where tstim = 500 ms, tex
end

denotes the end of the excitatory pulse

and tin
end

(different across oscillatory networks) is the end of the

inhibitory pulse, where tex
end

>tin
end

and Win ∈ IRNosc representing
the connections from the tonic inputs to the oscillatory networks,
where A= 20 pA.

The oscillatory networks each project to the SRNN with a
Nrnn × (Nosc × Ninp) sparse and static connectivity matrix M,
where each oscillatory network projects to the SRNN with a
density of pinp = 0.5. The non-zero connections are drawn from
a normal distributionN (0, σinp), where:

σinp =
γinp

√

pinpNrnnNosc
(13)

and γinp = 10 (a.u.) by default.
Where stated in section 3, the SRNN projects back to the

oscillatory networks with a (Nosc ×Ninp)×Nrnn sparse and static
connectivity matrix M′, where each SRNN unit projects to the
oscillatory networks with a density of pfb = 0.5 and γfb = 0.5.
The non-zero connections are drawn from a normal distribution
N (0, σfb), where:

σfb =
γfb

√

pfbNrnnNosc
. (14)
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2.4.2. Selection of Stable Networks
As we were interested in regimes where the networks would
produce reliable and repeatable oscillations to be used as an
input to our model, we considered networks with an inter-trial
correlation coefficient (10 trials) of their mean firing-rate greater
than 0.95 as stable. A wide range of parameter combinations
lead to reliable oscillations, but different random initializations
of networks with the same parameters can lead to drastically
different behavior, both in activity type (ansynchronous and
synchronous) and inter-trial reliability (Figure S4).

2.5. Jitter Accumulation in Input Phase
While a perfect sinusoidal input such as the one in Equation
(21) allows for well-controlled simulations, it is unrealistic from
a biological standpoint. To address this issue, we added jitter
to the input phase of each input unit. This was achieved by
converting the static input phase injected into unit k φk to a
randomwalk φk(t). First, we discretize time into non-overlapping
bins of length1t, such that tn = 1t∗n. From there, we iteratively
define φ(t) (index k is dropped to alleviate the notation) as:

φt+1t = φt + εt ⇐⇒ φn+1 = φn + εn+1 (15)

with

φ(0) = φ0 (16)

ε ∼ N (0, σ 2
φ1t) (17)

from initial value φ0, sampled from a uniform distribution as
specified previously. More intuitively, φ(t) can be constructed as:

φ(0) = φ0

φ1 = φ0 + ε1

φ2 = φ1 + ε2 = φ0 + ε1

...

φN = φ0 +
N
∑

n = 1

εn (18)

On average, the resulting deviation from the deterministic signal,
i.e., E [φN − φ0], is null. On the other hand, one can calculate
its variance:

var (φN − φ0) = var

(

φ0 +
N
∑

n = 1

εn − φ0

)

= var

(

N
∑

n = 1

εn

)

Since all εn are i.i.d:

N
∑

n = 1

var (εn) = Nvar (εn)

= Nσ 2
φ1t

⇔ var (φN − φ0) = tσ 2
φ (19)

For ease of comparison, we can express the equivalent standard
deviation in degrees (see Figure S8):

σdeg =
√

tσ 2
φ

180

π
(20)

2.6. Model for Place Cells Sequence
Formation
2.6.1. Network Architecture and Parameters
We employed a balanced recurrent network similar to the ones
used for all other simulations, with a few key differences. The
input consisted of Ninp = 20 oscillators with periods ranging
from 7.5 to 8.5 Hz that densely projected to the SRNN (p = 1)
and follow:

Iext(t) = M(sin(2π ft + φ)+ 1) (21)

C was set to 100 pF for all neurons and γrnn was set to
0.5. We removed the readout unit and connections, and we
selected 10 random excitatory cells (Nplace) as place cells. Those
cells had parameters identical to the other SRNN excitatory
units, except:

1. We set the resting potential of those cells to the mean of EL,
to avoid higher values that could lead to high spontaneous
activity (that in turn can lead to spurious learning).

2. A 600 ms sine wave at 10 Hz with an amplitude of 60 pA was
injected in each of the place cells at a given time representing
the animal going through its place field.

3. The connections between the input oscillators and the place
cells were modified following Equation (22).

We modeled the environmental input (10 Hz depolarization of
CA1 place cells) based on a representation of the animal’s location
that was fully dependent on time. In order to explain phase
precession, our model relied on an environmental input of a
slightly higher frequency than the background theta oscillation,
as suggested in Lengyel et al. (2003).

The learning rule seeks to optimize the connections between
the oscillating inputs and the place cells in order to make them
fire whenever the right phase configuration is reached (Miall,
1989; Matell and Meck, 2004).

We used a band-pass filter between 4 and 12 Hz to isolate the
theta rhythm in the SRNN. We then used a Hilbert transform to
obtain the instantaneous phase of the resulting signal.

2.6.2. Learning Algorithm
We developed a correlation-based learning rule (Kempter et al.,
1999) inspired by the results obtained by (Bittner et al., 2017):

Mi,k(t + 1t) = Mi,k + αIextk (t) (22)

where i ∈ {1, . . . ,Nplace}, k ∈ {1, . . . ,Ninp} and α = 0.25. With
this rule, the weight update is only applied when a burst occurs
in the place cells. A burst is defined as any spike triplets that
occur within 50 ms. In experiments, these post-synaptic bursts
were associated with Ca2+ plateaus in place cells (Bittner et al.,
2017) that lead to a large potentiation of synaptic strength with as
few as five pairings. The connections of M were initialized from
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FIGURE 1 | Oscillation driven SRNN to learn complex temporal tasks. (A) Schematic of the model’s architecture. This implementation has two input units that inject

sine-waves in a subset of the SRNN’s neurons. M denotes the connections from the input units to the SRNN neurons. W denotes the recurrent connectivity matrix of

the SRNN. Wout denotes the trainable connections from the excitatory SRNN neurons to the readout unit. (B) Example showing how two sine waves of different

frequencies can be combined to generate a two-dimensional function with a period longer than either sine wave. (C) Sample average current per neuron, raster and

average instantaneous firing rate over one trial, respectively. The external drive is only delivered to a subset of SRNN units (pinp = 0.3) for each input unit. (D) Output of

the readout unit during testing trials (learning rule turned off) interleaved during training. The nearly constant output without the input is due to random activity in the

SRNN (E) Pearson correlation between the output of the network and the target function as a function of the number of training epochs when driven with (blue) and

without (red) multi-periodic input. (F) Pearson correlation between the output and the target function as neurons of the SRNN are clamped.

a half-normal distribution f (0, σinp), where σinp = 0.1 and the
signal amplitudeAwas set to 1.M was bound between 0 and 5σinp
during training.

2.7. Audio Processing for Speech Learning
We used the numpy/python audio tools from Kastner (2019),
adapted by Sainburg (2018), to process the audio WAVE file.
We used the built-in functions to convert the audio file to a
mel-scaled spectrogram and to invert it back to a waveform.

3. RESULTS

3.1. A Cortical Network Driven by
Oscillations
We began with a basic implementation of our model where
artificial oscillations served as input to a SRNN (Figure 1A)—in
a later section, we will describe a more realistic version where
recurrent networks generate these oscillations intrinsically.
In this simplified model, two input nodes, but potentially
more (Figure S2), generate sinusoidal functions of different
frequencies. These input nodes project onto a SRNN that
is a conductance-based leaky integrate-and-fire (LIF) model
(Destexhe, 1997) with balanced excitation and inhibition (van

Vreeswijk and Sompolinsky, 1996). Every cell in the network
is either strictly excitatory or inhibitory, thus respecting
Dale’s principle.

The combination of Ninp input oscillators will generate a
sequence of uniqueNinp-dimensional vectors where the sequence
lasts as long as the least common multiple of the inputs’
individual periods (Vincent-Lamarre et al., 2016). For instance,
two sine waves with periods of 200 and 250 ms would create a
multi-periodic input with a period lasting 1,000 ms. This effect
can be viewed as a two-dimensional state-space where each axis
is an individual sine wave (Figure 1B). Using a phase reset of the
oscillations on every trial can then evoke a repeatable pattern
of activity in the downstream population of neurons. Thus,
multiplexed oscillations provide the network with inputs whose
timescale largely exceeds that of individual units.

When a SRNN (Nres = 2,000) was injected with oscillations,
excitatory and inhibitory populations modulated their activity
over time, while the average input currents to individual neurons
remained balanced (Figure 1C, top panel). To illustrate the
benefits of oscillatory inputs on a SRNN, we designed a simple
task where a network was trained to reproduce a target function
consisting of a time-varying signal generated from low-pass
filtered noise (Figure 1C, bottom panel). Simulations were split
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into a training and a testing phase. During the training phase,
the network was training when receiving a combination of two
oscillatory inputs at 4 and 5 Hz. Synaptic weights from the
SRNN to the read-out were adjusted using the recursive least-
squares learning algorithm (Haykin, 2002) adapted to spiking
units (Nicola and Clopath, 2017). During the testing phase,
synaptic weights were frozen and the network’s performance
was assessed by computing the Pearson correlation between
the target function and the network’s output. This correlation
increased to 0.9 within the first 10 training epochs and remained
stable thereafter (Figures 1D,E). By comparison, the output of
a similar network with no oscillatory inputs (i.e., there is no
external input and the SRNN is in a spontaneous chaotic regime)
remained uncorrelated to the target function. Thus, oscillatory
inputs create rich and reliable dynamics in the SRNN that enabled
the read-out to produce a target function that evolved over time
in a precise manner. The network displays some tolerance to
deviations of the input phase of the oscillations that accumulates
over time and Gaussian noise (Figures S1, S8).

Next, we investigated the resilience of the network to
structural perturbations where a number of individual neurons
from the SRNN were “clamped” (i.e., held at resting potential)
after training (Vincent-Lamarre et al., 2016). Removing neurons
can alter the trajectory of the SRNN upon the presentation of the
same stimulus, and it reduces the dimensionality of the readout

unit. We trained a network for 10 epochs, then froze the weights
and tested its performance on producing the target output. We
then gradually clamped an increasing proportion of neurons
from the SRNN. The network’s performance decreased gradually
as the percentage of clamped units increased (Figure 1F).
Remarkably, the network produced an output that correlated
strongly with the target function (correlation of 0.7) even when
10% of neurons were clamped. Further exploration of the model
shows a wide range of parameters that yield high performances
(Figure S2). Oscillatory inputs thus enabled SRNN to produce
precise and repeatable patterns of activity under a wide range
of modeling conditions. Next, we improved upon this simple
model by developing a more biologically-inspired network that
generated oscillations intrinsically.

3.2. Endogenously Generated Oscillatory
Activity
While our results thus far have shown the benefits of input
oscillations when training a SRNN model, we did not consider
their neural origins. To address this issue, we developed a model
that replaces this artificial input with activity generated by an
“oscillator” spiking network acting as a central pattern generator
(Marder and Calabrese, 1996).

To do so, we took advantage of computational results
showing that sparsely connected networks can transition from

FIGURE 2 | SRNN driven with intrinsically generated oscillations. (A) Top: Sample rasters from one network on five different trials. Bottom: Average and standard error

of the excitatory (red) and inhibitory (blue) conductance of a stable network on five different trials (see section 2). The network is asynchronous when the external drive

is off, and becomes periodic when turned on. (B) Architecture of the augmented model. As in Figure 1A, W and Wout denote the recurrent and readout connections,

respectively. M is the connection matrix from the input to the SRNN, except that the input units are now replaced by networks of neurons. M′ denotes the feedback

connections from the SRNN to the oscillatory network. Winp denotes the connections providing the tonic depolarization to the oscillatory networks. (C) Connectivity

matrix of the model. The external drive is provided solely to the oscillatory networks that project to the SRNN that in turn projects to the readout unit. (D) External

inputs provided to the oscillatory networks with varied inhibitory transients associated with each excitatory input. (E) Top: Sample activity of the oscillatory networks

(green) on two separate trials with different inputs, and the SRNN for one trial (input #1). Bottom: PSTH of the network’s neurons activity on five different trials with

input #1. (F) Post-training output of the network, where input #1 was paired with the target, but input #2 was not.
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an asynchronous to a periodic synchronous regime in response
to a step current (Brunel, 2000; Brunel and Hansel, 2006;
Thivierge et al., 2014), thus capturing in vivo activity (Buzsáki
and Draguhn, 2004) (see section 2; Figure 2A). The periodicity
of the synchronous events could therefore potentially be used to
biologically capture the effects of artificially generated sine waves.

In simulations, we found that this transition was robust to
both synaptic noise and neuronal clamping (Figure S3). Further,
the frequency of synchronized events could be modulated by
adjusting the strength of the step current injected in the network,
with stronger external inputs leading to a higher frequency of
events (Figure S3). Thus, oscillator networks provide a natural
neural substrate for input oscillations into a recurrent network.

From there, we formed a model where three oscillator
networks fed their activity to a SRNN (Figure 2B). These
oscillator networks had the same internal parameters except
for the inhibitory decay time constants of their recurrent
synapses (τin = 70, 100, and 130 ms for each network) thus
yielding different oscillatory frequencies (Figures S3, S4). In
order to transition from an asynchronous to a synchronous

state, the excitatory neurons of the oscillator networks received
a step current.

The full connectivity matrix of this large model is depicted
in Figure 2C. As shown, the oscillator networks send sparse
projections (with a probability of 0.3 between pairs of units)
to the SRNN units. Only the excitatory neurons of the SRNN
project to the readout units. There is weak feedback from
the SRNN to the oscillators—in supplementary simulations,
we found that strong feedback projections desynchronized
the oscillator networks (Figures S2, S5). The feedback
connections were included to simulate a case where the
oscillators networks would be embedded in the SRNN
(and therefore exhibit some degree of local connectivity),
instead of sending efferent connections from an upstream
brain region.

A sample of the full model’s activity is shown in Figure 2E.
Both the oscillator and the SRNN showed asynchronous activity
until a step current was injected into the excitatory units of
the oscillator networks. In response to this step current, both
oscillator and SRNN transitioned to a synchronous regime. The

FIGURE 3 | Parallel training of multiple tasks. (A) Schematic of the model’s architecture with an additional readout unit. An example of possible phase shifted inputs is

shown at the bottom. (B) Trajectory of the SRNN on the first three components of a PCA. Without an external input, the network is spontaneously active and

constrained in a subspace of the state-space (depicted by the circle). Upon injection of the input, the SRNN’s activity is kicked into the trajectory related to the input.

(C) Output of the two readout units after the first and tenth training epochs. The colored line of epoch #10 shows the average of 5 trials (black lines). (D) Heat map

showing the performance of the model on tasks with different lengths and frequencies.
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model reverted back to an asynchronous regime once the step
current was turned off.

To illustrate the behavior of this model, we devised a “cued”
task similar to the one described above, where the goal was to
reproduce a random time-varying signal. When learning this
signal, however, the oscillator networks received a cue (“Input
1”) consisting of a combination of excitatory step current and
transient inhibitory input (Figure 2D) that alters the relative
phase of the input oscillators, but not their frequency. Following
20 epochs of training, we switched to a testing phase and showed
that the model closely matched the target signal (Figure 2F).
Crucially, this behavior of the model was specific to the cue
provided during training: when a different, novel cue (shaped by
inhibitory transients) was presented to the network (“Input 2”), a
different output was produced (Figure 2F).

In sum, the model was able to learn a complex time-
varying signal by harnessing internally-generated oscillations
that controlled the ongoing activity of a SRNN. In the following
section, we aimed to further explore the computational capacity
of the model by training a SRNN on multiple tasks in parallel.

3.3. An Artificial Network That Learns to
Multitask
To explore the ability of the model to learn two tasks
concurrently, we reverted to our initial model with artificial
oscillations, allowing for a more principled control of the input
injected to the SRNN. The oscillatory input consisted of three
sine waves of different frequencies (Figure 3A) (more inputs
units lead to better performances, Figure S2). We trained this
model on two different motor control tasks that required the
network to combine the output of two readout units in order to
draw either a circle or a star in two dimensions. Here, each of
the outputs corresponded to x- and y-coordinates, respectively.
The phase of the oscillations (“Input 1” vs. “Input 2”) were
individually paired with only one of the two tasks in alternation
(Figure 3A).

We employed a principal component analysis (PCA) to
visualize the activity of the SRNN before and during training
(Figure 3B). Before injecting the oscillatory inputs, the network
generated spontaneous activity that occupied a limited portion of
the state space (Figure 3B, circle). During training, the oscillatory
inputs were turned on, resulting in different trajectories
depending on the relative phase of the oscillations. The network
thus displayed a distinct pattern of activity for each of the
two tasks.

Viewed in two dimensions, the outputs of the network rapidly
converged to a circle and a star that corresponded to each of the
two target shapes when given each respective input separately
(Figure 3C). These shapes were specific to the particular phase
of the oscillatory input—in a condition where we presented a
randomly-chosen phase configuration to the network, the output
did not match either of the trained patterns (Figure 3C).

Finally, we tested the ability of the model to learn a number of
target signals varying in duration and frequency. We generated
a number of target functions consisting of filtered noise (as

described previously), and varied their duration as well as the cut-
off frequencies of band-pass filtering. The network performed
optimally for tasks with relatively low frequency (<30 Hz) and
shorter duration (<5 s), and had a decent performance for even
longer targets (e.g., correlation of r = 0.5 for a time of 7 s and a
frequency below 30 Hz; Figure 3D).

In sum, the model was able to learn multiple tasks in parallel
based on the phase configuration of the oscillatory inputs to the
SRNN units. The range of target signals that could be learned was
dependent upon their duration and frequency. The next section
will investigate another aptitude of the network, where a target
signal can be rescaled in time without further training.

3.4. Temporal Rescaling of Neuronal
Activity
A key aspect of many behavioral tasks based on temporal
sequences is that once learned they can be performed faster or
slower without additional training. For example, when a new
word is learned, it can be spoken faster or slower without having
to learn the different speeds separately.

We propose a straightforward mechanism to rescale a learned
temporal sequence in themodel. Because the activity of themodel
strongly depends upon the structure of its oscillatory inputs, we
conjectured that themodel may generate a slower or faster output
by multiplying the period of the oscillatory inputs by a common
factor. Biologically, such a factor might arise from afferent neural
structures that modulate oscillatory activity (Brunel, 2000). Due
to the highly non-linear properties of the network, it is not trivial
that rescaling the inputs would expand or compress its activity
in a way that preserves key features of the output (Goudar and
Buonomano, 2018).

To test the above mechanism, we trained a SRNN receiving
sine wave inputs to produce a temporal sequence of low-pass
filtered random activity. After the pair of input-target was trained
for 10 epochs, we tested the network by injecting it with sine
waves that were either compressed or expanded by a fixed
factor relative to the original inputs (Figure 4A). To evaluate
the network’s ability to faithfully replay the learned sequence,
we computed the Pearson correlation between the output of the
network (Figure 4B) and a compressed or expanded version of
the target signal.

Performance degraded gradually with inputs that were
expanded or contracted in time relative to the target signal (i.e.,
as the rescaling factor moved further away from 1) (Figure 4C).
Further, performance degraded more slowly beyond a rescaling
factor of 1.5, particularly when input noise was absent, suggesting
some capacity of the network to expand the target signal in
time (Figure S7). This result offered a qualitative match to
experimental findings (Hardy et al., 2018) and the performance
of the network was tolerant to small phase deviations resulting
from the addition of random jitter in the phase of all the input
oscillations (Figure S8).

In sum, rescaling the speed of the input oscillations by
a common factor lead to a corresponding rescaling of the
learned task, with compressed neural activity resulting in more
error than expanded activity. The next section examines some
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FIGURE 4 | Temporal rescaling of the network’s activity. (A) Activity of two input units with different rescaling factors. Each phase is represented in a different color.

The two dots shown for the different velocities are spaced at a constant proportion of the whole duration, and show that the phase alignment of the two oscillators is

preserved across different rescaling factors. (B) Output of the network for different rescaling factors. The target is represented by the gray dashed line. (C) Pearson

correlation between the output and the target function for different rescaling factors and different input noise variance (σ ). (D) Spiking activity of the RNN at 0.75X, 1X,

2X, and 3X sorted based on the peak of the activity at the original scaling (1X). (E) Average excitatory (red), inhibitory (blue), and external input (green) received by each

cell aligned on their peak firing rate (at t = 0 ms). The combined inputs (black, external + excitation - inhibition) is represented at the bottom.

of the underlying features of activity in a SRNN driven by
oscillatory inputs.

3.5. Temporal Selectivity of Artificial
Neurons
A hallmark of temporal processing in brain circuits is that some
subpopulations of neurons increase their firing rate at specific
times during the execution of a timed task (Harvey et al., 2012;
Mello et al., 2015; Bakhurin et al., 2017). To see whether this
feature was present in the model, we injected similar oscillatory
inputs as above (10 input units between 5 and 10 Hz for 1 s)
for 30 trials. To match experimental analyses, we convoluted
the firing rate of each neuron from the SRNN with a Gaussian
kernel (s.d. = 20 ms), averaged their activity over all trials,
and converted the resulting values to a z-score. To facilitate
visualization, we then sorted these z-scores by the timing of their
peak activity. We retained only the neurons that were active
during the simulations (71%). Results showed a clear temporal
selectivity whereby individual neurons increased their firing rate
at a preferred time relative to the onset of each trial (Figure 4D).

These “selectivity peaks” in neural activity were maintained
in the same order when we expanded or contracted the
input oscillations by a fixed factor (Figure 4A), and sorted
neurons based on the original input oscillations (Figure 4D),

thus capturing recent experimental results (Mello et al., 2015).
To shed light on the ability of simulated neurons to exhibit
temporal selectivity, we examined the timing of excitatory and
inhibitory currents averaged across neurons of the SRNN. We
then aligned these currents to the timing of selectivity peaks
and found elevated activity around the time of trial-averaged
peaks (Figure 4E). Therefore, both the input E/I currents and the
external inputs drive the activity of the neurons near their peak
response, showing that both intrinsic and external sources drives
the temporal selectivity of individual neurons.

In sum, neurons from the SRNN show sequential patterns
of activity by leveraging a combination of external drive and
recurrent connections within the network. Next, we examined
the ability of the model to learn a naturalistic task of
speech production.

3.6. Learning Natural Speech, Fast, and
Slow
In a series of simulations, we turned to a biologically and
behaviorally relevant task of natural speech learning. This task
is of particular relevance to temporal sequence learning given the
precise yet flexible nature of speech production: once we learn to
pronounce a word, it is straightforward to alter the speed at which
this word is spokenwithout the need for further training.We thus
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FIGURE 5 | Speech learning and production with temporal rescaling. (A) Workflow of the transformation and learning of the target audio sequence. (B) The input

frequencies are either sped-up or slowed-down in order to induce temporal rescaling of the speed of execution of the task. (C) The rescaled output spectrograms are

scaled back to the original speed in order to compare them to the target spectrogram. (D) Average correlation between the output and target of all channels of the

spectrograms for the different rescaling factors.

designed a task where an artificial neural network must learn to
utter spoken words in the English language and pronounce them
slower or faster given the appropriate input, without retraining.

To train a network on this task, we began by extracting the
waveform from an audio recording of the word “reservoir” and
converting this waveform to a spectrogram (Figure 5A). We
then employed a compression algorithm to bin the full range of
frequencies into 64 channels spanning a range from 300 Hz to 8
kHz (see section 2). Each of these channels were mapped onto
an individual readout unit of the model. Synaptic weights of the
SRNN to the readout were trained to reproduce the amplitude

of the 64 channels over time. The output spectrogram obtained
from the readout units was converted to an audio waveform and
compared to the target waveform (seeMovie S1).

Following training, the network was able to produce a
waveform that closely matched the target word (Figure 5A). To
examine the ability of the network to utter the same word faster
or slower, we employed the rescaling approach described earlier,
where we multiplied the input oscillations by a constant factor
(Figure 4A).

Our model was able to produce both faster and slower speech
than what it had learned (Figure 5B). Scaling the outputs back to
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the original speed showed that the features of the spectrogram
were well replicated (Figure 5C). The correlation between the
rescaled outputs and target signal decreased as a function of the
rescaling factor (Figure 5D), in a manner similar to the above
results on synthetic signals (Figure 4C).

Results thus suggest that multiplexing oscillatory inputs
enabled a SRNN to acquire and rescale temporal sequences
obtained from natural speech. In the final section below, we
employed our model to capture hippocampal activity during a
well-studied task of spatial navigation.

3.7. Temporal Sequence Learning During
Spatial Navigation
Thus far, we have modeled tasks where units downstream of the
SRNN are learning continuous signals in time. In this section, we
turned to a task of spatial navigation that required the model to
learn a discrete sequence of neural activity.

A wealth of experiments shows that subpopulations of
neurons become selectively active for specific task-related time
intervals. A prime example is seen in hippocampal theta
sequences (Foster and Wilson, 2007) that are observed during

FIGURE 6 | Formation of place cell sequences and replay. (A) Subpopulations of CA3 cells oscillating in the theta range and projecting to CA1. CA1 place cells are

driven by a slightly faster oscillating input upon entering their place field. (B) RC implementation of the phenomenological model. The input layer is composed of

oscillatory units (CA3) and CA1 is modeled by a SRNN where 10 excitatory units (purple) are randomly selected as place cells. The connections from the input to the

place cells are subject to training. (C) Top: Each of the 10 SRNN place cells were driven by a depolarizing oscillating input in a temporal sequence analogous to a

mouse moving along a linear track. Bottom: Resulting theta frequency of the combined oscillations (red). Each number shows a place cell activated at a given time

along the ongoing theta input. The multi-periodic input from CA3 guarantees that each place cell is activated with a unique combination of the input, following the

sequence in which the cell is active. (D) Multiplexing CA3 inputs generates a visible theta oscillation in the CA1 SRNN. (E) Spike times of the ten place cells in relation

to the phase of the population theta activity. Each dot represents a spike at a certain time/position. Each cell shows a shift toward earlier theta phase as the animal

moves along its place fields. (F) Activity of cell #10 upon entering its place field. Top: theta band-passed activity of the SRNN (red) and place field related input (dashed

black). Bottom: phase of the theta oscillation (gray) and spike times. (G) Top shows a heatmap of the place cell activity and bottom shows the spike raster during each

phase of training. Before training: All place cells are silent. During training: place cells are depolarized upon entering their place field. After training: a similar sequence

is evoked without the external stimulation used during training. (H) Rescaling the input (factor of X0.15) leads to a high-frequency input reminiscent of ripples. A

compressed version of the sequence learned in (G) is evoked, and a reversed sequence is evoked when a reverse “ripple” is injected in the SRNN.
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spatial navigation in rodents, where individual place cells
(O’Keefe, 1976) increase their firing rate at a given location in
space (place fields). During spatial navigation, the hippocampus
shows oscillatory activity in the theta range (4–12 Hz), likely
originating from both themedial septum (Dragoi et al., 1999) and
within hippocampus (Traub et al., 1989; Goutagny et al., 2009).

In a series of simulations, we examined how neurons in a
SRNNmay benefit from theta oscillations to bind and replay such
discrete place cells sequences. We designed a SRNN (associated
with area CA1, Foster and Wilson, 2007) that received inputs
from multiple input oscillators (CA3, Montgomery et al., 2009)
(Figures 6A,B). We randomly selected 10 excitatory units within
the SRNN and labeled them as “place cells.” To simulate the
response of place cells to an environmental input indicating the
spatial location of the animal (Frank et al., 2000), we depolarized
these cells by an oscillating input at 10 Hz for 600 ms with a
specific onset that differed across neurons in order to capture
their respective place fields (assuming a fixed spatiotemporal
relation of 100 ms = 5 cm on a linear track). In this way, the
sequential activation of place cells from the SRNN mimicked the
response of CA1 neurons to an animal walking along a linear
track (Figure 6C). Although we modeled the task as a sequence
of multiple place cells, it could also be performed with individual
place cells.

To capture the effect of theta oscillations on CA1 activity,
all neurons from the SRNN were driven by a combination of
multiple oscillating inputs where the frequency of each input
was drawn from a uniform distribution in the range of 7–
9 Hz. Connections from the input units and the place cells
within the SRNN were modified by a synaptic plasticity rule
(see section 2).

As expected from the input oscillators, mean population
activity of the SRNN exhibited prominent theta activity
(Figure 6D). To assess the baseline performance of the model, we
ran an initial simulation with oscillatory inputs but no synaptic
plasticity or place fields (i.e., no environmental inputs to the place
cells). All place cells of the model remained silent (Figure 6G).
Next, we ran a training phase simulating a single lap of the virtual
track lasting 5 s, where place cells received oscillatory inputs
(CA3) as well as a depolarizing oscillation (10 Hz) whenever
the cell entered its place field. During this lap, individual place
cells entered their respective field only once. We assessed the
performance of the model during a testing phase where both
synaptic plasticity and depolarizing oscillations were turned off.
During the testing phase, place cells yielded a clear sequence
of activation that matched the firing pattern generated during
training (Figure 6G). Thus, place cell activity was linked to the
phase of the oscillatory inputs after a single lap of exploration.

Going further, we explored two key aspects of place cell
activity in the SRNN that are reported in hippocampus, namely
phase precession and rapid replay. During phase precession, the
phase of firing of place cells exhibits a lag that increases with
every consecutive cycle of the theta oscillation (O’Keefe and
Recce, 1993; Foster and Wilson, 2007). We examined this effect
in the model by extracting the instantaneous phase of firing
relative to the global firing rate filtered between 4 and 12 Hz. The
activity of individual place cells from the SRNN relative to theta

activity exhibited an increasing phase lag characteristic of phase
precession (Figures 6E,F).

A second feature of hippocampal activity is the rapid replay of
place cells during rest and sleep in a sequence that mirrors their
order of activation during navigation (Lee and Wilson, 2002).
This replay can arise in either a forward or reverse order from
the original sequence of activation (Foster andWilson, 2006).We
compressed (factor of 0.15) the CA3 theta oscillations injected
in the SRNN during training, resulting in rapid (50–55 Hz)
bursts of activity (Figure 6H). These fast oscillations mimicked
the sharp-wave ripples that accompany hippocampal replay (Lee
and Wilson, 2002). In response to these ripples, place cells of the
SRNN exhibited a pattern of response that conserved the order
of activation observed during training (Figure 6H). Further, a
reverse replay was obtained by inverting the ripples (that is,
reversing the order of the compressed sequence) presented to the
SRNN (Figure 6H).

In sum, oscillatory inputs allowed individual neurons of the
model to respond selectively to external inputs in a way that
captured the sequential activation and replay of hippocampal
place cells during a task of spatial navigation.

4. DISCUSSION

4.1. Summary of Results
Taken together, our results suggest that large recurrent networks
can benefit from autonomously generated oscillatory inputs in
order to learn a wide variety of artificial and naturalistic signals,
and exhibit features of neural activity that closely resemble
neurophysiological experiments.

One series of simulations trained the model to replicate
simple shapes in 2D coordinates. Based upon the structure of
its oscillatory inputs, the model flexibly switched between two
shapes, thus showing a simple yet clear example of multitasking
with a recurrent network.

When we modulated the period of input oscillations delivered
to neurons of the SRNN, the model was able to produce an
output that was faithful to the target signal, but sped up or
slowed down by a constant factor (Mello et al., 2015; Hardy
et al., 2018). Oscillations served to train a recurrent network that
reproduced natural speech and generated both slower and faster
utterances of natural words with no additional training. Using
further refinements of the model, we employed this principle of
oscillation-driven network to capture the fast replay of place cells
during a task of spatial navigation.

Below we discuss the biological implications of our model as
well as its applications and limitations.

4.2. Biological Relevance and Predictions
of the Model
Despite some fundamental limitations common to most
computational models of brain activity, our approach
was designed with several key features of living neuronal
networks, including spiking neurons, Dale’s principle, balanced
excitation/inhibition, a heterogeneity of neuronal and synaptic
parameters, propagation delays, and conductance-based
synapses (van Vreeswijk and Sompolinsky, 1996; Sussillo and
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Abbott, 2009; Ingrosso and Abbott, 2019). We used a learning
algorithm that isn’t biologically plausible to train the readout
unit (recursive least-square). However, given that the SRNN’s
dynamics is independent of the readout’s output, any other
learning algorithm would be compatible with our model. We
used a non-biological training algorithm (RLS) in this work,
because we are interested in the trained representation of the
network and not the learning itself.

Further, and most central to this work, our model included
neural oscillations along a range of frequencies that closely
matched those reported in electrophysiological studies (Buzsáki
and Draguhn, 2004; Yuste et al., 2005). However, the optimal
range of frequencies depends on the electrophysiological and
synaptic time constants of the network (Nicola and Clopath,
2017). Although there is an abundance of potential roles for
neural oscillations in neuronal processing, much of their function
remain unknown (Wang, 2010). Here, we proposed that multiple
heterogeneous oscillations may be combined to generate an
input whose duration greatly exceeds the time-course of any
individual oscillation. In turn, this multiplexed input allows
a large recurrent network operating in the chaotic regime to
generate repeatable and stable patterns of activity that can be read
out by downstream units.

It is well-established that central pattern generators in
lower brain regions such as the brain stem and the spinal
cord are heavily involved in the generation of rhythmic
movements that match the period of simpler motor actions
(e.g., walking or swimming; Marder and Bucher, 2001). From
an evolutionary perspective, it is compelling that higher brain
centers would recycle the same mechanisms (Yuste et al., 2005)
to generate more complex and non-repetitive actions (Rokni
and Sompolinsky, 2011; Churchland et al., 2012). In this vein,
Churchland et al. (2012) showed that both periodic and quasi-
periodic activity underlie a non-periodic motor task of reaching.
Our model provides a framework to explain how such activity
can be exploited by living neuronal networks to produce rich
dynamics whose goal is to execute autonomous aperiodic tasks.

While our model shows that oscillatory networks can generate
input oscillations that control the activity of a SRNN (Figure 2),
the biological identity of these oscillatory networks is largely
circuit-dependent and may originate from either intrinsic or
extrinsic sources. In the hippocampus, computational (Traub
et al., 1989) and experimental (Goutagny et al., 2009) findings
suggest an intrinsic source to theta oscillations. Specifically,
studies raise the possible role of CA3 in forming a multi-periodic
drive consisting of several interdependent theta generators that
activate during spatial navigation (Montgomery et al., 2009).
However the exact source of this periodic drive is still debated,
where the medial septum and the entorhinal cortex could play a
significant role in the theta activity recorded in the hippocampus
(Buzsáki, 2002). Additionally, place cells are also found in other
subfields of the hippocampus such as CA3 (Lee et al., 2004).
Therefore, alternative architectures involving those hippocampal
structures could be used to implement our oscillation based
model of spatial navigation.

Similarly, the neural origin of the tonic inputs controlling the
activity of the oscillatory networks is not explicitly accounted

for in our simulations. However, it is well-established that
populations of neurons can exhibit bistable activity with UP-
states lasting for several seconds (Wang, 2016) that could provide
the necessary input to drive the transition from asynchronous to
synchronous activity in oscillatory networks.

Going beyond an in silico replication of neurophysiological
findings, our model makes two empirically testable predictions.
If one was to experimentally isolate the activity of the input
oscillators, one could show that: (i) a key neural signature of
a recurrent circuit driven by multi-periodic oscillations is the
presence of inter-trial correlations between the phase of these
oscillations; and (ii) the period of the input oscillators should
appear faster or slower to match the rescaling factor of the
network. This correspondence between the input oscillations and
temporal rescaling is a generic mechanism behind the model’s
ability to perform a wide variety of tasks, from spatial navigation
to speech production.

4.3. Related Models
Our approach was inspired by predecessors in computational
neuroscience. Multiplexing multiple oscillations as a way to
generate long sequences of non-repeating inputs was first
introduced by Miall (1989), with a model of interval timing
relying on the coincident activation of multiple oscillators
of different frequencies. This idea served as a basis for the
striatal beat frequency model (Matell and Meck, 2004), where
multiple cortical regions are hypothesized to project to the
striatum which acts as a coincidence detector that encodes
timing intervals. A similar mechanism was also suggested for
the representation of space by grid cells in rodents (Fiete
et al., 2008). Grid cells have periodic activation curves spanning
different spatial periods (Moser et al., 2008), and their activation
may generate a combinatorial code employed by downstream
regions to precisely encode the location of the animal in space
(Fiete et al., 2008).

Other studies have suggested that phase precession during
spatial navigation could originate from a dual oscillator process
(O’Keefe and Recce, 1993; Burgess et al., 2007). Along this
line, a recent model of the hippocampus uses the interference
between two oscillators to model the neural dynamics related
to spatial navigation (Nicola and Clopath, 2019). Although this
model shares similarities with ours, a fundamental difference
is that our model uses the phase of combined oscillators to
create a unique input at every time-step of a task, whereas
their model relies on the beat of the combined frequencies.
Additionally, in our model, increasing the frequency of input
oscillations by a common factor leads to compressed sequences
of activity. By comparison, in the model of Nicola and Clopath
(2019), sequences are compressed by removing an extrinsic input
oscillator. More experimental data will be needed to support
either model.

4.4. Limitations and Future Directions
In our model, periodic activity was readily observable in the
SRNN dynamics due to the input drive (e.g., Figure 1C or
Figure 6D). However, the architecture of our model represents a
simplification of biological networks where several intermediate
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stages of information processing occur between sensory input
and behavioral output. Oscillatory activity resulting from a
multi-periodic drive might occur in one, but not necessarily
all stages of processing. Further work could examine this issue
by stacking SRNN connected in a feed-forward manner; such
a hierarchical organization may have important computational
benefits (Gallicchio et al., 2017).

In the spatial navigation task, we ensured that the location
of the animal was perfectly correlated with the time spent in
the place field of each cell. This is, of course, an idealized
scenario that does not account for free exploration and
variable speed of navigation along a track. These factors would
decorrelate the spatial location of the animal and the time
elapsed in the place field. Hence, further work would benefit
from a more ecologically-relevant version of the navigation
task. This new version of the task might aim to capture
how the time spent in a given place field impacts the link
between the activity of place cells and theta oscillations
(Schmidt et al., 2009).

Finally, our task of speech production was restricted to
learning a spectrogram of the target signal. This simplified
task did not account for the neural control of articulatory
speech kinetics, likely involving the ventral sensory-motor cortex
(Conant et al., 2018; Anumanchipalli et al., 2019).

4.4.1. Applications
Our modeling framework is poised to address a broad
spectrum of applications in machine learning of natural and
artificial signals. With recent advances in reservoir computing
(Salehinejad et al., 2017) and its physical implementations
(Tanaka et al., 2018), our approach offers an alternative to using
external arbitrary time-varying signals to control the dynamics
of a recurrent network. Our model may also be extended
to neuromorphic hardware, where it may benefit chaotic
networks employed in robotic motor control (Folgheraiter et al.,
2019). Finally, our model is, to our knowledge, the first to
produce temporal rescaling of natural speech, with implications
extending to conversational agents, brain-computer interfaces,
and speech synthesis.

Overall, our model offers a compelling theory for the
role of neural oscillations in temporal processing. Support
from additional experimental evidence could impact our
understanding of how brain circuits generate long sequences of
activity that shape both cognitive processing and behavior.
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