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Review

Introduction

Stepwise fibrillation of proteins to amyloid structures and 
amyloid-like protein aggregates occurs naturally or is disease 
associated. The hallmark of amyloid aggregation is conversion 
of otherwise soluble proteins into β-sheet conformations 
that locate extracellularly, in the cytoplasm or in the cell 
nucleus.1 Formation of amyloid-like protein aggregates unifies 
superficially unrelated human conditions such as Alzheimer, 
Parkinson, or Huntington disease that are therefore consolidated 
as neurodegenerative deposition diseases.2 In brains of patients 
with Alzheimer disease amyloid β peptides (Aβs) deposit in 
extracellular plaques or fibrils, whereas tau protein is enriched 
in intraneuronal neurofibrillary tangles.3 Protein deposition in 
Parkinson disease occurs as characteristic Lewy body inclusions 
in the cytoplasm of residual substantia nigra and dopaminergic 
striatal neurons.4,5 Huntington disease constitutes one out of 

nine neurodegenerative disorders that are characterized by 
aberrant deposition of signature proteins containing unstable 
homopolymeric repeats of the amino acid glutamine (polyQ). 
Neuronal cells of patients with polyQ-repeat-length diseases 
are characterized by occurrence of microscopically discernible 
nuclear inclusions (NIs) that contain proteins with expanded 
polyQ stretches, components of the ubiquitin-proteasome system 
(UPS), and other cellular proteins.6,7 Aggregates can likewise be 
observed in other neural compartments such as the cytoplasm, 
dendrites, and axon terminals.8 A common feature of such 
inclusions is the recruitment of mutated, misfolded, and waste 
proteins that leave solution because of the tendency of normally 
buried hydrophobic domains to associate with one another.9 The 
presence of proteasome-dependent proteolytic activity in NIs 
indicates that misfolded or excess polypeptides form intracellular 
aggregates before their degradation.10 Yet, the role of nuclear 
protein aggregates in disease pathology is still unknown, and 
their assumed function ranges from being cytotoxic to benign or 
even neuroprotective.11-13 This review compiles current knowledge 
about nuclear protein aggregation, e.g., amyloid deposition with 
special emphasis on their protein composition mandating the 
idea that this composition reflects perturbed protein interaction 
networks and holds the key for a better understanding of 
underlying pathologic as well as physiologic events.14-16

Amyloid: Structure and Detection

The term amyloid was first used in the 19th century by 
German pathologist Rudolph Virchow to describe starch-like 
deposits within mammalian cells based on similar tinctorial 
properties with polysaccharides from plants. However, Virchow 
in fact observed waxy protein structures and the term amyloid 
currently designates proteinaceous deposits that are defined 
by one or more histochemical and biophysical features such as  
(1) an ultrastructure of long, unbranched fibrils of approximately 
10 nm in width, (2) a green birefringence under cross polarized 
light after staining with the azo dye Congo red, (3) a shift of 
fluorescence wavelength after staining with the dye Thioflavin 
T, (4) a peak at around 1620 by Fourier transform infrared 
spectroscopy indicating the presence of β-sheet, (5) a crossed 
β-pleated sheet structure, and (6) binding to amyloid-specific 
antibodies, peptides or compounds.17-20
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In aging societies increasing cases of neurodegenerative 
protein deposit diseases urge for the identification of the 
underlying mechanisms. Expectations are that in 2050 the 
percentage of population over age 60 is 42% in Japan, 34% in 
China, and 27% in the US. The cell nucleus is a major target of 
amyloid-like protein fibrillation in a variety of disorders that 
are characterized by widespread aggregation of proteins with 
instable homopolymeric amino acid repeats, ubiquitin, and 
other proteinaceous components. Additionally, accumulation 
of insoluble, SDS-resistant proteins has been identified as an 
intrinsic property of organismal aging. This review collects 
current knowledge about the composition and function 
of insoluble, nuclear protein inclusions from the protein 
homeostasis perspective. It discusses the occurrence and role 
of nuclear amyloid in the diseased as well as the healthy cell. 
Features of nuclear inclusions such as protein composition and 
locally active protein degradation may predict neural fitness 
and survival in a variety of health or disease settings.
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In vitro characterization of amyloid fiber structure and the 
actual processes of amyloid protein fibrillation has largely 
progressed by usage of high-resolution structural studies, i.e., 
solid-state nuclear magnetic resonance (NMR). The process 
constitutes a nucleated growth mechanism that initiates stepwise 
fibrillation of otherwise soluble proteins with a lag phase of 
“nuclei” formation and proceeds by further association of 
monomers or oligomers. In the in vitro scenario fibril growth 
either occurs by transition of oligomeric species to spherical, 
chain-like fibrils or by sequential fibrillation of soluble oligomers, 
unstructured aggregates, and short curly protofibrils that finally 
form mature amyloid fibrils.1 It is important to note that structural 
intermediates of this fibrillation process may yet have varying 
amyloid features such as β-structure, Thioflavin T-binding, or 
Congo red-binding.

Formation of intracellular amyloid deposits, e.g., in vivo 
protein fibrillation, may be initiated by local unfolding of native 
proteins through physiological fluctuations and subsequent 
fibrillation.21 Examples are changes of thermal conditions as 
observed in heat shock responses or experimentally induced 
fluctuations. Consistently, several reports describe controlled 
nucleation of protein fibrillation by heat shock, metals, or 
nanoparticles in vitro, in mammalian cell culture as well as in 
whole organisms.10,22-25 The analysis of intracellular amyloid 
formation has advanced in recent years due to the diagnostic 
value of amyloid fibril localization within cells and tissues.26 In 
line with this conformation-specific antibodies, peptides and 
luminescent compounds have proven useful to monitor amyloid 
distribution in fixed and living specimens; however, methods for 
the discrimination of specific fibrillation intermediates in vivo 
are still in their infancy.17,27,28

Nuclear Amyloid Depositions in Disease

Amyloid-like NIs in neurodegenerative aggregation diseases 
are predominately characterized by histological methods and 
biochemical purification of SDS-insoluble protein fractions. 
At least nine CAG-repeat diseases including Huntington 
disease (HD), the spinocerebellar ataxias SCA1, SCA2, SCA3, 
SCA6, SCA7, SCA17, and dentatorubral pallidoluysian atrophy 
(DRPLA), as well as spinal and bulbar muscular atrophy (SBMA) 
show NIs in specific sections of postmortem brains.29,30

In postmortem brains of patients with HD it was discovered 
that mutated huntingtin forms mostly spherical or ovoid NIs in 
cortical neurons (Table 1; Fig. 1).31 These NIs were positioned 
throughout the nucleoplasm with a subfraction located in 
proximity to nucleoli. In a third of the observed neurons 
NIs covered nearly 50% of the cross-sectional nuclear area. 
Additionally to huntingtin NIs frequently contained ubiquitin. 
Electron microscopy revealed that NIs in cortical HD neurons 
are composed of granules, filaments, and randomly or parallel 
oriented fibrils.31 Huntingtin and ubiquitin also occupy spherical 
NIs in the striatum of mice transgenic for the huntingtin 
mutation.32 Interestingly, striatal neurons of symptomatic 
transgenic mice showed significant alterations of the nuclear 

envelope structure, i.e., numerous indentations of the nuclear 
membrane and aberrant clustering of nuclear pore complexes. In 
contrast, cross-sectional size of nuclei, nucleoli, and Cajal bodies 
were described as unchanged. Notably, nuclear huntingtin occurs 
as an early pathological hallmark 1–2 wk before any murine 
phenotypes such as brain or body weight loss and approximately 
5 wk before the first disease-specific symptoms.32

In SCA1 NIs are observable in neurons of the cerebral cortex, 
striatum, substantia nigra, and pontine nuclei.33 They have a 
diameter of 1 to 3 μm and contain ataxin-1 and ubiquitin as 
well as unspecified proteins with polyQ repeats (Table  1;  
Figs. 1 and 2). By transmission electron microscopy inclusions 
appear as round, spherical bodies in the nucleoplasm consisting 
of mixtures of granular and filamentous structures that are 
either organized in random or parallel arrays.30 Postmortem 
brains of SCA3 patients display a similar morphology of NIs 
in the spinocerebellum, cerebellar dentate nucleus, cerebral 
cortex, and striatum. They are immunoreactive with ataxin-3, 
ubiquitin, polyQ repeat domains, and a variety of transcription 
factors (Table 1; Fig.  1).30 Additionally, NIs of SCA3 patients 
and respective mouse models have been shown to associate with 
PML and Cajal nuclear bodies in nucleoplasmic microdomains.34 
The incidence of NIs in the polyQ repeat diseases SCA2 and 
DRPLA is low with 1–3% of affected neurons; however these 
NIs are widely distributed within different brain regions. In 
SBMA, also termed Kennedy disease, the androgen receptor 
(AR) is mutated concerning expansions of its instable polyQ 
repeats and accumulates in NIs that appear in motor neurons 
of the brainstem, the spinal cord, but also in skin, testis, and 
additional visceral tissues (Table 1; Fig. 1).35,36

It has been acknowledged very early that the distribution 
of NIs within specific brain regions is not exactly correlated 
with degeneration of the affected neurons. While the 
striatum represents a brain region that undergoes extensive 
neurodegeneration in HD, only 1–4% of striatal neurons 
contain nuclear aggregates.37 Long-term observation of live 
neurons by automated microscopy revealed a higher viability 
of neurons with mutated huntingtin accumulating in NIs 
compared with neurons with diffuse nuclear localization of 
huntingtin.11 These observations suggested a protective role of 
nuclear protein aggregation, i.e., a coping response of the nucleus 
to excess fibrillation of misfolded proteins. Consistent with 
this and as already mentioned above, ubiquitin, a main player 
of proteasome-dependent protein degradation, is identified by 
histopathology as a frequent component of NIs. Likewise are 
heat shock proteins, 20S proteasomes and the 19S proteasome 
regulator units (Table 1).38-41 With all the players on the field and 
the demonstration of proteasome-dependent proteolytic activity 
in NIs a picture is emerging where at least a subpopulation of 
intranuclear protein aggregates operate as proteolytic centers.10 
Here, formation of NIs may serve recruitment of excess, mutated, 
or misfolded nuclear proteins to their degradation. Consistent 
with this idea it was shown that neurons have different capacities 
to clear mutated huntingtin, and that those with greater clearance 
capacities live longer.42 In this respect NIs may have a protective 
function by sequestering and clearing excess or misfolded nuclear 
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proteins from the nucleoplasm and thus maintaining protein 
homeostasis within the cell nucleus.

While it seems appropriate to boost this cellular defense 
mechanism, e.g., nuclear proteolysis, with therapeutic 
interventions it must also be considered that protein components 
of NIs are part of a nuclear proteome network and respective 
maintenance of cellular functions such as gene expression or 
progression of the cell cycle. Intracellular inclusions that were 
(1) biochemically isolated from cells transfected with expanded 
huntingtin polyQ tracts and (2) subjected to mass spectrometry, 
contained among other components ubiquitin, HSP-70, cell cycle 
regulators p53 and mdm-2 as well as the general transcription 
factor TATA binding protein (TBP).43,44 The transcriptional 

coactivator and histone acetylase CREB-binding protein (CBP) 
that carries a stable polyQ repeat was similarly identified as a 
component of NIs (Table 1; Figs. 1 and 2).45

Moreover, proteins that interact with intracellular amyloid 
seem to participate in an amyloid interactome (Table  1).15 
This amyloid interactome is characterized by large proteins 
rich in predicted unstructured regions that hence may be 
targeted to amyloidogenic aggregation and depleted from 
their cellular functions. Based on the identified amyloidogenic 
candidate proteins affected nuclear functions may include 
ribosome biogenesis, RNA processing, chromatin organization, 
transcription, and nuclear structure.15 Evidence for interactions 
between gene expression, protein aggregation, and altered gene 

Table 1. Components of nuclear protein inclusions with listing of their histochemical and biophysical amyloid features

Amyloid component IHC NI
PolyQ-

induced
PolyQ

disease
Animal
model

Cell
culture

CR/ThT CR bi AP anti Aβ Reference

huntingtin ● ● ● ● ● ● ● ● 31, 32, 71, 72

ubiquitin ● ● ● ● ● ● 31, 32, 43, 72

androgen receptor ● ● ● ● ● ● 36, 73

ataxin-1 ● ● ● ● ● ● 38, 74

20S proteasome ● ● ● ● ● 38, 41

HDJ-2/HSDJ ● ● ● ● ● 38

HSP-70 ● ● ● ● ● 38, 43, 75

p53 ● ● ● 43

mdm-2 ● ● ● 43

TATA binding protein ● ● ● ● ● ● 43, 72, 76, 77

NPC proteins ● ● ● ● 43

ataxin-3 ● ● ● ● ● 78, 79

atrophin-1 ● ● ● ● 80

CREB binding protein ● ● ● ● ● 45, 80

PML ● ● ● ● ● ● 34, 74, 80

SUMO-1 ● ● ● ● ● ● 34, 81

SUMO-2 ● ● ● ● ● ● 81

ataxin-7 ● ● ● ● ● ● 81

p80 coilin ● ● ● ● ● 34, 74

histone H3 ● ● ● ● 82

hnRNP F/H ● ● ● ● 82

smn1 ● ● ● ● 15

gemin4 ● ● ● ● 15

SR140 ● ● ● ● 15

WDR3 ● ● ● ● 15

ranBP1 ● ● ● ● 15

laminB1 ● ● ● ● 15

NuMA ● ● ● ● 15

nuclear amyloid structure ● ● ● ● ● ● ● 24, 25, 40

Anti Aβ, detection by amyloid specific antibodies; AP, amyloid peptide binding; CR bi, Congo red birefringence; CR/ThT, Congo red and/or Thioflavin T 
binding; IHC, nuclear inclusions defined by immunohistochemistry; NI, nuclear inclusion.



314	 Nucleus	V olume 5 Issue 4

expression has been provided previously; however, a global 
perspective on the role of such interactions in physiologic settings 
as well as in disease progression is clearly missing.46,47 Systematic 
profiling of protein aggregate compositions with unbiased 
systems biology approaches may provide for a promising concept 
to identify and eventually modulate the intracellular amyloid 
landscape in health and disease.

Besides neurodegenerative protein deposition diseases 
aberrant fibrillation of proteins to intranuclear inclusion bodies 
has likewise been observed as a pathological feature in certain 
systemic autoimmune disorders such as scleroderma, in rodent 
animal models of xenobiotic-induced autoimmunity and in breast 
cancer.48-50 While these observations currently are of anecdotal 
nature, they suggest that amyloid protein fibrillation may play a 
role in other cells than neurons36 and in more pathologic disease 
conditions.

Functional Amyloid Fibrillation

Besides its disease association mounting evidence suggests 
that amyloid protein fibrillation also occurs naturally, i.e., in a 
healthy cellular environment. An increasing number of proteins 
with no link to protein aggregation diseases have been found 
to form, under defined in vitro conditions, fibrillar aggregates 
that have structural properties of amyloid fibrils, including 
binding to reporter dyes such as Congo red and Thioflavin T. 
This is consistent with the notion that the ability to convert 
into an amyloid structure is a generic property of polypeptide 
chains and virtually every protein has the potential to undergo 
amyloid fibrillation.1 Moreover, due to the advance of respective 
techniques functional amyloid is being increasingly identified 

in both, bacteria and eukaryotes. Examples are the mammalian 
protein Pmel17 that forms amyloid structures and thereby 
accelerates covalent polymerization of reactive small molecules 
into melanin or peptide hormones that are stored as amyloid-
like cross-β-sheet-rich conformations in pituitary glands.51,52 
Here, the amyloid fold is clearly used in a non-disease-associated 
manner, namely in normal mammalian cell physiology.

Consistent with this, bioinformatics-based approaches 
demonstrate that proteins containing stable polyQ stretches 
promote polymerization of functional macromolecular 
complexes. A global genome survey from Whisstock and 
coworkers revealed common functional patterns of repeat-
containing proteins.53 The bulk of proteins with homopolymeric 
amino acid sequences, including polyQ, perform roles in 
processes that are characterized by assembly of multiprotein or 
nucleoprotein complexes and involve RNA and DNA. Nuclear 
processes that account for gene expression are driven by dynamic 
formation and disassembly of macromolecules at the promoters 
of active genes: Proteins containing stable polyQ repeats such 
as CREB-binding protein (CBP) and transcription factor SP1, 
or unstable homopolymeric polyQ repeats such as the androgen 
receptor (AR), glucocorticoid receptor (GR), ataxin-7, and 
TATA-binding protein (TBP) enable assembly of transcriptional 
initiation complexes (Table 1; Fig. 2).14,54 Here, polyQ stretches 
might act as adaptor motifs that facilitate the formation of the 
transcription initiation machinery. In line with this, it was shown 
that homopolymeric glutamine (Q)- and proline (P)-stretches 
activate transcription in vitro when fused to the DNA-binding 
domain of yeast activator protein GAL4.55 Transcriptional 
activity correlated with the repeat length and was determined as 
being maximal with stretches of 10 to 30 Q or 10 P residues.

Given that polyQ stretches seem to be associated with both, 
amyloid fibrillation in neurodegenerative aggregation diseases, 
and functional organization of the cell nucleus the question arises 
which features of polyQ repeats contribute to either pathology or 
biological function. Is there a critical threshold of homopolymeric 
amino acid stretch length that decides if polyQ plays a role in 
nuclear self-organization or acts as a prion? Indeed, a critical 
threshold concerning the length of consequent Q residues 
exists in polyQ deposition disorders that correlates with disease 
onset, and severity of disease.56 This critical threshold has been 
reproduced in biophysical in silico experiments, Saccharomyces 
cerevisiae and animal models including Caenorhabditis elegans, 
Drosophila melanogaster, mice, zebrafish, and non-human 
primates.56-60 Since the length threshold is not uniform and 
may vary between 35–40 Q-residues in Huntington disease and 
20–30 Q-residues in spinocerebellar ataxia type 6 it is anticipated 
that the critical length of a polyQ repeat is defined by additional 
context (Fig. 2).61 Context dependency may concern the whole 
protein context, as well as sequences directly neighboring the 
polyQ stretch. Confirmedly, a polyP repeat flanking the polyQ 
stretches has been identified in huntingtin that acts as a cis-
inhibitor of polyQ aggregation.62,63

In line with results that polyQ stretches of 10 to 20 Q-residues 
maximally promote transcriptional activity55 it is tempting to 
speculate that shorter homopolymeric Q-repeats sustain nuclear 

Figure 1. Schematic representation of proteins in nuclear inclusions (NIs) 
from patients with neurodegenerative polyQ (CAG) expansion diseases 
and respective animal or mammalian cell culture models. 20S, 20S 
proteasome subunits; 19S, 19S proteasome regulator subunits; 11S, 11S 
proteasome regulator subunits; AR, androgen receptor; atxn-1, ataxin-1; 
atxn-3, ataxin-3; atxn-7, ataxin-7; CBP, CREB binding protein; EYA, eyes 
absent protein; hnRNPs, heterogeneous nuclear ribonucleoproteins; 
HSDJ, DNAJ protein homolog; HSP-70, heat shock protein 70; htt, 
huntingtin; mdm-2, mouse double minute protein; NP, nanoparticle; 
NPC, nuclear pore complex; NuMA, nuclear mitotic apparatus protein; 
PML, promyelocytic leukemia protein; Qn, different length polyQ repeat; 
SUMO, small ubiquitin-related modifier; ub, ubiquitinated; TBP, TATA 
binding protein.
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processes such as gene expression 
by their propensity to induce mild 
protein scaffolding, whereas the 
intrinsic capacity to form organized 
fibrillar structures with polyQ length 
above a certain threshold disturbs 
the functional organization of the 
cell nucleus by excess fibrillation that 
culminates in formation of insoluble, 
amyloid-like protein aggregates in the 
nucleoplasm (Table 1; Fig. 1). Such yin 
and yang of polyQ fibrillation may have 
prohibited evolutionary eradication 
of unstable, homopolymeric polyQ 
repeats from genomes.14,16 Consistent 
with these ideas is the notion that the 
nucleus represents a highly crowded 
environment which on one hand essentially enables the self-
organization of macromolecular, multiprotein complexes, 
however, likewise potentially promotes aberrant amyloid protein 
fibrillation through inordinate volume exclusion.14,64-67 Along 
these lines it was shown that xenobiotics such as certain heavy 
metals and nanoparticles sustain amyloid protein fibrillation, 
accumulate in specific nuclear microenvironments and locally 
induce nuclear amyloid.22-25 Thus, a fine balance between 
nuclear crowding and overcrowding may be required to maintain 
functional protein aggregation.

Conclusion

Nuclear protein aggregation and amyloid deposition are a 
prominent hallmark of neurodegenerative protein deposit diseases. 
While it was initially thought that nuclear amyloid is in any case 
responsible for neural cell death, time-resolved experiments that 
correlate nuclear amyloid and neurodegeneration on the single 
cell level rather suggest a cell protective role. Aggregation of 
misfolded or excess nuclear proteins in spherical nucleoplasmic 
microenvironments may segregate dysfunctional proteins and 
recruit them for degradation by the ubiquitin-proteasome system. 
The frequent presence of ubiquitin, proteasomes and heat shock 
proteins in NIs and the discovery of proteasomal activity in 
amyloid-like nucleoplasmic protein aggregates is consistent with 
this idea. Confirmedly, the nucleus establishes itself as a major 
cellular compartment for protein degradation, as it was shown 
recently in yeast that misfolded proteins are transported from the 
cytoplasm to nuclear degradation by chaperone Sis1p.68,69

In addition to a protective role of NIs in neurodegeneration 
evidence accumulates for functional amyloid in the nucleus. 
Amyloid-indicating features such as Congo red and Thioflavin 

T-binding as well as reactivity with amyloid-specific antibodies and 
peptides can be located in distinct subnuclear microenvironments 
under physiological conditions.18,24,25 Moreover, 55% of eukaryotic 
proteins are predicted to contain unstructured protein regions 
that are intrinsically amyloidogenic.21,70 To a certain degree the 
fibrillation capacity of amyloidogenic proteins may be required 
for nuclear function that is characterized by dynamic assembly 
and disassembly of large multiprotein and ribonucleoprotein 
complexes. An example is provided by the role of homopolymeric 
polyQ repeats in the initiation of transcription.53,55

A better understanding of amyloid fibrillation in the nucleus 
is a prerequisite for promising therapeutic interventions in 
neurodegenerative protein deposition diseases. Before boosting 
the protein degradation machinery the function and topology of 
NIs, nuclear protein homeostasis and nuclear amyloid should be 
fully characterized. This requires development of methods that 
allow for the identification of different amyloid fibrillation steps 
in living cells and whole organisms. Comparative definition of 
protein aggregation landscapes by systems biology in different 
disease models as well as under physiological conditions has the 
potential to provide for global aggregome networks as sources for 
informed, personalized therapeutic interventions.
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Figure  2. Schematic representation of homopolymeric glutamine repeat positioning in primary 
protein sequences of NI components. Unstable polyQ repeats vary considerably with respect to their 
location in the primary protein sequence and length. Aa, scale of amino acid positions; Q, glutamine.
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