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Abstract Correct cell/cell interactions and motion dynamics are fundamental in tissue

homeostasis, and defects in these cellular processes cause diseases. Therefore, there is strong

interest in identifying factors, including drug candidates that affect cell/cell interactions and motion

dynamics. However, existing quantitative tools for systematically interrogating complex motion

phenotypes in timelapse datasets are limited. We present Motion Sensing Superpixels (MOSES), a

computational framework that measures and characterises biological motion with a unique

superpixel ‘mesh’ formulation. Using published datasets, MOSES demonstrates single-cell tracking

capability and more advanced population quantification than Particle Image Velocimetry

approaches. From > 190 co-culture videos, MOSES motion-mapped the interactions between

human esophageal squamous epithelial and columnar cells mimicking the esophageal squamous-

columnar junction, a site where Barrett’s esophagus and esophageal adenocarcinoma often arise

clinically. MOSES is a powerful tool that will facilitate unbiased, systematic analysis of cellular

dynamics from high-content time-lapse imaging screens with little prior knowledge and few

assumptions.

DOI: https://doi.org/10.7554/eLife.40162.001

Introduction
During tissue development and homeostasis in multicellular organisms, different cell types expand

and migrate to form defined organ structures. For example, during wound-healing, both immune

and epithelial cells are required to proliferate and coordinately migrate (Schaffer and Nanney,

1996; Clark, 2013; Leoni et al., 2015). Aberrant cellular motion can be caused by deregulation of

key signalling pathways in pathological conditions, including cancer, and may be critical for disease

development and progression, for example leading to invasion and metastasis. Therefore, there is

strong biological and clinical need for precise, quantitative characterisation of cellular motion behav-

iour in a tissue-relevant context to objectively compare the effects of drugs and genetic mutations.

When two cell populations adjoin in vivo, they often form a sharp, stable interface termed a

‘boundary’, with limited intermingling (Dahmann et al., 2011). In adult humans, sharp boundaries

separate different types of epithelia, such as between the squamous and columnar epithelia in the

esophagus, cervix and anus. Disruption of these boundaries can lead to disease. For example, dis-

ruption of the esophageal squamous columnar epithelial boundary is a feature of Barrett’s
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Esophagus (BE), a condition that confers a 30–50 fold increased risk of esophageal adenocarcinoma

(EAC) (Gaddam et al., 2013). Understanding how complex tissue motion dynamics relate to patho-

logical phenotypes, and how they can be affected by intrinsic and extrinsic factors, is therefore a key

challenge in biomedical research. Live cell imaging over a long time (e.g. hours/days) is required to

study the underlying complex cellular motion.

Recently, there has been a rising interest in scaling up live cell imaging for unbiased high-through-

put screening and analysis to identify drug targets and develop therapies that can cause or prevent

abnormal cellular motion (Schmitz et al., 2010; Held et al., 2010; Pau et al., 2013). Accordingly, a

diverse range of co-culture experimental assays have been developed (Goers et al., 2014), amongst

which wound-healing type assays are one of the simplest and most widely used. Attempts have

been made to use these assays to study the regulation of complex biological/pathological processes

such as the stable boundary formation between homo- and heterotypic cell populations using live

cell imaging over a period of up to 6 days. However, a major barrier is how to analyse the resulting

complex biological motion phenotypes and its variation between different tested conditions, particu-

larly for multi-cell type populations (Goers et al., 2014) in high-content screens.

In general, there are two types of cell movements; ‘single-cell’ migration in which each cell

migrates independently or ‘collective’ migration where a group of cells migrates together in a coor-

dinated fashion. Single-cell migration has been well studied due to the availability of many single-

cell tracking methods that can extract rich motion features even for unbiased high-throughput

screens (Padfield et al., 2011; Meijering et al., 2012; Maška et al., 2014; Schiegg et al., 2015;

Nketia et al., 2017). In contrast, collective migration is much less understood due to a lack of tools

to extract equally rich quantitative motion features of cell populations in a high-throughput fashion

with minimal prior knowledge.

Extension of existing single-cell tracking methods to analyse collective cell motion in general is

non-trivial. Single-cell tracking methods all require accurate single-cell image segmentation, which is

highly challenging when cells adjoin or overlap as they do frequently in tissue and confluent cell cul-

tures. Moreover, there is a lack of systematic techniques to associate the motion of individual cells

to the global moving collective. Alternatively, existing popular methods to analyse collective motion

in cell populations such as Particle Image Velocimetry (PIV) (Szabó et al., 2006; Petitjean et al.,

2010) and its variants (e.g. cell image velocimetry (CIV) (Milde et al., 2012)), do not require image

segmentation. However, they only extract the global motion for a single video frame in the form of a

velocity field, a velocity vector for each image pixel without assignment of pixels to individual cells.

This lack of continuous tracking of cellular motion limits the application of PIV methods when charac-

terising collective migration in complex biological phenomena such as boundary formation and che-

moattraction. These biological processes often occur over a highly variable time period ranging from

minutes to days, and identification of involved cell groups is often desired. Furthermore, PIV-

extracted motion fields fail to exploit temporal continuity to reduce noise and avoid perturbations

by imaging artefacts including visual clutter, image occlusion, and autofluorescence. Most prohibi-

tively, PIV methods output only the velocities of image pixels. There is a lack of a systematic method

to build motion ‘signatures’ to automatically and unbiasedly discriminate and predict biological

motion phenotypes in large datasets. To this end, previous studies have attempted to extract addi-

tional motion parameters from PIV and appearance parameters from individual video frames

(Neumann et al., 2006; Zaritsky et al., 2012; Zaritsky et al., 2014; Zaritsky et al., 2015;

Zaritsky et al., 2017). These include applying velocity-based clustering in migrating monolayers,

and handcrafted image features to describe local image appearance using, for example, local binary

patterns (Zaritsky et al., 2012). However, these approaches are sensitive to the number of identified

phenotypes and data outliers, requiring relatively high-quality imaging, restricting the experimental

systems they can be applied to. Importantly, all the approaches (Neumann et al., 2006;

Zaritsky et al., 2012; Zaritsky et al., 2014; Zaritsky et al., 2015; Zaritsky et al., 2017) assume

prior knowledge of the motion behaviour. Notably, kymographs specifically exploit motion patterns

known to be symmetrical around a given spatial axis such as wound healing and cannot be used to

identify novel spatial motion features that could be relevant to normal tissue development or to a

defined disease setting.

A suitable computational method for studying cellular motion therefore should be able to address

the joint challenge of analysing single-cell and collective motion behaviour. Additionally, it must be:

(i) scalable in a medium- or high-throughput manner; (ii) sufficiently robust to handle inevitable
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variations in image acquisition and experimental protocol; (iii) sensitive to detect motion differences

resulting from small changes in environment or stimuli with minimal replicates; (iv) automatic, requir-

ing no manual intervention except for initial setting of parameters; and (v) unbiased to enable

motion characterisation (e.g. as a motion ‘signature’) with minimal prior assumptions of motion

behaviour.

To address these analytical challenges, here we developed Motion Sensing Superpixels (MOSES),

a computational framework that aims to provide a flexible and general approach for biological

motion extraction, characterisation and phenotyping. We empowered PIV-type methods with a

mesh formulation that enables systematic measurement and unbiased extraction of rich motion fea-

tures for single and collective cell motion suitable for high-throughput phenotypic screens. We use

the analysis of a multi-well plate-based in vitro assay to study the complex cell population dynamics

between different epithelial cell types from the esophageal squamous-columnar junction (SCJ) to

demonstrate the potential of MOSES. Our analysis illustrates how MOSES can be used to effectively

‘encode’ complex dynamic patterns in the form of a motion ‘signature’, which would not be possible

using standard globally extracted velocity-based measures from PIV. Finally, a side-by-side compari-

son with PIV analysis on published datasets illustrates the biological relevance and the advanced fea-

tures of MOSES. In particular, MOSES can highlight novel motion phenotypes in high-content

comparative biological video analysis.

Results

In vitro model to study the spatio-temporal dynamics of boundary
formation between different cell populations
To develop MOSES, we chose to investigate in vitro the boundary formation dynamics between

squamous and columnar epithelia at the esophageal squamous-columnar junction (SCJ) (Figure 1A).

To recapitulate features of the in vivo boundary formation, we used three epithelial cell lines in pair-

wise combinations and an experimental model system with similar characteristics to wound-healing

and migration assays but with additional complexity. Together the resulting videos pose a number

of analytical challenges that require the development of a more advanced method beyond the cur-

rent capabilities of PIV and CIV.

To model the relevant esophageal interfaces, we used three epithelial cell lines: EPC2, an immor-

talised squamous epithelial cell line from the normal esophagus (Harada et al., 2003); CP-A, an

immortalised BE cell line with gastric columnar epithelial properties (Merlo et al., 2011); and OE33,

derived from EAC (Boonstra et al., 2010). We co-cultured these lines in the following combinations:

1) EPC2:EPC2 (squamous:squamous, as a normal control); 2) EPC2:CP-A (squamous:columnar, as in

Barrett’s esophagus); and 3) EPC2:OE33 (squamous:cancer, as in EAC) (Figure 1B). Two epithelial

cell populations, each labelled with a different lipophilic membrane dye (Progatzky et al., 2013),

were co-cultured in the same well of a 24-well plate, separated by a divider with width 500 mm. The

divider was removed after 12 h and cells were allowed to migrate towards each other (Figure 1C).

We first compared the effects of the two dyes on proliferation and migration using monolayer

combinations of the three cell types (Video 1). Proliferation was assessed by cell density, automati-

cally counted from DAPI staining using convolutional neural networks (CNN; see Figure 1—figure

supplement 1, Materials and methods). Migration (diffusive behaviour) was assessed by mean

squared displacement (Park et al., 2015). Green and red fluorescent-labelled EPC2, CP-A, and

OE33 cells proliferated at the same rate (Figure 1D, for EPC2 cells: slope = 0.976, Pearson correla-

tion coefficient 0.978, Figure 1—figure supplement 1E), and migrated in a similar way (Figure 1—

figure supplement 2). Compared to non-dyed cells, the mobility of CP-A cells were unaffected how-

ever both dyes equally reduced the mobility of EPC2 and OE33 cells. The diffusion modes of all cells

were unaffected (Figure 1—figure supplement 2) and the boundary formation behaviour between

dyed and non-dyed cells was identical.

We next analysed boundary formation in the three different combinations of co-cultured epithelial

cell lines (EPC2:EPC2, EPC2:CP-A, and EPC2:OE33), initially in serum-containing media (5% fetal

bovine serum, FBS). In all three combinations, as expected, both populations moved as epithelial

sheets (Video 2). Firstly, in the squamous combination using the same EPC2 cell line labelled with

two different colours, the green- or red-labelled EPC2:EPC2 cells met and coalesced into a

Zhou et al. eLife 2019;8:e40162. DOI: https://doi.org/10.7554/eLife.40162 3 of 34

Tools and resources Computational and Systems Biology Developmental Biology

https://doi.org/10.7554/eLife.40162


monolayer as expected. Secondly, in the squamous-columnar EPC2:CP-A combination, we observed

boundary formation between the two populations after 72 h, following a short period of CP-A ‘push-

ing’ EPC2. Thirdly, in the squamous-cancer EPC2:OE33 combination, the cancer cell line OE33

expanded continuously, resulting in the disappearance of EPC2 from the field of view (Video 2,

Figure 1E) as assessed by the motion field and confocal images (Figure 1—figure supplement 3).

The forces that govern the behaviour of the two cell lines on contact are unknown and traction force

microscopy is required to investigate the ‘retracting’ or ‘pushing’ behaviour of EPC2 or OE33 cells

respectively in future studies. Nonetheless, the observed boundary formation in the EPC2:CP-A

Figure 1. Temporary divider system to study interactions between cell populations. (A) The squamous-columnar junction (SCJ) divides the stratified

squamous epithelia of the esophagus and the columnar epithelia of the stomach. Barrett’s esophagus (BE) is characterised by squamous epithelia

being replaced by columnar epithelial cells. The three cell lines derived from the indicated locations were used in the assays (EPC2, squamous

esophagus epithelium, CP-A, Barrett’s esophagus and OE33, esophageal adenocarcinoma (EAC) cell line). (B) The three main epithelial interfaces that

occur in BE to EAC progression. (C) Overview of the experimental procedure, described in steps 1–3. In our assay, cells were allowed to migrate and

were filmed for 4–6 days after removal of the divider (step 4). (D) Cell density of red- vs green-dyed cells in the same culture, automatically counted

from confocal images taken of fixed samples at 0, 1, 2, 3, and 4 days and co-plotted on the same axes. Each point is derived from a separate image. If

a point lies on the identity line (black dashed), within the image, red- and green-dyed cells have the same cell density. (E,F) Top images: Snapshot at 96

h of three combinations of epithelial cell types, cultured in 0% or 5% serum as indicated. Bottom images: kymographs cut through the mid-height of

the videos as marked by the dashed white line. All scale bars: 500 mm. (G) Displaced distance of the boundary following gap closure in (E,F) normalised

by the image width. From left to right, n = 16, 16, 16, 17, 30, 17 videos.

DOI: https://doi.org/10.7554/eLife.40162.002

The following figure supplements are available for figure 1:

Figure supplement 1. Automated cell counting with convolutional neural networks (CNN).

DOI: https://doi.org/10.7554/eLife.40162.003

Figure supplement 2. Cell migration is largely unaffected by dye colour.

DOI: https://doi.org/10.7554/eLife.40162.004

Figure supplement 3. Motion fields at gap closure between EPC2:EPC2, EPC2:CP-A and EPC2:OE33 cell line combinations.

DOI: https://doi.org/10.7554/eLife.40162.005

Figure supplement 4. Gap closure times and cell proliferation of cell line combinations in 0% and 5% serum.

DOI: https://doi.org/10.7554/eLife.40162.006

Figure supplement 5. Collective sheet migration dynamics are lost in 0% serum.

DOI: https://doi.org/10.7554/eLife.40162.007
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combination and disordered interactions

between EPC2:OE33 cells suggest that the three

chosen epithelial cell lines in the tested combina-

tions may model certain motion dynamics of the

in vivo cell-cell interactions. Interestingly, cell

counting suggests the observed phenotypes

were not due to differential proliferation rate

between the individual cell lines in combination

(Figure 1—figure supplement 4C,D).

Evidence from model systems, including Dro-

sophila melanogaster embryonic parasegment

(Monier et al., 2010) and anteroposterior and

dorsoventral wing disc boundaries (Major and Irvine, 2005; Major and Irvine, 2006;

Landsberg et al., 2009), suggests the importance of cell-cell interactions and collective migration

for stable boundary formation between epithelial populations in vivo. Thus to create a dataset in

which we predict that cell motion would be dramatically disrupted we repeated the assays in serum-

free conditions. We used convolutional neural networks (Materials and methods) to determine the

mean cell density and mean change in cell density from video frames over the first 48 h of cells

grown in serum (5% FBS) and no serum (0% FBS) conditions. We observed that culturing of the same

cell combinations in serum-free versus 5% serum medium had undetectable impact on cell density at

the very confluent cell conditions investigated (Figure 1—figure supplement 4). However, as

expected, serum-free condition induced large global changes in cell migration (Figure 1F, Fig-

ure 1—figure supplement 5A) with observed loss of cell contacts, collective sheet migration (Fig-

ure 1—figure supplement 5B,C) and the absence of boundary formation. We also observed

reduced overall boundary displacement (Figure 1F,G) and all cell line combinations exhibited similar

motion dynamics (Figure 1F,G, Video 2). These results illustrate that serum-free medium has a pro-

found impact on cell motion dynamics and the generated video datasets in serum-free medium are

ideal as an experimental condition for testing the ability of MOSES to detect motion dynamics under

different experimental conditions. It is important to note that the serum-free condition is not used as

a biological negative control of boundary formation but only as a computational negative control for

the development of our method.

Development of MOSES to quantify cell motion dynamics
We next developed a computational workflow, MOtion SEnsing Superpixels (MOSES), to quantify

cellular motion from video datasets. MOSES was formulated modularly with three components (Fig-

ure 2): 1) motion extraction; 2) construction of long-time motion tracks; and 3) capture of local

dynamic context.

Component 1: Motion extraction
We use dense optical flow to avoid the short-

comings of using cell segmentation to track indi-

vidual cells in confluent tissue. Optical flow is

similar to particle image velocimetry (PIV) but

yields higher resolution motion fields with a dis-

placement vector for each pixel at every time

point. PIV typically estimates a single velocity for

an image patch or ‘window’ using spatial correla-

tion. This corresponds to extracting only the

superpixel movement in Figure 2A over one

frame. Optical flow is also easier to modify to

account for additional physical phenomena such

as out-of-plane motion and large, discontinuous

movements not captured within a PIV ‘window’

(Brox et al., 2004; Brox et al., 2009).

Video 1. Dynamics of monolayer combinations of three

oesophageal epithelial cell lines, EPC2:EPC2, CP-A:CP-

A, OE33:OE33. Bar: 500 mm.

DOI: https://doi.org/10.7554/eLife.40162.008

Video 2. Sheet migration in EPC2:EPC2, EPC2:CP-A

and EPC2:OE33 in 0% and 5% FBS. No boundary forms

in 0% fetal bovine serum (FBS) where all combinations

move similarly. A stable boundary forms between EPC2

and CP-A in 5% FBS. Film duration: 96 h. Bar: 500

mm. Videos were contrast enhanced for better

visualisation.

DOI: https://doi.org/10.7554/eLife.40162.009
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Figure 2. Schematic diagram of MOtion SEnsing Superpixels (MOSES). (A) High level overview of the three configurable components that define

MOSES: motion extraction, construction of long-time motion tracks, and capture of local dynamic context. Long-time here indicates tracking of

Figure 2 continued on next page
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Component 2: Construct long-time motion tracks
To capture all spatial motion dynamics in the video, we construct long-time motion tracks that con-

tinuously track the cellular motion for any amount of time using superpixels. Local neighbouring

image pixels are grouped into a pre-specified (see below) number of image regions or ‘superpixels’

to enable spatial averaging of the pixel-based motion fields (Figure 2A, Step 1). At each time point,

the (x,y) position of a given superpixel is updated by averaging the optical flow

(Farnebäck, 2003) over the image area covered by the superpixel to obtain the displaced direction

and distance (Figure 2A, Steps 2-4). Subsequently, long-time superpixel motion tracks are gener-

ated by concatenating the positions of each superpixel at all time-points (Figure 2A, Step 5). All

long-time superpixel motion tracks together encode the entire spatio-temporal motion history within

the video. By default, the number of superpixels used are user-specified and fixed to sufficiently sub-

sample only the field-of-view of the initial video frame. Where a video exhibits highly dynamic move-

ment and coverage of the full spatio-temporal motion, including the movement of new cells not

initially present but which later move into the field of view, is necessary for analysis, additional super-

pixels can be dynamically added during tracking. Tracks produced by the latter approach are known

as dense trajectories (Wang et al., 2011). In our experiments, we used a fixed number of 1000

superpixels to cover an image size of 1344 x 1024 (with this setting an average superpixel is 37 pix-

els x 37 pixels covering » 14,000 mm2 (2x lens) or » 3600 mm2 (4x lens)) to monitor epithelial sheet

dynamics. For multichannel images, each channel representing different coloured cell populations

(i.e. red and green in our assay) was independently tracked in this manner (Figure 2B).

Depending on the specific application, background artefacts such as stage drift or floating debris,

can contribute tracks that are biologically irrelevant and need to be filtered in post-processing

(Figure 2B, middle panel). In this filtering step, superpixels are assigned to cover only the dynamic

motion of all ‘objects’ of interest. The ‘object’ for single-cell tracking is each individual cell, and for

epithelial sheets is the entire sheet within the video frame. To assign superpixels to each sheet, we

use motion information (Figure 2—figure supplement 1, Materials and methods). This approach

avoids relying on image intensity features whose variation commonly leads to segmentation errors.

We validated our motion extraction and long-

time track construction using published single-

cell tracking datasets from the cell tracking chal-

lenge (Maška et al., 2014) (Video 3), and also

experimentally, by spiking one of the dyed cell

populations in the in vitro setup described above

with a third, sparse population of blue-dyed

cells. Our method produced very similar tracks

(similarity score of 0.8) to an open software tool

for single-particle tracking, TrackMate

(Tinevez et al., 2017) (Figure 2—figure supple-

ment 2, Video 4).

Figure 2 continued

superpixels for longer than one frame or timepoint. (B) Example ways to practically implement each of the three high-level MOSES component

concepts described in (A) in software. (C) Using long-time tracking of superpixels MOSES bridges single-cell tracking for sparse cell culture and PIV for

confluent monolayers to extract global motion patterns for both scenarios, single-cell and collective motion within one computational framework.

DOI: https://doi.org/10.7554/eLife.40162.010

The following figure supplements are available for figure 2:

Figure supplement 1. Intensity-independent filtering of superpixel tracks for migrating epithelial sheets.

DOI: https://doi.org/10.7554/eLife.40162.011

Figure supplement 2. Experimental validation of MOSES optical flow superpixel tracking.

DOI: https://doi.org/10.7554/eLife.40162.012

Video 3. Single-cell motion extraction using MOSES

workflow compared to manual annotations used in the

cell tracking challenge dataset (Maška et al., 2014).

Bar: 100 mm.

DOI: https://doi.org/10.7554/eLife.40162.013
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Component 3: Capture local dynamic context
A ‘mesh’ is constructed by ‘linking’ superpixels to capture how individual superpixels move with

respect to their neighbours over time (Figure 2A, Step 6). The constructed dynamic mesh, inspired

by work in human surveillance (Chang et al., 2011), naturally captures the local collective dynamics

without explicit thresholding or clustering. Separate meshes are produced for each colour channel.

Multiple different meshes can be defined and constructed for specific purposes (see Materials and

methods). Because the mesh is a representation of interactions inferred from the local spatial rela-

tionships of superpixels, it can be used to derive robust local and global measures of motion relating

to biological phenomena such as collective motion and tissue interactions (see below).

In summary, MOSES has been designed to describe the video motion in terms of the individual

trajectories of moving ‘entities’ (defined by the image superpixels) and their spatiotemporal interac-

tions (as captured by a dynamic mesh). Depending on the application, superpixels can be assigned

to and biologically interpreted as part of an object, a single cell or multiple cells.

Quantitative measurement of squamous and columnar epithelial
boundary formation using MOSES
To verify the enhanced ability of MOSES over standard PIV analysis to quantitatively assess relevant

biological features of interest in tissue, we applied it to analyse the formation of boundary dynamics

between squamous and columnar cells. In total, 125 videos (48 with 0% serum and 77 with 5%

serum) were collected from four independent experiments and jointly analysed. These videos are

highly heterogeneous, creating a challenging dataset for analysis (Supplementary file 1, Figure 3—

figure supplement 1).

Standard velocity kymographs were able to firstly confirm our observations in Figure 1E–G of the

differences in cell motion between 0% and 5% serum conditions. As shown in Figure 3A, all cell

combinations grown in 0% serum exhibited a similar global motion pattern, minimal sheet-like

motion and interface movement following gap closure. By contrast, in 5% serum the same three

cell line combinations exhibited very different dynamics, amongst which we observed the formation

of a stable equilibrium following contact only between EPC2 and CP-A cell sheets. However, subse-

quent computation of the mean sheet speed, as performed during routine PIV analysis, highlighted

the analytical need for a computational framework to extract more descriptive motion measures. As

shown in Figure 3B, aside from an indication of a global speed increase in 5% serum, speed was an

insufficient metric to characterise the observed phenotypes, exhibiting high variance between repli-

cates and failure to highlight the uniqueness of the EPC2:CP-A interaction. We thus used MOSES to

construct more discriminative phenotypic measures to characterise the boundary formation of EPC2:

CP-A.

Using MOSES, we constructed a motion saliency map for visualising global motion patterns (Fig-

ure 3—figure supplement 2) and designed four different additional measures as summarised in

Table 1 to quantitatively distinguish between different combinations of the three cell lines (EPC2,

CP-A and OE33) used in our assay: i) boundary formation index, based on the degree that motion

concentrates into a local spatial region (Figure 3—figure supplements 2 and 3); ii) mesh stability

index, which measures the degree of movement between neighbouring cell groups locally within the

sheet at the endpoint (Figure 3—figure supplement 4); iii) mesh order to measure the degree of

collective motion of the whole sheet (Figure 3—figure supplement 5, Video 5) and iv) the maxi-

mum velocity cross-correlation, which measures the average correlation in motion between the two

epithelial sheets from their movement history (Figure 3—figure supplement 6). The first three are

based on the mesh; the fourth uses the individual superpixel tracks. These measures represent exam-

ples of statistics derivable using MOSES and are not limited to wound-healing type assays. For tech-

nical details, see Materials and methods. Cells grown in 0% serum were used as a computational

negative control to set appropriate cut-offs for detecting boundary formation in our computational

analysis (see Materials and methods for details).

Computing the proposed indices for all videos, the boundary formation index was ranked on a

continuous scale for all 5% serum videos (Figure 3—figure supplement 7) by MOSES. The boundary

formation index was highest (median 0.74) for EPC2:CP-A grown in 5% serum (n = 30/77)

(Figure 3C, Figure 3—figure supplement 8B), whilst EPC2:EPC2 and EPC2:OE33 in 5% serum were

below the boundary formation cut-off. In 5% serum, EPC2:CP-A had the highest mesh stability index
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(median 0.90), compared to EPC2:EPC2 (0.76)

and EPC2:OE33 (0.25) (Figure 3D, Figure 3—fig-

ure supplement 8C). Together these results illus-

trate that only the squamous-columnar

combination (EPC2:CP-A) formed a final stable

boundary.

We next measured sheet-sheet interactions

using the maximum velocity cross-correlation

(VCC) before and after gap closure for the three

cell line combinations. Gap closure was automati-

cally determined (Figure 3—figure supplement

9 , Materials and methods). For two initially dia-

metrically opposed migrating sheets, a significant

increase in VCC after gap closure compared to

before gap closure is suggestive of increased

sheet interaction. In 0% serum, no difference in

velocity cross-correlation across all combinations

was found before and after gap closure

(Figure 3E ) - the two sheets do not move cohe-

sively as a unit, as expected with minimal cell-cell

contact. In serum, the difference for EPC2:CP-A

(0.03 before and 0.20 after gap closure) was ~3-

6 times larger than for EPC2:EPC2 (0.01 to 0.08)

and EPC2:OE33 (0.02 to 0.05) (c.f. left and right

violin plots in Figure 3E ), suggesting potential

physical interaction. Interestingly, CP-A:OE33

(Barrett’s:cancer, n = 6) also exhibited a substan-

tial increase in VCC following gap closure (0.03

to 0.17) (Figure 3—figure supplement 8D,E) but

no substantial increase was observed for CP-A:

CP-A (0.01 to 0.06) (Figure 3—figure supple-

ment 8D,E), confirming this observation was not

simply CP-A cell line-specific. Both the velocity

order parameter and our mesh order parameter (Figure 3F,G) indicate clear overall reduction in col-

lective motion in cells grown in 0% serum compared to 5% serum.

Finally, we used MOSES with image segmentation and convolutional neural network (CNN) cell

counting to assess morphological variations of the interface among all cell line combinations to

check for ‘invasive fingers’ or boundary breakdowns that often exist in normal and tumour cell-

formed boundaries (Figure 3—figure supplement 10A,B). Interestingly, we found non-invading

boundaries in all cell line combinations except CP-A:OE33, where we observed clear infiltration with

‘finger-like’ protrusions of CP-A into the OE33 cell sheet grown in 5% serum (Figure 3—figure sup-

plement 10B). No such ‘finger-like’ protrusions or significant intermixing of cells (Figure 3—figure

supplement 10D,F–H) were detected in EPC2:CP-A under the same conditions. Altogether, our

characterisation suggests that, among all tested cell-type combinations, we detect an ‘interacting’

final stable boundary uniquely in the squamous-columnar EPC2:CP-A combination grown in 5%

serum (Video 6).

MOSES can measure subtle phenotype changes induced by external
stimuli
The ability to assess subtle phenotype changes with a minimal number of replicates is critical for

high-content screening applications. We thus tested the ability of MOSES to detect changes in

EPC2:CP-A boundary formation using an external perturbation. The epidermal growth factor recep-

tor (EGFR) is frequently mutated in EAC, sometimes overexpressed in BE and is activated by bile

acid reflux, the main observed cause of BE clinically (Dixon et al., 2001; Souza, 2010). In our experi-

ments we thus used epidermal growth factor (EGF), the ligand of EGFR, as a biologically relevant

external perturbation. Increasing amounts of EGF (0 ng/ml to 20 ng/ml) were added to the culture

Video 4. Assessment of individual cell motion in

confluent cell sheets using spiked-in fluorescent cell

populations and MOSES. Blue (B) represents the

spiked-in population of EPC2 cells. (R) and (G) refer to

the red and green EPC2 epithelial sheets, respectively.

Bar: 500 mm.

DOI: https://doi.org/10.7554/eLife.40162.014
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Figure 3. MOSES quantifies boundary formation and epithelial sheet interaction dynamics. (A) Projected ‘x’-direction velocity kymograph of the dense

optical flow for each cell line combination at the two serum concentrations used in the assay. The speed and direction of movement are indicated by

the intensity and colour respectively (blue, moving left; red, moving right). (B) Average speed of each video for each cell combination, coloured green

and yellow for the first and second cell line in the named combinations respectively. (C,D) Violin plots of boundary formation index (C) and mesh

stability (D) for each video (black dot) for different cell combinations in 0% and 5% serum. Dashed line is the threshold, one standard deviation above

the pooled mean value of all cell line combinations in 0% serum. Red solid line in violins = mean, black solid line in violins = median. (E) Maximum

(Max.) velocity cross-correlation between the two sheets, before and after gap closure, left and right violins respectively for each cell line combination.

Figure 3 continued on next page
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medium to assess incremental effects on cellular motion and boundary formation in the EPC2:CP-A

combination. A total of 40 videos (each 144 h, one frame per h) were collected from three indepen-

dent experiments, in a 24-well plate medium-throughput screen (Supplementary file 2). With

increasing EGF, the boundary position was displaced a distance farther from the initial point of

Figure 3 continued

Shaded region of all violins is the probability density of the data whose width is proportional to the number of videos at this value. (F) Boxplots showing

median and interquartile range (IQR) of velocity order parameter and (G) mesh order for each cell line combination coloured green and yellow for the

first and second cell line in the named combination, respectively. Whiskers show data within 1.5 x IQR of upper and lower quartiles.

DOI: https://doi.org/10.7554/eLife.40162.015

The following figure supplements are available for figure 3:

Figure supplement 1. Heterogeneity in motion dynamics and quality of image acquisition.

DOI: https://doi.org/10.7554/eLife.40162.016

Figure supplement 2. The motion saliency map and boundary formation index for analysing motion sources.

DOI: https://doi.org/10.7554/eLife.40162.017

Figure supplement 3. MOSES mesh and boundary formation index captures multiple boundary formation.

DOI: https://doi.org/10.7554/eLife.40162.018

Figure supplement 4. The MOSES mesh stability index captures the stability of the local topology.

DOI: https://doi.org/10.7554/eLife.40162.019

Figure supplement 5. The mesh strain vector and collective motion.

DOI: https://doi.org/10.7554/eLife.40162.020

Figure supplement 6. Velocity cross-correlation (VCC) for measuring the motion coordination of two epithelial sheets.

DOI: https://doi.org/10.7554/eLife.40162.021

Figure supplement 7. Ranking of 5% serum videos according to boundary formation index.

DOI: https://doi.org/10.7554/eLife.40162.022

Figure supplement 8. Quantitative assessment of boundary formation and sheet-sheet interaction dynamics of all 5% serum videos.

DOI: https://doi.org/10.7554/eLife.40162.023

Figure supplement 9. Automatic determination of gap closure.

DOI: https://doi.org/10.7554/eLife.40162.024

Figure supplement 10. Cell infiltration, boundary shape and cell intermixing at the interface between two sheets.

DOI: https://doi.org/10.7554/eLife.40162.025

Table 1. Summary of MOSES-derived measurements for discriminating boundary formation phenotype in this paper and their

biological interpretation and application.

Proposed
measures Biological interpretation Biological application

Motion Saliency
Map

‘Heatmap’-like image that highlights spatial regions that attract
or repel local cellular motion over a defined time period.

Quantitative spatio-temporal readout of scratch or wound-
healing assays. Highlights areas of salient motion activity spatially
such as the migration of macrophages locally to inflicted wound
sites.

Boundary
formation index
(value from 0 to 1)

Quantifies the concentration of movement within one region of
space. Multiple ‘hotspots’ decrease this index. Uniform
distributed movement (no attraction) scores 0. Concentration of
movement in a single region for example a line or point scores 1.

Quantification of the spatial uniformity or ‘spread’ of motion
activity. Highlights for example if all migrating cells move
uniformly to close the wound in a wound-healing assay.

Mesh stability
index (value from
�¥ to 1)

Measures the motion stability of local cell groups by measuring
the change in relative spatial arrangement (topology) with respect
to neighbouring cell groups at a given endpoint. Static epithelial
sheets and epithelial sheets that move uniformly in a single
direction preserve local cellular arrangement and scores
1. Motion that results in the local spatial rearrangement of cells
such as neighbour exchange in embryos is unstable and
scores < 1.

Assessing the final global movement stability of a collective such
as an embryo or epithelial sheet based on the movement of the
cells that compose it.

Mesh order
(value > 0)

Measures the collectiveness of local cellular migration by the
change in distance and direction of cells with respect to
neighbouring cells. Hypothesizes that cells that are part of the
same motion group exhibit the same ‘mesh’ force and move
retaining the same local spatial arrangement.

Quantitative assessment of the extent of global sheet-like
movement.

DOI: https://doi.org/10.7554/eLife.40162.026
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contact between the two cell populations, with

slightly enhanced cell speed and decreased

boundary coherence (Figure 4A–D). This is

quantitatively reflected in the shape of the mean

normalised strain curve (Figure 4E) which meas-

ures the average distance between neighbouring

cell groups (Materials and methods): at 0 ng/ml EGF, the curve linearly increases before plateauing

around 72 h; as EGF concentration increases, the curve becomes more linear and the plateau is lost

above 5 ng/ml.

The boundary formation index decreased with increasing EGF (0.74 at 0 ng/ml to 0.46 at 20 ng/

ml, comparable to EPC2:OE33 without EGF (0.46)), indicating loss of the boundary (i.e. index below

the 0.69 cut-off) (Figure 4F). The mesh stability index decreased from 0.94 (stable, 0 ng/ml EGF) to

0.72 (unstable, 20 ng/ml) (Figure 4G), suggesting increased movement between neighbouring cells

and the loss of interaction between the two cell populations since the maximum VCC difference

before and after gap closure decreased from 0.16 (0 ng/ml EGF) to 0.04 (20 ng/ml EGF)

(Figure 4H). The maximum VCC after gap closure was similar to that for EPC2:OE33 (0.02)

(Figure 4H), but the mesh stability index remained higher (Figure 4G). Together these measures

show that above 5 ng/ml EGF, the phenotype of EPC2:CP-A becomes similar to that between EPC2

and the EAC cell line, OE33 (Video 7). Cell counting and quantification of fluorescence decay sug-

gest cell division is not the primary factor influencing the boundary at the cell density used in our

experiments in 5% serum (Figure 4—figure supplement 1). Of note, titrating EGF did not rescue

the effect of serum absence, with non-significant changes in the boundary formation index (0 ng/ml:

0.60 ± 0.07, 20 ng/ml: 0.65 ± 0.03) and maximum velocity cross-correlation, although the mesh sta-

bility index decreased, likely due to increased cell movement (Figure 4—figure supplement 2

(n = 25)).

Using both the velocity order parameter and mesh order index to characterise collective motion,

we found little change in collective motion upon EGF addition in 0% serum (Figure 4—figure sup-

plement 2J,K), which might explain the lack of boundary formation. However, in 5% serum plus

EGF, the two measures exhibited opposite results: raising EGF concentration increased velocity

order but decreased mesh order, Figure 4I,J. We note however that the mesh order, by explicitly

accounting for the motion of neighbouring cells, better reflects human observation of

motion in videos (Videos 5–7). This highlights the pitfalls of only quantifying the individual alignment

of velocity vectors computed from one video frame. Cell counting for 0% serum again suggested

minimal influence of cell proliferation (Figure 4—figure supplement 2L,M). In summary, this exam-

ple with EGF demonstrates that MOSES enables robust continuous-scale quantification of motion

phenotype following systematic perturbation.

Video 5. Comparison of the temporal stability of

velocity and mesh strain vectors for measuring

collective motion. Individual velocity vectors are

represented with red arrows, individual mesh strain

vectors with green arrows. The large blue and black

arrow are the global mean velocity and global mean

mesh strain vector respectively. The corresponding

derived MOSES mesh is shown on the right of the

arrow plots in black. Bar: 100 mm.

DOI: https://doi.org/10.7554/eLife.40162.032

Video 6. Representative videos of the sheet migration

of all tested cell combinations in 5% FBS. (R) and (G)

denote red and green dyed cells respectively. Film

duration 144 h. Bar: 500 mm.

DOI: https://doi.org/10.7554/eLife.40162.027
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Figure 4. EGF titration at physiological levels disrupts boundary formation. (A) Destabilisation of the junction with EGF addition. All in 5% serum with

snapshots of endpoint (144 h). Shown also is the green channel CP-A MOSES mesh. The closeness of the lines indicates impeded motion leading to a

local aggregation of superpixels in the vicinity and is suggestive of a boundary. The less lattice-like the mesh, the less ordered the motion. Blue

triangles mark the boundary position in the image and its corresponding inferred position in the CP-A mesh. All scale bars: 500 mm. (B) Top: maximum

projected video kymograph. Bottom: x-direction velocity kymograph computed from optical flow for the representative videos in (A). (C) Grouped

boxplot of the average speed for the different cell lines in the combination in 5% serum with increasing EGF concentration. (D) Mean displaced

distance of the boundary normalised by image width following gap closure with increasing EGF concentration in 5% serum. Mean displaced

distance of EPC2:CP-A and EPC2:OE33 cultured in 5% serum from Figure 1G are also plotted for comparison. T-test was used with * indicating p = <

0.05, ** p = < 0.01, *** p = < 0.001. Error bars are plotted for ± one standard deviation of the mean. (E) Mean normalised strain curves for EPC2:CP-A

in 5% serum for each concentration of EGF. The mean curve for EPC2:OE33 videos in 5% serum without EGF in Figure 3 is shown for comparison

(black curve). (F–H) Violin plots of boundary formation index (F), mesh stability index (G) and maximum velocity cross-correlation (H) for each

concentration of EGF and cells in 5% serum. Red solid line = mean, Black solid line = median. Dots are individual videos, total n = 40. Shaded region is

the probability density of the data whose width is proportional to the number of videos at this value. Violins of respective measures for EPC2:OE33 in

5% serum without EGF with thresholds (horizontal black line) from Figure 3 is shown for comparison. (I,J) Boxplots of velocity order (I) and mesh order

Figure 4 continued on next page
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MOSES generates motion signatures and 2D motion maps for unbiased
characterisation of cellular motion phenotypes
High-content imaging screens are often explorative, with the aim of screening for unknown differen-

ces in complex cellular motions from a large number of videos in an unbiased manner

(Zaritsky et al., 2017). In general it is therefore not known a priori the behaviour of the imaged cells.

MOSES addresses this need for an unbiased phenotyping approach by enabling the systematic gen-

eration of unique ‘motion signatures’ for individual videos in a manner similar to the relatively auto-

matic generation of geometric features for cell shape quantification in high-content image screens

(Boutros et al., 2015; Bray et al., 2016). Below we demonstrate that unsupervised machine learning

techniques requiring no manual user annotation can be applied to MOSES generated signatures to

visualise all videos onto a 2D motion phenotype map. This advanced feature of MOSES enables easy

visual assessment of motion phenotype and the generation of hypotheses without the need to indi-

vidually interrogate each video.

The general process for the motion map generation is illustrated in Figure 5A. To position each

video on a 2D map, we applied principal component analysis (PCA) to the normalised mesh strain

curves of the 77 videos of all cell line combinations cultured in 5% serum conditions to learn the prin-

cipal component vectors that define the x-y axis of the 2D map. The normalised mesh strain curve

for each video was used here as an example 1D motion signature to summarise the entire video

motion (see Materials and methods for constructing more descriptive signatures). The constructed

PCA map of the 77 videos from cells cultured in 5% serum (Figure 5B) shows that this unbiased

approach automatically clusters all videos corresponding to each cell line combination. Furthermore,

the videos were ordered in a continuous manner,

as shown by the increasingly linear shape of the

mean normalised strain curve when looking left

to right across the plot in Figure 5B from CP-A:

CP-A to EPC2:OE33. This clustering was not

achieved with root mean squared displacement

(RMSD), the non-mesh version of the MOSES-

normalised mesh strain curve (Figure 5—figure

supplement 1). Moreover, it appears indepen-

dent of the particular dimensionality reduction

technique used (Figure 5—figure supplement

2), indicating that the signatures constructed

using MOSES are intrinsically informative. Finally,

the 1D MOSES-based motion signatures trained

a machine learning classifier with no further

processing to predict cell combination identity

better than RMSD (Figure 5—figure supple-

ment 2).

To demonstrate how such 2D motion pheno-

type maps can be used to compare videos, we

next mapped the 48 videos from 0% serum cul-

tures on the same axes as the videos from 5%

serum cultures (Figure 5C,D). The videos from

Figure 4 continued

(J) for individual cell lines (left) and pooled across the two cell lines in the combination (right). Values for EPC2:OE33 in 5% serum without EGF and

threshold from Figure 3 are shown for comparison.

DOI: https://doi.org/10.7554/eLife.40162.028

The following figure supplements are available for figure 4:

Figure supplement 1. Migration-independent cell counting to assess cell proliferation upon EGF addition to EPC2:CP-A in 5% serum.

DOI: https://doi.org/10.7554/eLife.40162.029

Figure supplement 2. EGF addition to EPC2:CP-A in 0% serum does not induce boundary formation.

DOI: https://doi.org/10.7554/eLife.40162.030

Video 7. Motion dynamics of EPC2(R):CP-A(G) under

increasing EGF addition (0–20 ng/ml). MOSES can

also measure decreased collective migration in the

green CP-A sheet with increasing EGF, a phenomena

difficult to assess by eye. MOSES meshes are shown,

red for red-dyed (R) EPC2 cells and yellow for green-

dyed (G) CP-A cells, respectively. Bar: 500 mm.

DOI: https://doi.org/10.7554/eLife.40162.031
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0% serum mapped to a different area of the 2D plot, whilst preserving the continuous ordering of

the previous videos. Therefore, without having watched the videos, it is easy to predict that the cells

have markedly different motion dynamics in 0% serum compared to 5% serum. Furthermore, since

the points for the 5% serum videos cover a larger area of the 2D plot than the 0% serum videos, one

can predict more diversity of motion in 5% serum (Figure 5D).

The motion map can also capture subtle changes in dynamic behaviour. This is demonstrated by

mapping the mean video motion for each concentration of EGF from 0 to 20 ng/ml (represented by

the respective mean normalised strain curves for each concentration (one per concentration from a

total n = 40 videos, Figure 4E) onto the same axis as the 5% serum videos in the absence of EGF

Figure 5. MOSES generates motion signatures to produce a 2D motion map for unbiased characterisation of cellular motion phenotypes. In all panels,

each point represents a video (see legends for colour code). The position of each video on the 2D plot is based on the normalised mesh strain curves,

analysed by PCA. (A) The mapping process for a single video. (B) The 5% serum videos (n = 77) were used to set the PCA that maps a strain curve to a

point in the 2D motion map. (C) The 0% serum videos (n = 48) were plotted onto the same map defined by the 5% serum videos using the learnt PCA.

In (B) and (C), the mean mesh strain curves for each cell combination are shown in the insets. Light blue region marks the two standard deviations with

respect to the mean curve (solid black line). (D) Same map as in (C) with points coloured according to 0% or 5% serum. (E) The normalised mean strain

curves for 0–20 ng/ml EGF addition to EPC2:CP-A from Figure 4E plotted onto the same map defined by the 5% serum videos.

DOI: https://doi.org/10.7554/eLife.40162.033

The following figure supplements are available for figure 5:

Figure supplement 1. Comparison of MOSES-normalised strain curves vs RMSD curves as motion signatures for motion map generation from 5%

serum videos.

DOI: https://doi.org/10.7554/eLife.40162.034

Figure supplement 2. Comparison of motion map learning using different dimensional reduction techniques with MOSES strain curves and RMSD

curves.

DOI: https://doi.org/10.7554/eLife.40162.035
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(square points in Figure 5E). With increasing EGF, the squamous-columnar EPC2:CP-A motion

dynamics become increasingly similar to squamous-cancer EPC2:OE33 above 5 ng/ml, as evidenced

by the square points moving from the area of blue circular EPC2:CP-A points into the area of orange

circular EPC2:OE33 points. Thus our motion map is consistent with the result using the specific

derived measures (above). These results illustrate the ability to detect biological and technical vari-

ability across independent experiments and that MOSES possesses the required features for an algo-

rithm to be used in an unbiased manner in high-content screens with minimal prior knowledge.

Comparison between MOSES and PIV
Finally, to further illustrate the full potential of MOSES and to demonstrate its application, we com-

pared MOSES with the widely used PIV method on two published timelapse microscopy datasets of

epithelial monolayers. In the original publication, Malinverno et al. (2017) used PIV to describe the

induction of large-scale coordinated motility in MCF-10A RAB5A expressing cells compared to MCF-

10A control cells. In the publication associated with the second dataset, Rodrı́guez-Franco et al.

(2017) used PIV to show the detection of deformation waves that propagate away from the cell

boundary between two epithelial monolayers. The MDCK cell monolayers expressed EphB2 and its

ligand ephrinB1, respectively.

Reanalysing the datasets with MOSES, we found that motion fields inferred from optical flow by

MOSES were similar to those from PIV, yielding both similar speed curves and velocity kymographs.

However, MOSES exhibited greater sensitivity to salient motion events (indicated in Figure 6A).

Compared to PIV velocity vectors, MOSES superpixel tracks are a more data-efficient (see Discus-

sion) encoding of the spatio-temporal velocity distribution that naturally enhances and preserves the

salient motion. Reconstructed velocity kymographs from the MOSES motion trajectories capture not

only the pattern of the full velocity kymograph but further selectively enhanced the detection of the

deformation wave signature formed at the interface between EphB2/ephrinB1 epithelial monolayers

(as indicated in Figure 6A, right panel). Thus, all velocity-based statistics that can be derived from

PIV, such as the velocity order parameter, are fully preserved in MOSES. Yet, MOSES offers addi-

tional advanced possibilities. Firstly, instantaneous velocity-based measures from single videos com-

monly derived from PIV are noisy. For example, the velocity order parameter variation for the slower

MCF-10A control cells is non-smooth and highly variable between consecutive time points

(Figure 6B). This leads to the misinterpretation that at certain time points, MCF-10A control cell

motion is more collective than MCF-10A RAB5A expressing cells following induction. In contrast, the

MOSES mesh order exploits long-time continuity and neighbourhood relations to robustly capture

collective motion in a manner consistent with human observation (Video 5). Secondly, long-time

MOSES tracks and superpixel mesh strain curves can unbiasedly cluster the global motion pattern

into small spatio-temporal groups (Figure 6C, Video 8). This provides a systematic approach to the

interrogation of motion sources (Figure 6D, Video 9). The computation of motion saliency maps

from forward and backward tracked frames effectively highlight the spatial concentration of motion,

and the boundary formation index attests to the efficacy of the MOSES-enabled measures across

independent datasets. Finally, and uniquely, MOSES’ meshes and tracks present a systematic frame-

work for users to define extensive sets of custom measures to comprehensively characterise complex

motion phenotypes, such as the investigated boundary formation behaviour between epithelial cells.

By exploiting this, we successfully constructed feature descriptors to generate interpretable motion

maps for our large video dataset. Figure 6E summarises the key points of comparison between

MOSES and PIV.

Discussion
We have shown that MOSES combines the advantages of existing PIV and single-cell tracking meth-

ods to provide a single systematic approach for the analysis of complex motion and interaction pat-

terns. Its operating principle builds upon two established and highly successful approaches, long-

time trajectories and graphs/meshes. In computer vision, spatio-temporal ‘signatures’ constructed

using long-time trajectories have proven superior to ‘signatures’ derived from PIV-type motion fields

for encoding complex spatio-temporal events such as human actions in very large datasets

(Wang et al., 2011). Meshes/graphs are ubiquitously regarded as one of the best approaches to

capture relationships between ‘objects’ across many disciplines, from Google search to protein-
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Figure 6. Comparison between MOSES and PIV. (A) Left: average speed curves of MCF-10A control (CTRL) and doxycycline inducible RAB5A-

expressing (RAB5A) monolayer cell migration after doxycycline addition (Supp. Movie 3 of Malinverno et al., 2017) computed using PIV and MOSES

(optical flow). Green triangles indicate notable events in the movie; E1 (4 h): addition of doxycycline, E2 (16 h): first bright ‘flash’ in movie followed by

accelerated movement of RAB5A expressing cells, E3 (25 h): timepoint at which RAB5A cells moved fastest. Right: velocity kymographs of Videos 1 and

2 (c.f. Figures 3 and 4 respectively in Rodrı́guez-Franco et al. (2017)) computed from PIV and MOSES motion fields showing the presence of

deformation waves (black dash-dot line) due to cell jamming following initial gap closure (green dashed line). The corresponding velocity kymographs

reconstructed from a fixed number of 1000 MOSES superpixel tracks and a ‘dense’ number of superpixel tracks (starting with 1000 superpixels) is shown

for comparison. The speed and direction of movement are indicated by the intensity and colour, respectively (blue, moving right; red, moving left). (B)

Top and middle: velocity order parameter curves as defined in Malinverno et al. (2017) for the MCF-10A control and RAB5A expressing cell lines was

computed for the same movies as (A) using PIV and MOSES. Bottom: corresponding MOSES mesh order curve. Black vertical dashed line mark the

addition of doxycycline. (C) MOSES superpixel tracks computed for wound-healing assay of MCF-10A and RAB5A cells (Supp. Video 19 of

Malinverno et al., 2017) were automatically clustered into distinct groupings and coloured uniquely according to their mesh strain curve using GMM

with BIC model selection (Materials and methods, Video 8 of this paper). (D) (i,ii) Automatic clustered superpixels and associated motion saliency maps

(backward tracking to identify ‘initial’ motion, forward tracking to identify ‘final’ motion) for different videos of MCF10A-control (CTRL) and RAB5A

monolayer migration in Malinverno et al. (2017), (see also Video 9). (iii) Left to right: snapshots of initial and final frames, MOSES superpixel tracks

Figure 6 continued on next page
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protein interaction networks (Szklarczyk et al., 2015), flocking analyses (Ballerini et al., 2008;

Zhou et al., 2013; Shishika et al., 2014), to detection of cell jamming in biological physics

(Lačević et al., 2003; Park et al., 2015). MOSES uniquely brings together these disparate uses of

long-time trajectories and meshes into one general analysis framework. As a result, MOSES satisfies

the four criteria (robust, sensitive, automatic, and unbiased) necessary for characterising and estab-

lishing new phenotypes from live cell imaging. The analysis of datasets that include variable quality

videos and experiments with a small number of replicates demonstrates the potential of the pro-

posed computational framework.

Importantly, MOSES is progress towards overcoming the individual limitations of single-cell track-

ing and PIV-type velocity methods. Single-cell tracks are notoriously problematic over long times;

the track of a single cell may be lost or broken into many separate tracks. MOSES superpixel tracks

avoids this and recovers the global motion patterns (c.f. motion saliency maps, derived measures

and motion signatures). Side-by-side comparison of MOSES and the standard PIV method using

published datasets demonstrates that MOSES not only enables all the measurements of PIV, but by

further exploiting long-time tracks and neighbourhood relationships, delivers greater physical and

biological insights. Complex salient spatio-temporal motion patterns and events such as boundary

formation, deformation waves due to cell jamming between two cell populations and cell death can

all be quantitatively captured by MOSES. Critically, the ability of MOSES to perform long-time track-

ing (up to 6 days demonstrated in this study) enabled spatial localisation of the cell populations

involved in a particular motion phenotype.

MOSES does not require complex user settings to facilitate reproducibility in analyses because it

does not aim to threshold or cluster out the moving objects or phenotypes during analysis, which

would introduce intermediate processing errors. Rather its philosophy is to facilitate systematic gen-

eration of many motion-related measurements based on trajectory and mesh statistics sufficient for

applying machine learning methods for data-driven object segmentation, video classification and

phenotype detection in large video collections (e.g. Figure 5, motion map) with minimum prior

information. The main parameter the user specifies is the number of initial superpixels, which deter-

mines the spatial resolution of analysis. No complicated fitting of complex models and no special

hardware such as GPUs are required. MOSES is

Figure 6 continued

(1000 superpixels) overlaid on final frames, associated ‘final’ motion saliency map and boundary formation index for CTRL and RAB5A cells for same

videos in (C). (iv) Snapshot of final frame, overlaid MOSES superpixel tracks (1000 superpixels) and associated ‘final’ motion saliency map and boundary

formation index for the boundary formation between EphB2 and ephrinB1 expressing MDCK monolayers (Rodrı́guez-Franco et al., 2017). (E) Summary

of the comparison between MOSES and PIV. Long-time refers to the tracking of movement beyond one timepoint.

DOI: https://doi.org/10.7554/eLife.40162.036

Video 8. Long-time superpixel track extraction and

unbiased track clustering using the mesh strain curve of

each superpixel as the feature vector for Supp. Movie

19 of Malinverno et al. (2017). Each cluster is

highlighted with a unique colour. The colours are

arbitrary. There is no colour matching between

individual videos. Bar: 100 mm.

DOI: https://doi.org/10.7554/eLife.40162.037

Video 9. Long-time superpixel track extraction and

unbiased track clustering using the mesh strain curve

for Supp. Movie 3 and 7 of Malinverno et al. (2017).

Each cluster is highlighted with a unique colour. The

colours are arbitrary. There is no colour matching

between individual videos. Bar: 100 mm.

DOI: https://doi.org/10.7554/eLife.40162.038
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modular and its components can be readily adapted to suit specific applications, for example non-

square superpixel shapes to better capture cells that undergo large shape changes. Analysis of 96

videos with 1344 � 1024 pixel resolution and 145 frames by tracking 1000 superpixels takes under 4

h on an unoptimized code implementation running on a single PC (3.2 GHz, 16 GB RAM). Results

are stored efficiently (~1–2 MB per video) compared to ~0.1–1 GB per video, depending on the sub-

sampling used to save the full spatio-temporal PIV/optical flow motion fields. Altogether our study

illustrates the potential of MOSES as a powerful and systematic computational framework. It is par-

ticularly useful for unbiased explorative high-content screening with an aim to discover fundamental

principles of cellular motion dynamics in biology and to identify factors or drugs that alter cellular

motion dynamics in disease aetiology and treatment.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Cell line (H. sapiens) EPC2 https://www.med.upenn.
edu/molecular/documents/
EPCcellprotocol032008.pdf

Prof. Hiroshi
Nakagawa (University
of Pennsylvania)

Cell line (H. sapiens) CP-A CP-A (KR-42421)
(ATCC )

ATCC:CRL-4027;
RRID:CVCL_C451

Cell line (H. sapiens) OE33 ECACC ECACC:96070808;
RRID: CVCL_0471

Cell line (H. sapiens) AGS AGS (ATCC CRL-1739) ATCC:CRL-1739;
RRID:CVCL_0139

Chemical
compound, drug

KSFM Gibco/Thermo Fisher Cat#:17005042

Chemical
compound, drug

RPMI 1640 medium Gibco/Thermo Fisher Cat#:21875–034

Chemical
compound, drug

Human recombinant EGF Gibco/Thermo Fisher Cat#:PHG0313

Chemical
compound, drug

Celltracker Orange (CMRA) Life Technologies/
Thermo Fisher

Cat#:C34551

Chemical
compound, drug

Celltracker Green (CMFDA) Life Technologies/
Thermo Fisher

Cat#:C7025

Chemical
compound, drug

Celltracker DeepRed Life Technologies/
Thermo Fisher

Cat#:C34565

Chemical
compound, drug

Image-iTTM FX
Signal Enhancer

Thermo Fisher Cat#:I36933

Chemical
compound, drug

Antibody diluent,
background reducing

Agilent Dako Cat#:S3022

Chemical
compound, drug

Antibody dilutent Agilent Dako Cat#:S0809

Chemical
compound, drug

Fluoromount-G SouthernBiotech Cat#:0100–01

Chemical
compound, drug

DAPI (1 mg/ml) Thermo Fisher Cat#:62248 1:1000 dilution

Antibody Goat polyclonal
anti-mouse Alexa
Fluor 488

Thermo Fisher Cat#:A-11001;
RRID:AB_2534069

1:400 dilution

Antibody Phalloidin Alexa
Fluor 647

Thermo Fisher Cat#:A22287;
RRID:AB_2620155

1:400 dilution

Antibody Mouse monoclonal
anti E-cadherin

Becton,
Dickinson U.K Ltd.

Cat#:610181;
RRID:AB_397580

1:400 dilution

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Other 25 culture-inserts
2-Well for
self-insertion

Ibidi Cat#:80209

Software Fiji ImageJ https://imagej.net/Fiji RRID:SCR_002285 TrackMate Plugin

Software
/Algorithm

Motion Sensing
Superpixels

This paper RRID:SCR_016839 https://github.
com/fyz11/MOSES

Cell lines and tissue culture
EPC2 (from Prof. Hiroshi Nakagawa, University of Pennsylvania, Perelman School of Medicine,

Department of Gastroenterology, USA) and CP-A (ATCC) cells were grown in full KSFM (Thermo

Fisher), AGS (ATCC) and OE33 (ECACC) in full RPMI with 10% FBS. Both were supplemented with

glutamine and Penicillin streptomycin at 37˚C and 5% CO2 until 80% confluent. To passage EPC2

and CP-A, cells were resuspended after trypsinization for 5 min with PBS supplemented with soy-

bean trypsin inhibitor (0.25 g/L, Sigma) to prevent cell death prior to resuspension in KSFM. To

store, cells were resuspended at a concentration of 106 cells/ml with 90% FBS +10% DMSO freezing

media following centrifugation and stored at �80˚C before passing to liquid nitrogen storage. All

cell lines were tested monthly for mycoplasma infection using MycoAlertTM PLUS Mycoplasma

Detection Kit (Catalog #: LT07-705 from Lonza) at the Ludwig Cancer Institute, Oxford, UK and have

not shown evidence of Mycoplasma. Cell lines have been authenticated by Eurofins.

Fluorescent labelling
Cells were labelled using Celltracker Green CMFDA and Celltracker Orange CMRA dyes (Life Tech-

nologies) according to protocol. Two different concentrations 2.5 mM and 10 mM were used. The

lower concentration still permits tracking but has fewer toxicity concerns.

Immunofluorescence staining
Samples were washed twice with PBS and fixed with 4% PFA for 15 min. The samples were then

washed twice and permeabilised with 0.1% Triton-X for 15 min. Samples were blocked with image-iT

Fx signal enhancer for 1 h before incubation with E-cadherin (610181 Becton Dickinson U.K. Limited)

overnight at a 1:400 dilution in Agilent Dako Antibody Diluent with Background Reducing Compo-

nents (S3022, Agilent Dako) at 4˚C. Following 3 washes of 10 min in PBS, samples were incubated

for 2 h in the dark with Alexa 488 goat anti-mouse (A11001, Thermo Fisher) secondary antibody and

Alexa Fluor 647 Phalloidin (A22287, ThermoFisher), both at a 1:400 dilution and DAPI (1 mg/mL) at

1:1000 dilution (62248, Thermo Fisher) in Agilent Dako Antibody dilutent (S0809, Agilent Dako).

Finally, samples were washed three times with PBS and mounted using Fluoromount-G (0100–01,

SouthernBiotech).

Temporary divider Co-culture assay
In 70 mL of culture media, 70,000 labelled cells were seeded into each side of a cell culture insert

(Ibidi) in one well of a 24-well plate. After 12 h, inserts were removed and the well washed three

times with PBS to remove non-attached cells before adding the desired media (KSFM (0% serum in

the text) or 1:1 mixture of KSFM:RPMI + 5% FBS (5% serum in the text)) for filming. For the perturba-

tions, the effector, for example EGF, was also added to the media at the stated concentrations.

Spike-in experiments
A third population of cells dyed with 2.5 mM of CellTracker DeepRed (Life Technologies) was diluted

1:200 into one of the other two populations dyed with either Celltracker Green CMFDA (Life Tech-

nologies) or Celltracker Orange CMRA (Life Technologies) of the same cell line. The mix was then

added to one side of the insert (Ibidi) as with the two cell population experiments described in the

main text.
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Image acquisition
The different conditions were filmed on a Nikon microscope for 96 or 144 h at a frequency of 1

image per hour. 2x and 4x objectives were used. The microscope filter wavelengths used to visualise

the red and green dyes were 546 nm and 488 nm, respectively.

Automated cell counting with convolutional neural networks
The convolutional neural network (CNN) density counting approach of Xie et al., 2016 was used to

automatically count cells in confocal DAPI-stained nuclei images or fluorescent and phase contrast

video frames. Once trained, given an input image the CNN model outputs a dot-like image with the

property that the sum of all pixel intensities in the output dot-like image equals the number of cells

within the image (Figure 1—figure supplement 1A). We describe the training method for DAPI

images only. Other image modalities were trained in a similar manner details of which are given

below under ‘Migration independent cell counting in videos’. To generate the training data for DAPI

cell counting, 200 image patches (size 256 pixels x 256 pixels) were first randomly extracted from

the acquired DAPI images of resolution 4096 pixels x 4096 pixels (Figure 1—figure supplement

1A). For each extracted 256 � 256 image patch, the stained nuclei centroids were manually marked

using a ‘dot’. Then for each 256 � 256 image patch, 50 randomly sampled 64 pixel x 64 pixel

patches were extracted to yield a total training set of 10,000 image patches (Figure 1—figure sup-

plement 1A). The CNN training settings used for a 70:30 train-test split were 200 epochs, batch size

100, RMSprop (lr = 0.001, rho = 0.9, epsilon = 1e-08, decay = 0.0) with a mean absolute error (MAE)

loss. The final test accuracy was reported as the mean absolute deviation (MAD) between manually

counted and predicted cell counts on the result of applying the learnt CNN to the larger 256 � 256

manually labelled image patches (Figure 1—figure supplement 1B,C). To count specific cell types

stained with different coloured dyes from confocal images, epithelial sheets were segmented from

their respective channels by applying k-means clustering on the RGB image pixel intensity values

with k = 3 (retaining the two clusters of highest intensity) after downsampling the full-size images

(4096 � 4096 pixels) by a factor of 4 (to 1024 � 1024 pixels). Small objects (<200 pixels) were

removed, holes were filled and the largest connected component kept before upsampling the binary

mask to its original resolution (4096 � 4096). The respective final binary mask was used to mask and

count cells specific to each colour channel (Figure 1—figure supplement 1C). Counting of specific

cell types in timelapse video frames, which are more variable in quality, is similar but uses the more

optimized image segmentation protocol detailed below to segment individual epithelial sheets.

Migration-independent cell counting in videos
To count the migrating cells in the videos, two different approaches were used. The first and default

approach used in this paper is the automatic CNN counting described above trained on manual

annotations of the fluorescent video frames (Figure 4—figure supplement 1A,B). To bypass the

issue of moving areas, we first produced a binary mask based on image segmentation as described

below to identify the respective ‘red’ and ‘green’ cell sheet areas to quantify. Using the mask, equal

sized image patches of 64 � 64 were randomly sampled. These were then fed into the trained CNN

to produce cell count estimates for each image patch. The average cell density over 100 random

such image patches were taken as an estimate of cell density for the entire frame. This operation

was repeated for each channel separately and for every time point to yield a temporal cell count pro-

file. The proliferation rate was subsequently estimated as the average absolute cell density change

in successive frames normalised by the mean cell density (computed over the desired time frame)

(Figure 4—figure supplement 1C). To check results were unaffected by the imaging modality, CNN

based counting was also applied to the corresponding phase contrast images where the fluores-

cence channels were used to identify the individual cell types (Figure 4—figure supplement 1D).

The second approach exploits the change in dye fluorescence as cells proliferate (the cell dye inten-

sity decreases as they divide) (Figure 4—figure supplement 1E–H). For our videos, the image inten-

sity exhibits too discrete a transition between time points (Figure 4—figure supplement 1F) for

accurate extraction of the fluorescence decay. Instead, given that all videos of EGF addition to

EPC2:CP-A were of the same temporal length (144 h), we found that the modal image intensity and

modal normalised frequency of the intensity histogram peak at every time point served as an alterna-

tive quantification of fluorescence decay that yields the same conclusions (data not shown) but could
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be robustly fitted with a linear best-fit line (Figure 4—figure supplement 1I). The faster the fluores-

cence decay, the higher was the cell proliferation and the higher the absolute value of the fitted lin-

ear gradient that we used as a proxy proliferation coefficient (Figure 4—figure supplement 1J,K).

Image segmentation of epithelial sheets in timelapse video
Red and green channel images were anisotropically filtered (Perona et al., 1994) to enhance image

edges and suppress stochastic image noise. The entropy image was then computed to enhance the

epithelial sheet. Otsu thresholding was subsequently applied to obtain red and green binary masks

of the sheet. Finally ‘holes’ in the resultant masks were filled using a line rastering approach.

Computing the distance displaced of the boundary following gap
closure
A custom image edge finding script using Sobel filters to detect edges on downsampled fluorescent

images was used to find the leading sheet edge (in terms of an average x-coordinate) of both cell

populations for each time frame (the averaged y-coordinate of the boundary did not change signifi-

cantly over the filmed duration). The gap closure point was determined by the intersection of the

two x-coordinate curves. The displaced distance of the boundary following gap closure was com-

puted as the absolute distance between the final frame averaged x-position and the gap-closure

frame averaged x-position.

MOSES framework
MOSES was developed using the Python Anaconda 2.7 distribution, in particular it uses Numpy, the

Scipy-stack and OpenCV libraries. It comprises separately a cell tracking and data analysis

component.

Motion extraction
Regular superpixels were generated by applying the SLIC (Achanta et al., 2012) algorithm in scikit-

image on a blank image, the same size as the video frame. 1000 superpixels were used throughout

in this paper. Motion fields for updating the superpixel centroid position over time were computed

with OpenCV Farnebäck optical flow (Farnebäck, 2003) using default parameters. For ease of imple-

mentation, displacement vectors were rounded to the nearest integer. Superpixels passing out of

the frame progressively lose pixels and retain their last motion position for the tracking duration. For

simplicity, lost area is not recovered. PIV was computed using the Python openpiv package, using

the closest equivalent parameters to MOSES; window size of 16 pixels, overlap of 8 pixels and

search area of 32 pixels.

Motion feature-based sheet segmentation and superpixel assignment
Step 1: Given the tracks of one colour for example red, identify all superpixels that initially move by

thresholding on the cumulatively moved distance within the first few frames, (here we used 2 frames,

equivalent to 2 h). Step 2: Form the superpixel neighbourhood graph by connecting together all

identified moving superpixels from step 1 to any other identified moving superpixel within a speci-

fied radial distance cutoff (1.2 x average superpixel width here) using their initial (x,y) centroid posi-

tions. The largest connected graph component is then found to approximate the covered area of

the epithelial sheet at frame 0. Step 3: In some videos, image artefacts such as autofluorescence or

the presence of isolated cells contributes superpixel tracks that are biologically irrelevant and affects

quantification of the migrating sheet dynamics. Tracks associated with these noise sources must be

removed. The need for such removal is automatically evaluated through a user-set cutoff based on

prior knowledge of the expected maximum fraction of the field-of-view covered by any one of the

red or green populations at time t = 0 (e.g. for a 50:50 plating of red and green cells, a conservative

cut-off fraction of 0.70 is used here). Assuming that no red and green superpixel can jointly occupy

the same (x,y) position in frame 0, joint filtering based on the degree of movement is applied to

clean segmentation errors from previous steps. Step 4 (not required if running MOSES using dense

tracking): The kept superpixels after steps 1-3, are then iteratively dynamically propagated to iden-

tify ‘activated’ superpixels (those that lie in the joint area occupied by the kept superpixels) frame-

by-frame. Step 5 (potentially optional): In case the dynamic superpixel propagation identifies
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superpixels that do not move much over the entire video and to ensure the temporal continuity of

superpixel positions, steps 1-2 are repeated. Step 6: To ensure the same number of superpixel

tracks across all videos for statistical comparison, finally we assign constant tracks for all unused or

inactivated superpixel tracks where for all frames their (x,y) positions are fixed to their initial centroid

position. The procedure described is illustrated more concisely in Figure 2—figure supplement 1A.

Dynamic mesh generation
To generate meshes, each superpixel is connected to its nearest ‘neighbours’. The notion of ‘neigh-

bour’ is mathematically defined by the user (see below). For the MOSES mesh used here for visuali-

sation and stability analysis, we defined ‘neighbours’ using a pre-set distance cut-off based on the

distance between individual superpixel centroids at the start of tracking. The mesh strain curve thus

measures the relative distortion between connected superpixels with respect to their initial mesh

geometry over time. For computation of the boundary formation index, a different mesh was used

where neighbours were independently determined frame-by-frame by a pre-set distance threshold.

The specified threshold in both meshes are given in Euclidean distance as a multiplicative factor of

the average superpixel width used. A factor of 1.2 for the mesh strain and 5.0 was used for the

boundary formation index throughout.

MOSES dynamic meshes – mining contextual relationships of spatio-
temporal tracks using geometry and graph theory
Numerous ways exist to connect a collection of (x,y) points to form a graph or mesh. Depending on

the mesh formed, different aspects of the movement can be enhanced and probed in interesting

ways. In this paper, the presence of collective motion biologically motivates the mesh concept. More

generally, meshes are ‘abstract’ constructs to assess relationships. In terms of motion analysis, in this

paper, we recognise that different spatially located points may be correlated particularly if they are

spatially close. In view of this, we first describe and explain the rationale of the two meshes con-

structed in the main text for visualising and quantifying epithelial sheet dynamics before describing

possible extensions and how these may be more useful for specific experiments. The first and the

primary mesh used throughout is what we term the MOSES mesh. It is constructed by joining each

superpixel track with all superpixel tracks whose initial (x,y) centroids are within a user-specified con-

stant Euclidean distance cut-off. Implicitly this assumes that under collective sheet migration, initially

spatially close superpixels continue to remain spatially close. Violation of this assumption leads to

large stretching or compression of the MOSES mesh, which can be used to derive a measure of

motion collectiveness (see mesh order below). The second mesh is used to generate the motion

saliency maps for localising boundary formation, a dynamic state that varies frame to frame. Each

superpixel track is again connected to all superpixel tracks whose (x,y) centroids are within a user-

specified Euclidean distance cut-off. However, contrary to the first mesh, which uses only the cen-

troid positions in frame 0, here the distances are determined using the current position of all super-

pixels in the current frame. Thus the ‘neighbours’ continuously change frame-to-frame. We refer to

this mesh as the radius neighbour graph and the motion saliency map is the result of counting the

number of neighbours for each superpixel (i.e. the node degree). The number of surrounding neigh-

bours increases in spatial areas where motion concentrates e.g. there exists a local chemoattractant

or a physical impedance to cell movement such as a boundary. Thus boundaries are natural attrac-

tion motion centres; leading superpixels at the boundary cannot advance whilst those behind con-

tinue to move towards the boundary. This leads to an overall accumulation of superpixels at the

boundary (c.f. motion saliency maps in Figure 3—figure supplement 2). In both meshes, tuning the

distance cut-off threshold tunes the length-scale of the spatial interaction one wishes to analyse. For

boundary formation, a phenomenon that spans the entire height of the image, one should choose a

relatively large distance cut-off such as 5x the average superpixel width compared to, for example,

identifying the localisation of a macrophage to a cell apoptosis site. In the latter, the attraction site

is more point-like and a radius cut-off 1x the average superpixel width may be more accurate.

Finally, whilst both of the presented meshes in our paper only utilise physical distance to define

neighbours this is by no means the only possibility. In some applications such as flocking, the topo-

logical distance (i.e. the number of points away) not the physical distance may be more relevant

(Ballerini et al., 2008). In this situation, it is more common to construct the local kNN (k-nearest
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neighbour) graph, designating the closest k superpixels as neighbours. The kNN is also frequently

used when the magnitude of the ‘interaction’ between points is not known a priori as a way to prop-

agate local information and mine patterns in data c.f. t-SNE for dimensionality reduction, spectral

clustering and similarity network fusion (Wang et al., 2014) for combining multimodal datasets.

Finally, superpixels may be joined not only spatially but also temporally to enforce consistent tempo-

ral neighbour relations (Chang et al., 2011) as well as according to more ‘semantic’ notions of simi-

larity for example similar image appearance, similar instantaneous velocities (Chang et al., 2011). In

short, by formalising motion analysis under the framework of dynamical meshes that connects

together ‘neighbouring’ superpixels, we can analyse complex motion not just in terms of instanta-

neous speed and orientation but can additionally leverage powerful established tools developed in

the fields of computational graph theory, network theory, topology etc. to effectively quantify and

mine increasingly complex motion phenotypes in high-content screens.

Mean squared displacement (MSD)
As a measure of cellular motions, MSD was computed as a function of time interval, Dt as in

(Park et al., 2015).

MSD Dtð Þ ¼ ri tþDtð Þ� ri tð Þj j2
D E

where ri tð Þ is the position of the superpixel i at time t and �h i is the average over all time t and all

superpixels. For small Dt, the MSD increases as a power law Dta, where the exponent a is deter-

mined empirically by fitting. For unity exponent (a¼ 1), the movement is uncorrelated random Brow-

nian motion and cellular motion is diffusive. When a>1, cellular motions are super-diffusive, and

when a¼ 2, motions are ‘ballistic’.

Root Mean Squared Displacement (RMSD)
As a summary of the whole video motion and a measure of movement, the root mean squared dis-

placement was computed as a function of time relative to the initial time

t0, RMSDðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riðtÞ � riðt0Þj j2

D Er
where riðtÞ is the position of the superpixel i at time t and �h i is the

average over all time t and all superpixels. For multi-channel videos, the average RMSD was used to

describe video motion. Unless otherwise stated in the text, the normalised RMSD (here division by

maximum value within the common time window of comparison) was plotted to permit comparison

across different conditions. To compare across videos of different duration, in Figure 1—figure sup-

plement 4B we instead compute the RMSD divided by its value at 96 h, the maximum timepoint

shared by both our 96 h and 144 h videos.

Normalised spatial correlation
For each superpixel i we define its neighbourhood, Ni as all superpixels j which lie within a specified

distance, r. Given the time-dependent velocity function V � V tð Þ ¼ r t þ 1ð Þ � r tð Þ where r tð Þ is the

track (all (x,y) positions) up to time t, the normalised spatial correlation of a video with a total of

n superpixel tracks is defined as

1

n

Xn

i¼1

E8j2Ni

cov ViVj

� �

sVi
sVj

� �

where E �½ � is the mean function averaging over the superpixel neighbourhood, cov �ð Þ is the covari-

ance function and sVi
is the standard deviation of Vi tð Þ. Computing spatial correlation as a function

of r for our videos yields an exponential decay which can be fitted to an equation of the form

y¼ ae�x=b from which the initial correlation a and characteristic correlation distance b can be deter-

mined for plotting, (Figure 1—figure supplement 5). In our plots, the distance r is in terms of nor-

malised units (i.e. the number of average superpixel widths away).

Manual vs MOSES comparison on cell tracking challenge datasets
MOSES does not explicitly handle individual cells leaving and entering the field of view or cell divi-

sions during filming. For fair comparison of motion capture ability with manually annotated tracks,
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the tracks were only compared for cells present in the initial frame as depicted with coloured masks

(Figure 2B). Single-cell tracks were generated from MOSES (1000 superpixels) by identifying the

superpixel track that has moved the greatest distance over the video duration amongst all superpixel

tracks whose initial (x,y) position lies within the area of the individual cell of interest as marked out

by manual annotation at t = 0 (Video 3).

TrackMate single-cell tracking
The Fiji TrackMate plugin (Tinevez et al., 2017) was run on the third blue image channel containing

only the sparse population of DeepRed dyed cells with the following settings: estimated blob diame-

ter, 10 pixel (default); threshold, 2.5; linking max distance, 50; gap-closing max distance, 50; and

gap-closing max frame gap, 100. All other parameters were left at their default values.

TrackMate vs MOSES comparison
As with the cell tracking challenge dataset for fair comparison of motion capture ability with single

cell trackers like TrackMate, tracks were only compared for cells present in the initial frame as

detected by TrackMate. To generate single-cell tracks using MOSES (with 10,000 superpixels) for

the sparse DeepRed dyed cells, the nearest four superpixel tracks to each cell centroid were aver-

aged to produce a single track. Similarly, to generate single cell tracks using MOSES (with 1000

superpixels) from the Green CMFDA dyed or Orange CMRA dyed sheet, for each cell, the nearest

four green/red superpixel tracks were found to compute a mean track. Track similarity was com-

puted by evaluating the normalised velocity cross-correlation (value between 0 and 1 as defined

below) between each MOSES track and its corresponding TrackMate track with the average normal-

ised velocity cross-correlation over all tracks reported for each video (Figure 2—figure supplement

2B, denoted M. for matched tracks). To assess the statistical significance of the resultant value, the

track similarity from random pairing of the tracks were computed and the average of 10 permuta-

tions were reported (labelled P. for permuted in Figure 2—figure supplement 2B). All three combi-

nations of cell types (EPC2:EPC2, EPC2:CP-A and EPC2:OE33) and all red/green dye combinations

were tested, a total of 23 videos (each 144 h acquired with one image per h). The frame size of each

acquired video was 512 � 672 pixels. As such, the mean spiked-in cell diameter was 5 pixels, the

average superpixel width was 6 pixels (10,000 superpixels) and 19 pixels (1000 superpixels). From

Figure 2—figure supplement 2B and Video 4, MOSES achieves near perfect similarity compared to

TrackMate. In some cases, the produced MOSES tracks are more desirable, guaranteeing a continu-

ous track whereas TrackMate requires explicit linking of cell detections across frames and thus often

tends to produce many ‘broken’ tracks when the same cell is unable to be detected across all time

points.

Motion saliency map
The motion saliency map illustrates in a heat map format spatial areas of motion sources and sinks,

and was constructed using the MOSES dynamic meshes and superpixel tracks. It is inspired by

Lagrangian fluid mechanics (Shadden et al., 2005; Ali and Shah, 2007). To compute this map for

each frame, the radius neighbour graph was constructed (see above paragraph) using the spatial

positions of superpixels in that frame and a blank image was populated at the (x,y) centroid position

of each superpixel with the count of the number of surrounding neighbours according to the radius

neighbour graph. This yielded an ‘image’ of size n_frames x n_rows x n_cols, where n_rows, n_cols

are the video frame dimensions. We now have a multidimensional spatial heat map for each frame

that captures the spatial-temporal motion saliency. To reveal long-time temporally persistent behav-

iour, we averaged the heatmap both spatially and temporally using the superpixel partition of the

initial video frame as illustrated in Figure 3—figure supplement 2. By construction, this spatial map

is general for studying any phenomenon where spatial localisation plays a role.

Quantification cut-offs
We assume normally/t- distributed statistics for all measures. Boundary formation cut-off was set

one standard deviation above the pooled mean of 0% serum samples. Mesh stability index was set

one standard deviation below the pooled mean of 0% serum EPC2:EPC2, EPC2:CP-A samples.
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Boundary formation index
The boundary formation index (Figure 3—figure supplement 2) quantifies the extent to which

motion concentrates into localised spatial regions in the motion saliency map as a signal-to-noise

ratio with value from 0 to 1 suitable for global comparison across video datasets. For example a

boundary concentrates motion along a ‘line’ whilst cell death may generate multiple spot-like con-

centrations (Figure 3—figure supplement 3). The higher the index, the more that motion is concen-

trated into a single spatial region. To compute the boundary formation index from the visual motion

saliency image, the motion saliency image was segmented into ‘high’ and ‘low’ intensity using Otsu

thresholding and the normalised signal-to-noise ratio was computed, defined by mean highð Þ�mean lowð Þ
mean highð Þ

(Figure 3—figure supplement 2). The mean was used as the motion saliency map was computed

from a sparse set of points given by the number of superpixels. Individual pixel statistics such as the

maximum intensity are therefore noisy and not robust measures. The denominator was set to be the

mean of the ‘high’ intensity region in order to give a numerical value bounded between 0–1 for

standardised comparison. As this measure captures the ‘peakiness’ of the spatial distribution, it can

also be used to quantify other localised spatial processes with adaptation for example cell death.

Normalised mesh strain curves
For a superpixel, i at time t we define the mesh strain, "i tð Þ of the local neighbourhood, Ni with n

neighbours as the mean of the absolute difference in the distance between superpixel i and

superpixel j in its neighbourhood at time t, rij tð Þ and at the start at t ¼ 0, rij 0ð Þ so that

"i tð Þ ¼
1

n
Sj2Ni

rij tð Þ � rij 0ð Þ
�� �� where j � j is the absolute value or L1-norm. The time-dependent mesh

strain for one mesh is the mean local neighbourhood mesh strain over all superpixels for each time

frame. The result is a vector the same length as the number of frames in the video. For multi-chan-

nels, the average vector is used to describe video motion. The absolute value of the strain curve is

susceptible to the image acquisition conditions and geometry whilst the motion information is pri-

marily encoded by the shape of the resulting curve. To permit comparison across different condi-

tions, the normalised strain curve (here division by maximum strain within the common time window

of comparison, 0-96 h here) up to 96 h (the maximum timepoint shared between 96 h and 144 h vid-

eos in this paper) was used as a simple signature to describe the global video motion pattern when

computing motion maps.

Normalised mesh strain, L1-norm and robustness
Here we provide more details as to why we chose the L1-norm for computing the mesh strain. When

computing the ‘distance’ between two vectors, x1; x2 both of length n one can define the notion of

distance in different ways. A popular family of distances or norms to use is the Lp-norm denoted

x1 � x2j jj jp defined mathematically as follows:

x1 � x2j jj jp¼
Xn

i¼1

xi
1
� xi

2

�� ��p
 !1

p

where i¼ 1; . . . ;n is the ith element of the vector

j � j denotes the absolute difference. Within this family the most popular is the

L1 p¼ 1ð Þ and L2 p¼ 2ð Þ norms. The L1-norm is also called the mean absolute deviation and the L2-

norm the Euclidean or mean squared distance. The quadratic function of L2 amplifies large differen-

ces (> 1) and reduces the effect of smaller differences close to zero thus where differentiability is not

a concern L1 is the more robust choice. In our case where most of the distances are larger than 1 (as

all superpixels are initially seeded at a distance > 1), we chose to use L1 which is more resistant to

the effect of extremal values as a result of errors in motion extraction.

Mesh stability index
The mesh stability index attempts to quantify the global stationarity (Figure 3—figure supplement

4) across a moving collective such as an epithelial sheet by measuring the change in the average dis-

tance between each superpixel and its neighbours. Specifically, it measures the flatness of the nor-

malised mesh strain curve as defined above. Note whilst a curve is flat only if its gradient is flat

that is 0, it is more visually appealing to report increasing stability with increasing values therefore
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we define the mesh stability index as 1 minus the end gradient. The end gradient is most stable

when it has a value of 0 therefore this index is upper bounded by 1. To standardise the value of the

gradient for comparison, we normalise also across time such that for any length video, time is from 0

to 1. To compute the end gradient stably without curve fitting procedures, we assume the end point

is locally linear with respect to time and average the first-order differences over the last few frames.

For 96 h videos, the period of stability given by the curve plateau is shorter, therefore the last 10

frames (10 h) were used for computing the gradient. For 144 h videos, the last 24 frames (24 h) were

used.

Mesh order
Inspired by the definition of the velocity order parameter, the mesh order is identically defined but

uses the local resultant mesh strain vector instead of instantaneous velocity vectors for computation

(Figure 3—figure supplement 5). In this paper, we used the MOSES mesh but any similar mesh con-

struction is equally valid. Given a mesh, the mesh strain vector for a superpixel is the sum of the dis-

placement vector of the superpixel relative to each neighbouring superpixel (Figure 3—figure

supplement 5). The mesh order is computed for each frame accordingly for a video. The mean value

over all frames was reported for statistical comparison.

Normalised velocity cross-correlation
Cross-correlation measures the similarity between two signals taking into account time delay, (Fig-

ure 3—figure supplement 6). As ‘signals’, we use the time-dependent velocity V tð Þ computed from

the spatial displacement between the location r t þ 1ð Þ at time t þ 1 and location r tð Þ at time t,

V tð Þ ¼ r t þ 1ð Þ � r tð Þ which is spatially location-independent. Velocity is a vector quantity with both

x and y components. Letting � denote the scalar product, the normalised velocity cross-correlation

(VCC) of the tracks of red superpixel i and green superpixel j at time t and time lag m such that the

extremas are bound by [-1,1] is

VCCij m; tð Þ ¼
1

T

XT

m¼�T

bVi tþmð Þ � bVj tð Þ

where bVi ¼
Vi�Vi

�

si
, Vi

�
and si is the mean and standard deviation of Vi respectively. T is the maximum

time lag and is set to be the length of Vi. VCC can be either positive or negative. We report the

maximum absolute value for all red-green pairings and the average over all pairings as evidence of

interaction between two epithelial sheets. In the main text, this is computed with tracks before (up

to - 5 frames) and after (from + 5 frames) the gap closure point. The offset of 5 frames either side is

based on the accuracy to which we could determine the gap closure point automatically (see below).

Automatic gap closure determination
The frame of gap closure when the two epithelial sheets contact was found by finding the video

frame in which the average distance between the migrating fronts of the two epithelial layers was

minimised. To compute this distance as a function of time (frame number), first each epithelial sheet

was independently segmented based on their respective colour channel pixel intensity (Figure 3—

figure supplement 9A). For each sheet, images were preprocessed using a median filter (square

kernel, the same size as the average superpixel width) and segmented using two class k-means clus-

tering (for 0% serum, three class k-means was used to include the weaker pixel intensity of leading

cells). The resulting segmentation was post-processed by binary morphological operations (binary

closing with disk kernel of 5 pixels, removal of small objects (< 5% total image size) and binary fill-

ing). Sheet boundary points were efficiently identified using a sweepline algorithm. The image was

evenly divided into 100 horizontal strips or sweeps in the y-direction. For each sweep, one boundary

point was identified by selecting either the right-most point (largest x-coordinate) if the sheet was

moving right, or left-most point (smallest x-coordinate) if the sheet was moving left (Figure 3—fig-

ure supplement 9B). Doing this for both sheets, each of the boundary points was paired in the red/

green sheet to the closest in the opposing colour by physical distance. The average distance

between the migrating fronts of the two epithelial layers for a particular frame was then the average

euclidean distance of all red-green boundary point pairs in the frame. Computing the average
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distance between the two sheets frame-by-frame, there was a change in the rate of decrease as the

gap closed (Figure 3—figure supplement 9C). To estimate the frame at which this transition occurs,

asymmetric least means squares (Eilers and Boelens, 2005) was used to first fit the baseline (repre-

senting the contribution to the distance measurement due to image segmentation errors) and sec-

ond a linear spline (smoothing factor 0.1*variance(curve)) was used to approximate the temporal

average distance curve. The gap closure frame was then found as the first frame for which the fitted

spline value falls below the fitted baseline + 2*std(fitted baseline), where std is the standard devia-

tion operation. We validated the method using a total of n = 246 videos of different cell combina-

tions in different media by comparing the inferred frame to the consensus (average frame) of two

manual annotators. A strong Pearson correlation coefficient of r = 0.902 (Figure 3—figure supple-

ment 9D) and an accuracy of 94% within ± 5 frames (Figure 3—figure supplement 9E) compared to

an accuracy of 97% within ± 5 frames between two human annotators (Figure 3—figure supplement

9F) was found.

Boundary detection
Boundaries were detected either i) by image segmentation (early timepoints) or ii) from the MOSES

tracks (late time points). For image segmentation, red and green epithelial sheets were segmented

as described above for timelapse video frames. The boundary binary mask was then found as the

mathematical set intersection of red and green binary masks. To derive a boundary line, the non-

zero image coordinates of the binary boundary mask were forced to form a line given by unique (x,y)

coordinates by returning the average x-coordinate (along image horizontal) for each unique y-coor-

dinate (along image vertical). A piece-wise cubic spline was subsequently fitted to enable interpola-

tion of the boundary line. To derive the boundary line from the MOSES superpixel tracks, first all

non-moving tracks that is all tracks that do not move a total distance greater than a predefined

threshold was removed. Then at each frame, t we considered all superpixels that have moved since

the previous frame t � 1. We then attempted to match the red superpixels to green superpixels

where we defined a match when the distance between two points is smaller than a predetermined

cut-off. All red and green superpixel points that have at least one successful match were kept.

Together these points form the boundary candidate points. As discussed, a boundary is a motion

attractor thus we can robustly find the boundary points from the candidate points using an asymmet-

ric least squares filter (Eilers and Boelens, 2005). We modified the original formulation of Eilers and

Boelens, 2005 to enforce density based filtering by using a cut-off based on the number of neigh-

bours within a predefined distance. Finally, given the boundary points the boundary line was found

as in the case of image segmentation.

Cell infiltration
For a single video frame, the infiltration of the first colour cell type into the second colour cell type is

defined as the fraction of first colour cells that lie on the side of the boundary line of the second col-

oured sheet. The boundary line was located from image segmentation as described above.

Boundary shape
The boundary shape is defined as the total length of the boundary line (L) divided by the equivalent

straight line length (L0) illustrated as solid white and yellow lines respectively in Figure 3—figure

supplement 10C.

Intermixing coefficient
We computed two different measures to reflect the ‘intermixing’ behaviour of cells at the boundary,

which we denoted either ‘(Image)’ or ‘(MOSES)’ in Figure 3—figure supplement 10. The image

intermixing coefficient reflects the ‘spread’ of the wound after we perform image segmentation on

the video frame. A heavily infiltrated and wavy boundary yields a larger binary mask and occupies a

larger fraction of the image than a sharp, linear boundary. We capture this idea by defining the inter-

mixing coefficient (image) as the area of the boundary mask relative to the total image area. This is

however a static measure of intermixing. It does not account for the fact that the boundary is not

static and can be highly dynamic such as in EPC2:EPC2 or how EPC2 cells appear to ‘flee’ OE33 cells

with little coordination. We thus propose a second dynamic measure of intermixing coefficient based
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on measuring the spread in the motion behaviour. This intermixing coefficient (MOSES) is the area

of the binary mask after thresholding the motion saliency map relative to the total image area. Of

note, the two intermixing coefficients are identical if the final boundary is stable and the motion at

the boundary during boundary formation is coordinated such as in EPC2:CP-A (Figure 3—figure

supplement 10E).

Kymographs
Boundaries were detected using the MOSES tracks as described. The kymograph of one time slice

shows the median values of the projected x-direction velocities of all pixels as a function of the x-

position. For superpixel tracks, the x-axis was binned with two times the number of unique x-coordi-

nates based on the initial superpixel centroids (in line with Nyquist sampling theorem). This proce-

dure was repeated for each timepoint to build the full kymograph over time.

Generating feature descriptors for motion map generation
A feature descriptor for an image/video is a 1D numerical vector designed to summarise the image/

video content in a compact code or signature. No universally optimal method exists to generate

such a descriptor for all applications. In the main text, for simplicity to avoid the introduction of new

concepts we used the normalised strain curve used to compute the mesh stability index as an exam-

ple video feature vector for PCA. As we showed, this was sufficient to distinguish the different

migration behaviour of the investigated cell combinations. However, the normalised strain curve is a

coarse 1D approximation of the local MOSES mesh stretching and only one characteristic of the

complex mesh dynamics. More generally, one can exploit other mesh constructions as discussed

above to derive a plethora of graph theoretic measures such as the algebraic connectivity, the Lapla-

cian spectrum and centrality, or supplement mesh-based statistics with trajectory-based measures

such as turning angle and speed for a more comprehensive unbiased description of the spatio-tem-

poral motion. In circumstances where cellular appearance exhibits large temporal changes such as in

the case of migrating cells with lamellipodium, motion features alone may not provide a sufficiently

descriptive signal for quantifying phenotypic differences. Here one could additionally supplement

motion signatures with appearance-based features such as image texture descriptors (e.g. LBP, Har-

alick, HoG (histogram of oriented gradients) and SIFT (and its variants)) and construct the mesh

semantically with the augmented motion-appearance descriptor.

Dimensionality reduction experiments
We used the Python scikit-learn implementation of PCA (principal components analysis), MDS (multi-

dimensional scaling) and TSNE (t-distributed stochastic neighbour embedding) and applied them to

the ‘raw’ normalised mesh strain curves (no pre-processing). PCA was applied with n_components = 2

without input whitening. MDS used default scikit-learn parameters with n_components = 2, ran-

dom_state = 0. TSNE used n_components = 2, learning_rate = 100, random_state = 0,

init = ‘random’. A 97-20-2 fully connected neural network autoencoder was implemented and

trained with Keras (Tensorflow backend) with mean squared error loss using the Adam optimizer

(lr = 0.001, beta_1 = 0.5, beta_2 = 0.999, epsilon = 1e-08, decay = 0.0). 48/77 of the 5% serum vid-

eos were used for training and the remaining 29/77 for validation to check for model overfitting.

Tanh activations were used throughout. To maximise gradient propagation in the linear range of the

‘tanh’ activation function, we subtract 0.5 from the input normalised strain curves (values between 0

and 1) as a pre-processing step for the neural network.

Automatic clustering of superpixel tracks
To automatically cluster superpixel tracks, we first computed for each superpixel its local mesh strain

curve with respect to its neighbours. This yields a matrix N rows by T columns for N superpixel tracks

and a total of T timepoints. Gaussian mixture model (GMM) was then used to generate clusters

using BIC (Bayesian Information Criterion) to select the optimal number of clusters (Fraley, 1998).

Software availability
The MOSES code is available open-source under a Ludwig non-commercial and academic license at

GitHub, https://github.com/fyz11/MOSES.git (Zhou, 2019; copy archived at https://github.com/
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elifesciences-publications/MOSES) where it is maintained and updated. Example data for testing can

be downloaded from Google Drive, https://drive.google.com/open?id=0BwFVL6r9ww5BaTh6-

NExLR1JMUXM. The full video dataset can be found under DOIs, https://dx.doi.org/10.17632/

j8yrmntc7x.1, https://dx.doi.org/10.17632/vrhtsdhprr.1 for videos with and without EGF addition,

respectively.
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