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Abstract: This study aims at high-frequency ultrasound image quality assessment for computer-
aided diagnosis of skin. In recent decades, high-frequency ultrasound imaging opened up new
opportunities in dermatology, utilizing the most recent deep learning-based algorithms for auto-
mated image analysis. An individual dermatological examination contains either a single image,
a couple of pictures, or an image series acquired during the probe movement. The estimated skin
parameters might depend on the probe position, orientation, or acquisition setup. Consequently,
the more images analyzed, the more precise the obtained measurements. Therefore, for the auto-
mated measurements, the best choice is to acquire the image series and then analyze its parameters
statistically. However, besides the correctly received images, the resulting series contains plenty
of non-informative data: Images with different artifacts, noise, or the images acquired for the time
stamp when the ultrasound probe has no contact with the patient skin. All of them influence further
analysis, leading to misclassification or incorrect image segmentation. Therefore, an automated image
selection step is crucial. To meet this need, we collected and shared 17,425 high-frequency images of
the facial skin from 516 measurements of 44 patients. Two experts annotated each image as correct
or not. The proposed framework utilizes a deep convolutional neural network followed by a fuzzy
reasoning system to assess the acquired data’s quality automatically. Different approaches to binary
and multi-class image analysis, based on the VGG-16 model, were developed and compared. The best
classification results reach 91.7% accuracy for the first, and 82.3% for the second analysis, respectively.

Keywords: high-frequency ultrasound; image classification; deep learning; transfer learning; image
quality assessment

1. Introduction

During the last decades, high-frequency ultrasound (HFUS, >20 MHz) has opened up
new diagnostic paths in skin analysis, enabling visualization and diagnosis of superficial
structures [1,2]. Therefore, it has gained popularity in various areas of medical diagnos-
tics [3,4] and is now commonly used in medical practice [5]. In oncology, it helps in the
determination of skin tumor depth, prognosis, and surgical planning [1,6], enabling differ-
entiation between melanoma, benign nevi, and seborrheic keratoses [7]. Heibel et al. [6]
presented the HFUS as a reliable method with perfect intrahand interreproducibility for
the measurement of melanoma depth in vivo. Sciolla et al. [8] described the spatial extent
of basal-cell carcinoma (BCC), provided by HFUS data analysis, as a crucial parameter
for the surgical excision. Hurnakova et al. [9] investigated the ability of HFUS (22 MHz)
in rheumatology to assess cartilage damage in small joints of the hands in patients with
rheumatoid arthritis (RA) and osteoarthritis (OA). In the newest study, Ciapoletta et al. [10]
describe the usefulness of using 22 MHz ultrasound images for hyaline cartilage diagnos-
tics. The skin thickness and stiffness measurements are recognized by Chen et al. [11] as
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a valuable supplement to clinical skin assessment in systemic sclerosis. In dermatology,
HFUS images are most applicable for a subepidermal low echogenic band (SLEB) below the
echo entry (epidermis layer) detection, which may indicate inflammatory skin disease [12],
and its thickness correlates to the severity of this lesion [2,12]. In patients with atopic der-
matitis (AD), apart from diagnosis support, the HFUS is also useful for epidermal atrophy
monitoring in topical corticosteroid treatment. Thanks to the reliable, accurate, and fast
skin layer visualization, including epidermis, dermis, subcutaneous fat layer, the muscle
layer, blood vessels, and hair follicles, the HFUS found applications in aesthetic medicine.
Recently, Levy et al. [3] reported its usability for healthy skin analysis, where the increased
collagen production connected with aging causes the skin echogenicity to increase.

Usually, the development of imaging techniques is followed by the fast develop-
ment of dedicated image processing algorithms. In recent years, there appeared in
literature [2,4,10,13–15] different solutions in computer-aided diagnosis (CAD) of skin
in HFUS data, which target segmentation, detection, and classification of the affected areas.
A robust skin layer segmentation in HFUS images was as first described by Gao et al. [16],
and developed by Sciolla et al. [15], to finally gain Dice index of 0.919 in [17] for epidermis
segmentation, and 0.934 for fetus body segmentation in embryonic mice HFUS volume
image analysis. The skin tumor segmentation frameworks in HFUS data start from [8] to
finally reach Dice of 0.86 for skin tumor segmentation in clinical dataset [18]. An exten-
sion to this targeting skin layer segmentation for accurate tumor seed point detection is
described in [14]. The first solution of HFUS image classification is described in [4], where
the considered cases include inflammatory skin diseases, skin tumors, and control group.
All the mentioned techniques assume that the preselected correctly acquired images are
proceeded and do not evaluate the incorrect input data. A completely different view of the
classifications problem is presented in [10], where the authors divide the acquired HFUS
records of rheumatic diseases into sets of informative and non-informative frames. The US
frame was defined as informative when it shows enough information to fulfill the Outcome
Measure in Rheumatology US definition of healthy hyaline cartilage.

Since the development of HFUS image analysis coincided with the dynamic develop-
ment of machine learning algorithms, especially in the area of deep learning, most of the
newest approaches [4,10,17] utilize their benefits. The first applications of convolutional
neural network (CNN) to HFUS image segmentation are described in [2,19]. The U-shaped
network, extending the conventional U-Net architecture by batch normalization layers,
accurately segmented epidermis and SLEB layers. The same architecture, followed by the
Savitzky–Golay filter and Fourier Domain Filtering, is described in [20] for epidermis and
hair follicle segmentation in optical coherence tomography images. A development of [2]
is the framework described in [17], where the authors expanded the CNN-based approach
by fuzzy connectedness analysis for robust epidermis segmentation in HFUS.

The most common application of deep learning in medicine is data classification.
Huang [21] and Cai [22] described its usage in ultrasound (US) for breast diagnosis support.
Huang et al. [21] broadened this scope by liver, fetal and cardiovascular image classification,
and thyroid nodule diagnosis assessment. Next, the list was extended by Liu et al. [23],
who added kidney, bone, prostate, and brain US images. There are different architectures
generally utilized in US data classification, like GoogLeNet, for breast lesions [24] and
thyroid nodules [25]; VGGNet and fully-connected network (FCN), which face the level
of liver fibrosis differentiation problem [26]; or Inception-v3, ResNet-101, and DenseNet-
169, achieving the best performance in automatic classification of common maternal–fetal
ultrasound planes [27].

The problem which arises with the development of CNN is the access to a large
amount of labeled data. To fill this gap, the authors and institutions increasingly publish
the data sets through Mendeley Data [28], Center for Artificial Intelligence in Medicine and
Imaging [29], GitHub, or other repositories. However, these repositories leave much to
be desired for the newest imaging techniques, and only one dataset of HFUS skin images,



Sensors 2022, 22, 1478 3 of 17

described in in [30], can be found in Mendeley Data. We collected and shared the face
HFUS image database described in this paper to meet this need.

One of the possible solutions, which can partially solve the overfitting problem, if
training from scratch, is data augmentation. Nevertheless, a feasible alternative is to use:
Semi-supervised learning, transfer learning (TL), learning from noisy labels, or learning
from computer-generated labels [31]. However, TL is reported as widely applicable in
medical image processing tasks [32,33], where limited training data are common problems.
In this approach, the knowledge is extracted from well-annotated, available, large datasets
(e.g., ImageNet [34]) and used in the ongoing issues.

Fast and robust classification steps in medical applications are essential for further
clinical practice usage. Moreover, the visual explanation of the system decision (like Grad-
CAM map [35]) enables its recommendation for clinical use (‘explainable AI’). Noise or the
artifacts influencing the geometry of visualized structures may lead to misclassification,
false-positive detections, over/under segmentation, and in consequence, inaccurate results
of measurements. To solve these problems, image quality assessment (IQA) algorithms are
developed [36–38]. Very popular yet poorly correlating with human judgments of image
quality are mean-squared error (MSE), its relevant peak signal-to-noise ratio (PSNR), or a
bit more efficient structural similarity index (SSIM) [39]. All the mentioned assume that the
original image signal is known. According to [40], the optical images can be distorted at
any stage of their acquisition, processing, compression, etc., and a reliable IQA metrics is
critical for evaluating them. The distortion-specific BIQA (blind image quality assessment)
methods provide high accuracy and robustness for known distortion types or processes.
Unlike the previous methods, these do not require the original image availability. However,
considering that the distortion type is specified quite rarely, their application scope is
limited. Therefore, natural scene statistics (NSS), including local DCT (discrete cosine
transform) or wavelet coefficients describing contrast or gradient features, are utilized [41].
The DGR (distortion graph representation) based solution is presented in [40]. It considers
the relationship between distortion-related factors and their effects on perceptual quality.
Since the blind measures are distortion-specific, the blind no-reference (NR) IQA methods
have been studied in recent years [39]. Both the BIQA and NRIQA are extended to work
with stereo images [42], VR images [43], and many other currently investigated image
types. As reported in [37], most IQA methods and research studies focus on optical images.
Since the medical image quality is highly related to its application, and in some issues,
low contrast and noisy images can still be acceptable for medical diagnosis, medical image
quality assessment differ from the others [36]. They consider multiple expert opinions
to label the data and utilize the benefits of AI (artificial intelligence). The applications
of CNN to IQA of retina images can be found in [38]. The authors use DenseNet to
classify the images into good and bad quality or five categories: Adequate, just noticeable
blur, inappropriate illumination, incomplete optic disc, and opacity. Piccini et al. [44]
utilized the benefits of using CNN to assess the image quality of whole-heart MRI. The
only two solutions for ultrasound IQA, both based on CNN, are given in [37,45]. The
chronologically first [45] scheme targets to assess the fetal US image quality in the clinical
obstetric examination. The second one [37] is claimed to be universal, considering different
US images. In the designed framework, the network is trained on the benchmark dataset
LIVE IQ [46] and then fine-tuned using ultrasound images.

As we mentioned before, the HFUS image processing algorithms described in the
literature [2,14,15,17] assume that the input dataset consists of preselected good quality
image data. Among many possible applications, CNNs are for the first applied to reduce
the analyzed dataset of HFUS to the informative part in [10]. In the current work, we
decided to follow this way and automatically select the correct frames from the acquired
dataset—asses the HFUS image quality. This solution enables automated analysis of HFUS
records, which avoids the influence of incorrect detections on the analysis results. Due
to the absence of such frameworks for HFUS skin images, the two main contributions of
our study are as follows. The first is the database, including 17,425 HFUS frames of facial
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skin denoted by two experts (in total three times) as noisy-inaccurate for analysis and
correctly acquired [47]. The proportion of correct and incorrect data is about 1:1.3. The
data description includes the demographic features of the patient cohort, places of image
acquisition on the face, acquisition dates, and system parameters. Second, we present
different deep learning-based frameworks, including followed by a fuzzy interference
system for automatically annotating frames. The analysis is conducted two-way, classifying
the data into correct and incorrect and dividing them into four groups, depending on the
experts’ majority decision.

Our extensive image database includes data acquired during an actual dermatological
ultrasound examination. Thus it contains:

• images distorted by artifacts from trembling hand with the US probe or impurities
contained in the ultrasound gel;

• frames captured when the ultrasound probe was not adhered or incorrectly adhered
to the patient’s skin, or the angle between the ultrasound probe and the skin was too
small (the proper angle is crucial for HFUS image acquisition);

• images with too low contrast for reliable diagnosis, or captured with too little gel
volume-improper for epidermis layer detection;

• data with disturbed geometry as well as HFUS frames with common ultrasound
artifacts like acoustic enhancement, acoustic shadowing, beam width artifact, etc.

Due to the image variety, high amount of possible distortions, and the subjective
expert opinion, which is not always connected with them, application of IQA methods
dedicated to optical images is impossible (Zhang et al. underline it strongly in [37]). A
portion of images are hard to decide (even by the experts, see Figure 1), they can be useful
in the diagnosis, but due to some artifacts, their analysis might be error-prone. Therefore,
following the works in medical IQA [37,38,44] and image selection [10], we propose the
CNN-based framework-a combination of the previous, which enables HFUS skin image
analysis. The images selected by our methods are high quality, or informative, and accurate
for diagnosis and processing. Depending on the application and user needs, the obtained
results can be utilized twofold. First, only those classified as definitely good for the high
amount of the acquired frames (label 4 in Table 1) should be considered. Second, for the US
record with a limited number of frames, the image data labeled as 2 and 3 (in Table 1) can
be taken into account. Yet, the results of their further automated analysis (segmentation or
classification) should be treated as less trustworthy (assuming two trustful levels: Higher
and lower, connected with labels 2 and 3, respectively). This is the first application of CNN
to this task in HFUS images and the first combining CNN and fuzzy interference system.

The dataset developed in this study is in detail described in Section 2. The description
is followed by numerical analysis of the data and expert annotations. The classification
steps are presented in Section 3, including two- (Section 3.1) and multi-class Section 3.2
analysis. The model assessment and other results are given in Section 4. The study is
discussed and concluded in Section 5.

Table 1. The size of individual groups.

Group Label Description Size

1 all experts labeled the image ‘no ok’ 8398
2 one expert labeled the image ‘no ok’ 1261
3 two experts labeled the image ‘no ok’ 1324
4 all experts labeled the image ‘ok’ 6442
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Figure 1. Facial model with superimposed image acquisition areas, and exemplary HFUS images,
annotated by the experts.

2. Materials

The dataset includes high-frequency images (image sequences) of female facial skin.
The data were collected during 4 sessions (the session dates are given as data IDs in a format
[day month year]), with 44 healthy Caucasian subjects in age between 56 and 67 years
(average = 60.64, std = 2.61), all postmenopausal. In anti-aging skin therapy, the patients
were treated with trichloroacetic acid (TCA) chemical peel. The first image data were
acquired before the first acid application, and the patients were divided into treated (23),
and placebo group (21). The data were registered from three different locations on the
patient face. The locations and ultrasound probe movement directions are visualized in
Figure 1 by three arrows superimposed into a facial model. The image acquisition starts
where the arrow begins and ends with the arrow end. At each patient visit, three HFUS
series were registered. Several dozen (about 40) HFUS images were collected in a single
series for each location. The original image resolution was equal 1386× 3466 [pix] and the
pixel size is equal to 0.0093× 0.0023 [mm/pix] (axial × lateral). The analyzed HFUS image
data were acquired using DUB SkinScanner75 with a 24 MHz (B-mode frequency, 8 mm
depth, and acoustic intensity level 40 dB) transducer. Each series includes both the image
data suitable for further diagnosis (technical-using CAD software, or medical) or not. The
second group includes, for example, the ultrasound frames captured when the ultrasound
probe was not adhered or incorrectly adhered to the patient’s skin and when the angle
between the ultrasound probe and the skin was <70 degrees. Exemplary HFUS images
annotated as suitable (‘ok’) or not (‘no ok’) for further analysis are given in Figure 1.

The HFUS examinations were performed by a beginner sonographer (without any
experience in HFUS image acquisition and analysis, but working with the conventional
US in his scientific practice): ID = 15022021 and 12042021, and experienced one (gradu-
ating Euroson School Sono-Derm, and working with HFUS image analysis from 3 years):
ID = 08032021 and 07062021. In total 17,425 HFUS images were acquired.

After the data collection step, the complete dataset was labeled by two experts in
HFUS data analysis. One of them annotated the data twice with an interval of one week.
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Hence, the further description includes three annotations denoted as Expert 1, Expert
2, and Expert 3. However, the labels Expert 1 and Expert 2 refer to the same person
(annotations of the first expert with a week interval). The agreement in the useful image
selection between all the experts was analyzed statistically using both confusion matrices
(given in Figure 2) and unweighted Cohen’s Kappa [10], and interpreted according to
Cipoletta et al. [10], and Landis and Koch [48] (see Figure 3). The analysis was performed
using Matlab library [49]. The agreement between experts was partially substantial or
perfect, and there is no difference between intra- and inter-observer results.

Figure 2. Inter/intra-observer agreement-confusion matrices.



Sensors 2022, 22, 1478 7 of 17

Figure 3. Inter/intra-observer agreement—unweighted Cohen’s Kappa.

For further analysis, based on the expert majority decision, the data were additionally
classified into four groups: 1—All experts labeled the image ‘no ok’; 2—one expert tagged
the image ‘no ok’; 3—two experts labeled the image ‘no ok’; 4—all experts labeled the image
‘ok’. The size of individual groups (number of images) is collected in Table 1. Considering
groups 1 and 4 only, the proportion of correct (’ok’) and incorrect data (‘no ok’) is about
1:1.3, and it increases to 1:2 in case of examination performed by a beginner sonographer.
The most significant difference between these two sonographers considering the expert
labels is the proportion of 4th labeled data to the total number of registered scans. In the
case of the experienced sonographer, it equals 50%, and for the inexperienced one, only
27%.

The data are publicly available under [47]. The consecutive examinations are collected
in folders. The folder names correspond with the data IDs. Expert annotations of each folder
are provided in .xls files denoted as ID_DataDesc.xls. ID_DataDesc.xls files structure is shown
in Figure 4. The File_names are coded as follows: ‘pPatientID_FacialLocation_ImageID.png’.
The database information is listed in Table 2. The dataset can be used as a benchmark
for HFUS image classification, analyzed with the provided pre-trained CNN models, or
utilized for other applications, like skin layer segmentation (for this, additional expert
delineation is required). Due to the limited space, the image data are provided in the size
of 224 × 224 × 3. The sizes result from the pre-trained CNN models input, as described
in the further part of the paper. Readers interested in the image data in original size,
please contact the corresponding author. The data repository [47] contains the trained CNN
models described in this work, as well as the fuzzy interference system providing the final
classification results.

Table 2. The database information.

ID 8032021 15022021 12042021 7062021

nb. of patients 43 43 40 40
nb. of images 4385 5840 4384 2816
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Figure 4. ID_DataDesc.xls file structure.

3. Methods

There are different ways for ultrasound-based diagnostic procedures. Depending on
the application, the sonographer acquires either a single image or an image series. The
second approach is better when a further automated image processing step is introduced.
Simultaneous analysis of multiple data provides reliable results, less prone to artifacts
and outliers. At the same time, the analysis of the whole recording might be disturbed by
strongly distorted data or the artifacts influencing the geometry of visualized structures,
appearing on the part of frames. Consequently, it leads to misclassification, false-positive
detections, and finally, inaccurate results of measurements. Therefore, the overall goal of
this study was to develop and evaluate the classification framework, which enables robust
and fast HFUS series analysis.

Numerical analysis of image annotations provided by the experts, described in
Section 2 shows that manual image labeling is a nontrivial issue. While most of the images
were unambiguously annotated as correct or not, there appear image data (in our case, it is
15%) on which the experts disagree. There are images partially disturbed in this group but
still having diagnostic potential. Considering this, we first divide the data into unambigu-
ous and ambiguous. It enables CNN model selection, suitable for further analysis. Then,
the developed methods followed twofold: Binary classification and multi-class analysis.
The first one includes division the image data, and two groups are denoted as correct and
incorrect. Next, the data will be divided into two and four groups, respectively, according
to the labels included in Table 1.

3.1. Binary Classification

The first goal of this step is the CNN model selection, providing the most reliable
classification results. Based on the previous experiences [4] and the recent papers in medical
IQA [38], or informative HFUS image selection [10], we consider two most promising
architectures. The first one is DenseNet-201 [50] and the second is VGG16 [51]. Both were
pre-trained on the ImageNet dataset and then used for transfer learning. DenseNet uses
features of all complexity levels, giving smooth decision boundaries and performing well
when training data is insufficient, whereas VGG16 is described as being suitable for the
small-size training set and low image variability [10]. Both architectures were adapted
for the binary classification problem. The DenseNet-201 architecture was trained freezing
the first 140 convolution layers (as in [4]) and tuning the remaining ones, whereas in the
VGG16 model, according to [10], 10 convolution layers were frozen.

Prior training, RGB US frames were resized to 224 × 224 × 3 pixels. The stochastic
gradient descent optimizer with the momentum of 0.9, the categorical cross-entropy as
loss function, batch size equal to 64, and initial learning rate of 0.0001 were chosen as the
most efficient in a series of experiments [4,10]. The authors of [10] suggested 100 epochs
for training the VGG16 model. However, due to the observed overfitting problem (the
validation accuracy does not change, but the validation loss increases), we shortened
the training process to 50 epochs. In further iterations, no significant improvements in
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training curves were visible, and the validation loss tended to increase. The same training
parameters were applied for binary and multi-class models.

For the binary classification, the models are trained five times (see annotations ‘CNN
training’ in Figures 5 and 6). Three of them are connected with three separate expert
annotations (Expert 1 labels, Expert 2 labels, Expert 3 labels). The fourth one considers
only the part of the data on which the experts agreed (labels 1 and 4). In contrast, the fifth
one (in path2) utilizes the labels resulting from the previous voting step—selecting the
most frequently indicated label. This models are utilized in four processing paths shown in
Figures 5 and 6, and described below.

The voting step utilized in binary classification targets is calculating a binary output
based on three labels provided by the experts or resulting from the analysis. The first
solution is applied in path2, where the binary labels required for model training are
calculated based on the expert annotations. The US frame indicated two times as ‘ok’
is considered as ‘ok’, and the US frame indicated twice as ‘no ok’ is considered as ‘no
ok’. It corresponds to Group labels (in Table 1): 4 and 2 for ‘ok’, and 1 and 3 for ‘no ok’,
respectively. In path2, three separate models (one for each expert) are trained and tested,
and the final binary classification results are calculated as previous: The label resulting
twice determines the output. The binary output selection used in path4 is described in
detail in Section 3.1.4.

Figure 5. Binary classification schemes: Path1 (left) and path2 (right).

Figure 6. Binary classification schemes: Path3 and path4, utilizing two different voting algorithms,
v1 and v2, respectively.

3.1.1. Path1

This scheme (Figure 5 left) starts from the reliable images selection step, based on
annotations provided by all the experts. By reliable images, we understand this part of the
input data, for which all the experts agreed (labels: 1 and 4 from Table 1). The CNN model
is trained and then applied to all the image data (labels 1 to 4).

3.1.2. Path2

In this processing path (Figure 5 right), the CNN model is trained based on all the input
data, and the binary input labels are calculated based on the voting step (v1). The voting
step (v1) selects the most frequently indicated label, among three experts annotations.
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3.1.3. Path3

This framework (Figure 6, v1) is based on the CNN training and then classifying,
performed for each independent expert input. The obtained results are then used for voting
(v1)—selecting the most frequently resulting label.

3.1.4. Path4

This path (Figure 6, v2) refers to the same framework as path3 with the difference
that the voting step utilizes Mamdani Fuzzy Interference System (FIS) [52], followed by
uniform output thresholding (t ∈ {0.25, 0.5, 0.75}) for final decision (see Figure 7). The
membership function of the fuzzy sets in the rule premises and conclusions look the same
for inputs and output and are presented in Figure 7. As the FIS input, we introduce the
CNN predicted class scores. The FIS output can also be used as the confidence measure for
further analysis, where the images classified as ‘definitely’ correct are rewarded.

Figure 7. Fuzzy Interference System.

3.2. Multi-Class Analysis

The multi-class analysis is performed twofold. In the first solution, the previously
obtained binary classification results are combined to provide the final results. In the
second one, the model is adapted to 4-group classification and trained again. Same as
before, different processing paths are introduced to obtain the final classification results
(see Figures 8 and 9).

Figure 8. Multi-class analysis: Path5 (left) and path6 (right).
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Figure 9. Multi-class analysis: Path7 and path8, utilizing two different labeling algorithms, I2 and I3,
respectively.

3.2.1. Path5

In the first experiment, the Group labels defined in Table 1 are used for 4-group CNN
model training. The trained model is then directly used for data classification.

3.2.2. Path6

The second processing path here (path6) refers to path1 in binary classification. The
CNN model is trained on the reliable image data, then used for all data classification, and
the predicted class score is uniformly thresholded to obtain the final classification results.

3.2.3. Path7

Path7 refers to path3 in binary classification. Three CNN models are trained separately,
and the final labeling is based on the scheme given in Table 1, with the difference that we
do not take into account the expert annotations, but the results of the three models.

3.2.4. Path8

The final proposed approach, same as path4, introduces Mamdani FIS with uniform
output thresholding (t ∈ {0.25, 0.5, 0.75}). The final group labels are calculated as follows:
FIS Output < 0.25-label 1, FIS Output ∈ [0.25, 0.5]-label 3, FIS Output ∈ [0.5, 0.75]-label 2,
FIS Output > 0.75-label 4. The system differs in the Rules set, and both of the FIS systems
(for path4 and path8) are provided in [47] as FIS2.fis and FIS4.fis, respectively.

4. Experiments and Results

To assess all the experiments, we used the external 5-fold cross-validation, and the
non-testing remaining data were divided into training and validation subsets (4:1 ratio). All
the experiments are marked on the classification schemes using red arrows and ’Evaluation
#nb’ tags. To measure the performance of all the introduced approaches, we compute the
accuracy (ACC), the classification Precision, Recall, and f1-score. Additionally, due to the
class imbalance, we use confusion matrices to capture all the classified and misclassified
records classwise (see Figures 10 and 11). Finally, to measure the agreement between the
automatic algorithms and the experts, we utilize the unweighted Cohen’s kappas.

The analysis starts from CNN model selection. Based on the literature review [2,10,38],
the most recent studies: In HFUS classification [2], ultrasound IQA [38], and informative
HFUS frame selection [10], favor two CNN models: DenseNet and VGG16. The most
promising model will then be utilized in the following experiments. For this, we train and
test both the considered architectures: DenseNet-201 and VGG16, for each expert separately
(Evaluation #4). The obtained performance measures are gathered in Table 3. On this basis,
we decided to select the VGG16 model for further analysis.
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Table 3. Performances of CNN models.

ACC Precision Recall f1-Score

Expert1: DenseNet-201 0.8790 0.8440 0.8723 0.8579
VGG16 0.8982 0.8738 0.8849 0.8793

Expert2: DenseNet-201 0.8682 0.8322 0.8644 0.8480
VGG16 0.8907 0.8713 0.8718 0.8716

Expert3: DenseNet-201 0.8802 0.8632 0.8974 0.8800
VGG16 0.8999 0.8855 0.9135 0.8993

Since it is used in the subsequent processing steps, we first evaluated the classification
performance of the selected VGG16 model for the reliable labels only (Evaluation #1).
According to Cohen’s kappa analysis, we obtained Perfect Agreement (kappa = 0.9177)
with the experts, and the classification accuracy equal to 0.9595. Due to the reduced (to the
reliable labels) image set, these results could not be compared with any furthers. However,
they proved that for the collection of images unequivocally classified by experts, the abilities
of the VGG16 model for indicating the correct data are good (as we expected from [10]).

Next, we analyzed the developed extension of the direct CNN-based technique (see
Figure 10). For the binary classification, the best results were obtained using path4, utilizing
the CNN combination with FIS (Evaluation #6)-ACC equal to 0.9170 and f1-score equal to
0.9076. A bit worse performance measures-ACC equal to 0.9158 and f1-score equal to 0.9074,
yet higher Recall-0.9266, resulted from the classical CNN-based approach-path1 (Evaluation
#2). According to Cohen’s kappa analysis, both of them, as well as path2 (Evaluation #3),
provided Perfect Agreement (see Table 4). The combination of three separately trained
models followed by the selection of the most frequently resulted label performs worst in
this case.

Finally, we evaluate the abilities of multi-class classification. By Table 1 we considered
four groups and four different processing frameworks given as path5 to path8. The obtained
results are collected in Figure 11. For this analysis, the best evaluation results provided
the classical CNN-based version-path5, without any modification. However, same as
all of the others-paths6 to path8, the Cohen’s kappa analysis indicates only Substantial
Agreement. Moreover, according to the confusion matrices, the best-recognized class in
all the experiments is 1 (all experts labeled the image ‘no ok’), the second is 4 (all experts
labeled the image ‘ok’), and 2 i 3 are hard to distinguish by the algorithms.

Figure 10. Confusion matrices and classification performance measures obtained for binary classification.
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Figure 11. Confusion matrices and classification performance measures obtained for multi-class analysis.

Table 4. Experts and algorithms agreement-unweighted Cohen’s kappa.

Kappa Agreement Kappa Agreement

Evaluation#1 0.9177 Perfect Evaluation#7 0.7193 Substantial
Evaluation#2 0.8302 Perfect Evaluation#8 0.6855 Substantial
Evaluation#3 0.8214 Perfect Evaluation#9 0.6808 Substantial
Evaluation#5 0.7822 Substantial Evaluation#10 0.6730 Substantial
Evaluation#6 0.8322 Perfect

5. Discussion and Conclusions

Since the correct acquisition of US and HFUS images is essential for further accu-
rate data analysis, in this study, we describe possible solutions aiming at ‘correct’ image
identification. We believe that this step increases the HFUS image processing reliability.
The obtained results can be used twofold. First, the incorrect image data can be excluded
from further automated analysis if the software classified them as incorrect. Second, the
remaining data analysis can be weighted based on the system output of the kept samples.
Our work is the first application in this area-HFUS images of facial skin and applying AI to
this task.

The first contribution of our study is the database of 17,425 HFUS images of facial
skin [47] registered by two sonographers. Two experts annotated all the image data (one
annotated it twice), and a detailed analysis of this expertise is provided in this work. On
this basis, we can first conclude that the proportion of correct to incorrect images decreases
from 1:1.3 to 1:2 if a less experienced person performs the examination. The image analysis
and classification methods would provide the worst and less reliable measurements in
this case. Next, there exists a group of images, which the experts can not unambiguously
annotate (see Figures 2 and 3), and their automated classification by the system is also
problematic. They can be considered together (labels 2 and 3), and during further numerical
analysis, we can treat them as having less impact on the processing results.

The second contribution includes different developed, introduced, or just verified
frameworks for automated HFUS image classification as correct-sufficient for further analy-
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sis or not. We analyzed two previously applied to similar problems [4,10], CNN models:
DenseNet201 and VGG16, as having potential for HFUS frame selection. The numerical
analysis benefits the latter. Using the VGG16 model as a base for further modifications,
and the best among the state-of-the-art in HFUS image analysis, we proposed different
frameworks to classify the image data into two or four groups. From our observation,
the binary classification results are more accurate than multi-class analysis and can be
applied in other HFUS image processing techniques. The best results were obtained for
the developed CNN model and FIS combination. In this case the FIS-based improvement
outperforms the VGG16 model. However, the limitation of the binary solutions is that
they are trained and verified using the labels resulting from the voting step. It means
that the ‘correct’ group includes the image data labeled as ‘ok’ both by all the experts
and only two of them. The same problem appears for the ‘incorrect’ group. This solution
assumes that the data annotated as ‘ok’ by most of the experts can be considered in the
other processing steps (i.e., segmentation or further classification). To reduce the influence
of two middle labels (2 and 3) on image analysis, we suggest assigning the confidence level
to each analyzed image, utilizing the FIS outputs. The histograms of FIS outputs for binary
classification are given in Figure 12. It is worth mentioning that both the analyzed models,
as well as the FIS systems, are made available in [47].

To reduce the imbalance of group size, especially in four-class analysis, it is possible
to introduce the augmentation step during training four-class. However, based on our
previous experiences, the augmentation procedures should be selected carefully to avoid
additionally produced artifacts due to the specific data appearance. Besides of this, fu-
ture improvement can include three-class analysis, other body parts and diseases, and
a broader range of frequencies and HFUS machines commonly used in dermatological
practice, like 33, 50, or 75 MHz. Additionally, we plan to introduce FIS output weights as
the pre-processing step for previously described segmentation [17] and classification [4]
frameworks to evaluate their influence on the obtained results. Moreover, it needs to be
validated in clinical practice.

Figure 12. Histograms of FIS outputs obtained for the data, categorized according to the labels
collected in Table 1.

In conclusion, this study describes the first step of the HFUS image analysis. The
developed algorithm makes it possible to automatically select correctly acquired US frames
among all the images collected during the US examination. This method applied as
the pre-processing step will decrease the influence of misclassifications or over/under
segmentations and improve the reliability of the measurements. Furthermore, it can be
used instead of pre-processing steps targeting artifact reduction. The frame selection step
is crucial since the proportion of correct to incorrect scans is about 1.5. On the other hand,
due to the high amount of images acquired during the single examination, manual data
selection is time and cost-consuming, and the developed technique solves this problem.
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