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Abstract

Background: Septins are involved in a number of cellular processes including cytokinesis and organization of the
cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9
cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the
in vivo role of SEPT9 is unknown.

Methodology/Principal Findings: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that
zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or
overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant
epidermal development.

Conclusions/Significance: Our work demonstrates that sept9 plays an important role in zebrafish development, and
establishes zebrafish as a valuable model organism for the study of SEPT9.

Citation: Landsverk ML, Weiser DC, Hannibal MC, Kimelman D (2010) Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts
Expressed Throughout Development. PLoS ONE 5(5): e10712. doi:10.1371/journal.pone.0010712

Editor: Bruce Riley, Texas A&M University, United States of America

Received April 1, 2010; Accepted April 28, 2010; Published May 19, 2010

Copyright: � 2010 Landsverk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grant (GM079203) to D.K. and NIH grant (NS38181) to Phillip Chance and an NRSA fellowship (F32HD053189) and
University of the Pacific Start-up funds to D.C.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kimelman@uw.edu

. These authors contributed equally to this work.

Introduction

Septin-9 (SEPT9, MSF) is a member of the septin gene family, a

conserved family of filament forming GTPases. To date, at least 14

different septin genes have been identified in humans which, in

addition to cytokinesis, also play roles in vesicle trafficking,

microtubule and actin function, exocytosis, establishment of cell

polarity and cell motility [1,2]. All vertebrate septins have a highly

conserved polybasic domain (PBD) followed by a GTP binding

domain (GBD) homologous to those of the ras-related small

GTPase family of proteins. Outside of the PBD and GBD,

members of the septin family vary greatly in the length and make

up of both the N- and C-termini. SEPT9 is one of three septin

proteins possessing an extended N-terminus containing a proline-

rich region. However, the function of this region is unknown.

The human SEPT9 gene is complex, producing at least seven

mRNA transcripts encoding six distinct polypeptides through

alternative splicing [3]. SEPT9 was initially identified as a fusion

partner of the mixed-lineage leukemia (MLL) gene in acute

myeloid leukemia patients [4]. Altered expression of SEPT9 has

also been implicated in the pathogenesis of a number of cancers,

with evidence for both genetic gain and allelic loss [5,6,7,8]. Point

mutations and intragenic duplications in SEPT9 have also been

linked to hereditary neuralgic amyotrophy (HNA), an autosomal

dominant episodic neuropathy primarily affecting the brachial

plexus [9,10].

In cultured cells, inhibition of SEPT9 isoforms through antibody

microinjection or siRNA transfection results in cytokinesis defects,

including binucleated cells, abnormal daughter cells, cells

remaining attached through a short midbody bridge, and cells

containing condensed DNA suggestive of apoptosis [11,12].

Overexpression of SEPT9 isoforms in cell culture also leads to

an increase in binucleated cells, an accumulation of cells in G2/M

phase and an increase in the percentage of aneuploid cells leading

to suppression of cell growth [13,14]. However, overexpression of

SEPT9 isoforms has also been shown to increase cell motility, and

alter cellular polarity and morphology [14,15].

No mouse knockout has been described, and so the in vivo role of

SEPT9 remains unknown. Moreover, the transcriptional complexity

of the SEPT9 locus will make it very difficult to study the function of

specific isoforms in the mouse. In this study we use the zebrafish

system to investigate the in vivo role of specific SEPT9 isoforms in early

development. Zebrafish provide an excellent model for the study of

genes with multiple transcripts since animals grow quickly, and can be
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easily genetically manipulated through the use of transgenic

overexpression constructs and specific transcript inhibition using

morpholino oliogonucleotides (MOs). Zebrafish possess two SEPT9

gene orthologues found on two different chromosomes, sept9a and

sept9b. We found that, similar to humans, these genes express multiple

mRNA transcripts that are expressed throughout development in a

variety of tissues. Inhibition of all Sept9a isoforms or just the largest

Sept9a isoform, sept9a_tv1, led to multiple defects in embryonic

development demonstrating an essential embryonic role for this

isoform. In particular, we observed an increase in apoptosis in the

epidermis of all morphants and alterations in blood circulation.

Overexpression of sept9a_tv1 led to similar developmental defects.

Our results demonstrate the importance of sept9 during embryonic

development.

Materials and Methods

Zebrafish embryos and ethics
Zebrafish were maintained, staged and injected according to

standard procedures [16]. All experiments were approved by and

conducted in accordance with the guidelines established by the

Institutional Animal Care and Use Committee at the University of

Washington, IACUC approval number: 2387-02.

Identification and cloning of sept9 isoforms
BLAST searches using human SEPT9 were used to identify

zebrafish sept9 transcripts. PCR primers were used to amplify

sept9a isoforms from 24 hpf embryos. Primer sequences are

available upon request.

RNA isolation and RT-PCR
RNA was isolated using the RNeasy kit (Qiagen). cDNA was

prepared using Superscript polymerase (Invitrogen) using 1 ug

RNA. sept9 isoforms and ef1a were amplified using transcript

specific primers.

Whole-mount in situ hybridization
Embryos were processed as described [16]. The sept9a_tv1

coding region was used to generate digoxigenin-labeled probes

(Roche).

Morpholino and mRNA injections
Morpholinos targeted to the splice acceptor sites of sept9a_tv1

exons 2 and 5 and sept9a_tv1 mRNA were injected into zebrafish

embryos. The sequences of the morpholinos are: MO2 (59-

TGCGATGCCTGTCAGCACAGAAGAC-39), MO5 (59-CTC-

TGACCTGCACACATGAAGAACA-39), MO2 mismatch (59-

TCCGATCCCTGTGAGCACACAACAC-39), MO5 mismatch

(59-CTGTGAGCTGCAAACATCAACAACA-39). Full-length

sept9a_tv1 was subcloned into the pXLT vector for in vitro

transcription. Messenger mRNA was synthesized using the

mMessage Machine Kit (Ambion).

Acridine orange (AO) staining
For AO staining, embryos were processed as described [17].

Results

Characterization of zebrafish sept9 genes
Through a combination of genetic sequence analysis and

BLAST searches using known human SEPT9 transcripts, we

identified multiple mRNA transcripts produced from two

different zebrafish sept9 genes, sept9a and sept9b. sept9a is located

on chromosome 3, whereas sept9b is found on chromosome 6.

sept9a produces transcripts homologous to the longest human

SEPT9 isoforms 1, 2, and 3, the shortest human variant

SEPT9_v7 (NCBI NM_001113496; named SEPT9_v5 in earlier

literature [7]) and a unique transcript not identified in other

vertebrates which we have denoted sept9a_tva. Similar to humans,

through the use of alternate 59 exons, sept9a _tv1, 2, 3 and a,

generate predicted protein products with unique N-termini of 32,

18, 7, and 10 amino acids respectively (Fig. 1, and Fig. 2).

sept9a_tv7 encodes a truncated version of the longer transcripts.

sept9b appears to express two human SEPT9_v7 homologues with

alternate 59 UTRs, sept9b_tv1 and sept9b_tv2 (Fig. 1). The

predicted protein sequences of zebrafish sept9a_tv1, 2, and 3 are

73–74% similar and 61–62% identical to their human homo-

logues, respectively (Fig. 2). sept9a_tv7 and sept9b_tv1 and _tv2

primarily encode the GTP binding domain found in all

transcripts, and are highly conserved. These transcripts are

92% similar and 87% identical to each other at the amino acid

level and 87–81% similar, 78–80% identical to the human

sequence. We did not identify transcripts homologous to human

SEPT9 transcript variants 4, 5, and 6 (NCBI NM_001113495,

NM_001113492, and NM_001113494; SEPT9_v5 and v6 known

as v4* and v4 in previous literature [7,15,18]). However, the start

codon in human SEPT9_v5 and v6 is not conserved from

mammals to zebrafish (Fig. 2) and to date, only a single EST of

human SEPT9_v4 has been identified in a teratocarcinoma cell

line, suggesting that these transcripts may not be expressed in

zebrafish. It is possible that further sept9 transcripts are expressed

in zebrafish yet were not identified in this analysis.

Figure 1. SEPT9 transcripts are conserved between zebrafish and mammals. Zebrafish possess two sept9 genes, sept9a and sept9b, that
encode multiple mRNA transcripts homologous to mammalian transcripts. Zebrafish also express a transcript not currently found in mammals,
sept9a_tva. Sites of morpholino splice blockers are noted.
doi:10.1371/journal.pone.0010712.g001
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Developmental expression of zebrafish sept9 genes
To examine where sept9 message is expressed in the developing

zebrafish embryo, we performed whole mount in situ hybridization

using a probe to sept9a_tv1. This probe is expected to recognize all

sept9a transcripts, and possibly those of sept9b. Probes designed to

the individual sept9a transcripts were not synthesized because the

unique regions of the longer sept9a isoforms are not large enough

to probe individually. Early maternal expression of sept9 was

ubiquitous (Fig. 3A) and remained so through blastula stages

(Fig. 3B). During gastrulation, sept9 became more restricted to the

axial mesoderm and endoderm (Fig. 3C, D). sept9 was expressed

primarily in the floor plate and ventral mesoderm during

segmentation (Fig. 3E–H). At 24 hours post fertilization, sept9

was expressed in the intermediate cell mass, epidermis, branchial

arches, and pectoral fin bud (Fig. 3I–K).

While we were unable to analyze the spatial expression of

specific sept9 isoforms we could, using RT-PCR, determine the

temporal expression pattern of the various sept9 transcripts.

Zebrafish embryos at different developmental stages were collected

for cDNA preparation and subjected to RT-PCR using transcript

specific primers (Fig. 3L). sept9a_tv2, 3, and a are expressed at the

two cell stage consistent with the maternal sept9a expression

observed in the in situs. Expression of sept9a_tv1, 7 and a, and

sept9b_tv1 commence at high stage, consistent with zygotic

expression, which begins at this time. All five transcripts of sept9a

and both sept9b transcripts stabilize expression though the

segmentation and pharyngula stages. The longest transcript,

sept9a_tv1, has two phases of expression; one during the late

blastula and early gastrula stages, and a second beginning during

early somitogenesis.

Effect of sept9a inhibition on zebrafish development
Because a majority of sept9 transcripts, including the longest

sept9a_tv1, derived from the sept9a locus, we decided to focus

further studies on this set of isoforms. Therefore, we targeted all

sept9a transcripts, or sept9a_tv1 only, for depletion using antisense

morpholinos directed to the splice acceptor site of the fifth (MO5)

or second (MO2) exons of sept9a_tv1, respectively (Fig. 1). Embryos

were injected at the 1-cell stage with 1.25, 2.5 or 5 ng of

morpholino. The observed phenotypes were dosage dependent

Figure 2. SEPT9 amino acid sequence is conserved between zebrafish and mammals. Amino-acid alignments of zebrafish Sept9a and
Sept9b putative protein products show a high degree of conservation. An asterisk notes the starting methionine of human SEPT9_i5/6, which is not
conserved in zebrafish. Arrowheads mark the starting methionines for human Sept9_v7, and zebrafish isoforms Sept9a_tv7 and Sept9b (both
transcripts).
doi:10.1371/journal.pone.0010712.g002
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and were divided into three categories which we termed class I,

class II and class III based on morphology (Fig. 4J). At 48 hpf,

embryos that looked similar to wild-type but had epidermal defects

and minor tail perturbations were categorized as class I, those that

had a curved or shortened body axis/tail in addition to the defects

in class I were categorized as class II and those that had a severely

shortened tail/body axis were classified as class III. Both MO5 and

MO2 produced classes I and II (Fig. 4A, B, D, E). However, the

severe class III phenotype (data not shown) was not observed in

MO2 embryos, even at 5 ng of morpholino.

Circulating blood cells could be observed in class I embryos,

however, cells were often observed pooling in the intermediate cell

mass (ICM) and tail region. Classes II and III showed an absence

of blood circulation, and often lacked the presence of mature

hemoglobinized erythrocytes. All classes exhibited yolk extension

as well as epidermal defects, most commonly seen in the tail and

yolk regions. Epidermal aggregates and edema were frequently

noted, often at the tip of the tail and in the ICM. Cardiac edema

was regularly observed in embryos from all classes and worsened

as development proceeded; class II and III embryos did not

survive past 7 days.

The phenotypes resulting from inhibition of septa_tv1 or all sept9a

transcripts were not regularly observed in embryos injected with

mismatch controls to either morpholino (MO2MM and

MO5MM; Fig. 4C, F, J). To determine if sept9a transcript levels

were altered, RT-PCR was performed on 24 hpf MO5 and MO2

embryos injected with 2.5 ng morpholino (Fig. 4K). Levels of

sept9a_tv1 and tv7 were undetectable in MO5 embryos, and

Figure 3. Expression of sept9 genes during zebrafish development. Detection of sept9 mRNA was carried out by whole-mount in situ
hybridization using a probe targeted to all sept9 isoforms on staged embryos from 256 cells to 24 hpf. Images in A–C are lateral views, animal pole to
top; D and E are dorsal views, anterior to top; F and H are dorsal posterior views; G, I and J are lateral views, K is a dorsal view, anterior to left. A–C:
sept9 transcripts are ubiquitously expressed at early developmental states. D: At bud stage, sept9 is expressed in endoderm and axis. E–H: sept9 is
expressed in the floor plate, ventral mesoderm and tail bud during segmentation. I–K: At 24 hpf, sept9 is expressed throughout the epidermis,
branchial arches, pectoral fin, and in the intermediate cell mass. L: Transcript specific primers were used to detect sept9a and sept9b transcripts in
various stages of development by RT-PCR. sept9a_tv 2, 3, and a are expressed maternally. Amplification of eIFa and total RNA without addition of
reverse transcriptase were used as controls. a, axis; ep, epidermis; fp, floorplate; icm, intermediate cell mass; tb, tail bud; vm, ventral mesoderm.
doi:10.1371/journal.pone.0010712.g003

Sept9 in Zebrafish Development

PLoS ONE | www.plosone.org 4 May 2010 | Volume 5 | Issue 5 | e10712



sept9a_tv1 but not _tv7 was decreased with MO2 when compared

to wild-type. MO2 also did not affect an amplicon from exons 3–5,

whereas MO5 greatly reduced the level of this product. Since these

exons are shared with sept9a_tv2, 3, and a (Fig. 1), the residual

product may be due to perduring maternal transcripts. Morpho-

linos designed to sept9a_tv1 exon 3 (inhibiting transcript variants 1–

3 and a) and exon 4 (inhibiting all transcripts) acceptor splice sites

(Fig. 1) also produced the same classes of morphants observed in

MO5 embryos (data not shown).

Co-injection of a low concentration (1 pg) of sept9a_tv1 mRNA

with MO2 showed a partial rescue of the morphant phenotypes

providing further evidence that at least classes I and II are a result

of sept9a transcript inhibition (Fig. 4G). The phenotype of MO5

injected embryos could not be rescued by co-injection of sept9a_tv1

mRNA (data not shown). It is possible that sept9a transcripts have

overlapping functions, and that over-expression of only sept9a_tv1

cannot compensate for the loss of multiple transcripts. This also

complicates interpretation of the class III phenotype, as it difficult

to distinguish between a phenotype caused by morpholino artifact

and one caused by knocking-down additional sept9a isoforms that

can not be rescued with sept9a_tv1. However, the observation that

four different sept9a MOs cause similar defects whereas mismatch

Figure 4. Charaterization of sept9a morphant and overexpression embryos. Embryos were injected at the one-cell stage with morpholinos
targeted to all sept9a transcripts (MO5), sept9a_tv1 only (MO2), mismatch controls (MO5MM, MO2MM), or sept9a_tv1 mRNA with and without MO2.
Morphants shown were injected with 2.5 ng morpholino. At 48 hpf, the phenotypes were assessed by morphological criteria, according to severity.
A,D: Class I morphants had defects in epidermal integrity and yolk extension and minor curvature of the tail. B,E: Class II morphants had a curved
body axis in addition to the defects observed in class I. Class III morphants had a severely shortened body axis (data not shown). Arrows indicate yolk
extension defects. All classes exhibited defects in blood circulation. G: Coinjection of 1 pg of sept9a_tv1 mRNA with 5 ng of MO2 partially rescued the
observed phenotypes. H,I: Embryos injected with as little as 4 pg of sept9a_tv1 mRNA often had phenotypes similar to those of sept9a morphants
including epidermal aggregates (arrow), blood pooling, and tail edema (bracket). (OE) indicates over expression. C,F: Control mismatch morpholinos
did not present a phenotype. J: Graphical representation of MO classes at various concentrations. The number of embryos tested in each experiments
is indicated by (n) on top of each column. K: sept9a splice morpholinos inhibit sept9a transcript splicing. RT-PCR analysis was performed on 24 hpf
wild-type embryos, embryos injected with 2.5 ng MO5 or MO2 (pooled classes I and II), or 5 bp mismatch controls. MO5 embryos show a complete
loss of sept9a_tv1 and sept9a_tv7. The presence of a low level of sept9a exons 3–5 transcripts in MO5-injected embryos may be due to maternal
mRNA. MO2 embryos show a decrease in sept9a_tv1 compared to wild-type while the other transcripts are not affected.
doi:10.1371/journal.pone.0010712.g004
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morpholinos result in no defect and that the morphant phenotype

is rescued by co-injection of sept9a_tv1 mRNA, demonstrates that

the observed morphant phenotypes are due to specific loss-of-

function of sept9 and not toxicity.

Effect of sept9a_tv1 overexpression on zebrafish
development

Recent studies in cultured cells have shown that human SEPT9

appears to be highly regulated [12,13,14]. While attempting

rescue of sept9a morphant embryos, we found that increased levels

of sept9a_tv1 mRNA led to a number of embryonic developmental

defects including alterations in convergence and extension,

dorsalization, and cyclopia. However, the phenotypes did not

clearly group into classes like the sept9a morphant embryos.

Interestingly, many of the phenotypes were similar to those

observed in sept9a morphants including cardiac and tail fin edema,

a curved tail and/or body axis, a loss of circulating blood cells with

concentrated pools of cells in the tail region and ICM, and

epidermal defects including regions of aggregated cells (Fig. 4H, I).

Thus, some phenotypes were observed with both gain and loss of

sept9a_tv1 function, whereas other phenotypes were only found in

gain-of-function experiments.

Knock-down and overexpression of sept9a cause an
increase in cell death

Alterations in human SEPT9 have been shown to cause defects

in cytokinesis, leading to changes in cell morphology and decreases

in cellular growth [12,14]. To determine if the defects observed in

the tails of sept9a_tv1 morphant and overexpression (OE) embryos

included an increase in apoptotic cells, we used acridine orange

(AO) to mark cell death. AO-positive cells were rarely observed in

wild-type embryos, yet both sept9a MO2 and sept9a_tv1 OE

embryos showed an increase in apoptotic cells in the tail indicating

cell death (Fig. 5). These data suggest that both loss- and gain-of-

function of sept9a in zebrafish lead to an increase in cell death

possibly through defects in cell division.

Discussion

In this study we have shown that, like humans, zebrafish express

multiple sept9 transcripts. These transcripts are expressed through-

out development in different tissues types including the ventral

mesoderm and axis at early developmental stages, and the

epidermis at later stages. We have demonstrated that inhibition

and overexpression of sept9a transcripts in zebrafish embryos lead

to a myriad of phenotypes including edema, loss of blood

circulation, tail fin malformations, loss of epidermal integrity and

increased cell death. Additionally, we have provided evidence that

multiple sept9a MOs targeted to different splice sites yield similar

phenotypes, and that overexpression of sept9a_tv1 causes develop-

mental defects similar to those observed with the MOs. Thus, too

much or too little sept9a function is deleterious for many embryonic

cells, indicating that cells need to carefully regulate sept9a levels.

The correct levels of sept9a, therefore, are needed to maintain

tissue integrity and to allow normal cell division.

The fact that zebrafish posses two sept9 orthologues (sept9a and

sept9b) is not unusual, given the proposed genomic duplication

event that occurred in teleost fish [19]. The two orthologues

appear to have evolved such that only sept9a expresses longer

isoforms possessing a proline-rich region, while both genes express

shorter isoforms primarily consisting of a GTP-binding domain.

The predicted polypeptides are highly similar to mammalian

SEPT9 proteins, suggesting possible overlapping functions. While

zebrafish do not appear to express homologues to human SEPT9

transcripts 5 and 6, they do express two additional variant 7

transcripts from sept9b. It is possible that these transcripts are

regulated in a manner similar to SEPT9_v5 and v6 [18]. Further

studies are required to determine if sept9a and sept9b have

overlapping functions in zebrafish.

RT-PCR analysis of human tissues has shown that a majority of

SEPT9 transcripts are expressed in almost every tissue type tested

[6,7] and cultured cell lines express different combinations of

SEPT9 proteins depending on the line [11,12,14,20]. However,

whether different SEPT9 polypeptides interact with one another

and the individual function of each transcript remains to be

determined. We found that zebrafish express multiple sept9

transcripts from two different genes, and confirmed the role of

sept9 during zebrafish development. Moreover, we observed the

same spectrum of phenotypes when we eliminated the largest

sept9a isoform, sept9a_tv1, as when we eliminated all sept9a isoforms,

providing the first evidence that the smaller isoforms cannot

compensate for a lack of the largest isoform.

Recently, a number of sept9a transcripts were identified in an

analysis of hematopoietic genes isolated from zebrafish kidney

marrow [21] and expression of sept9b was shown to be increased in

embryos overexpressing etsrp, a transcription factor required for

vasculogenesis and primitive myelopoiesis in zebrafish [22]. This

studies support the hypothesis that sept9 genes play a role in

hematopoiesis. However, the pericardial edema, loss of blood

circulation and tail malformations observed in both sept9a

morphant and OE embryos are also consistent with defects in

osmoregulation observed when epidermal barrier function is lost

[23] or if fish are exposed to toxins that impair homeostasis of the

Figure 5. Knockdown and overexpression (OE) of sept9a_tv1 results in an increase in apoptotic cells in the tail. Embryos at the one-cell
stage were injected with 2.5 ng of MO2 or 4 pg of sept9a_tv1 mRNA and analyzed for acridine orange (AO) staining at 24 hpf. A–C: The tail fin of
wild-type embryos is negative for AO indicating few apoptotic cells. D–I: Both class II MO2 and sept9a_v1 OE embryos show an increase in AO
staining indicating increased cell death.
doi:10.1371/journal.pone.0010712.g005
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skin or kidney [24,25]. Zebrafish will be a good model system for

future studies examining the roles of various sept9 isoforms in

developmental processes such as hematopoiesis and epidermal

development.
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