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Simple Summary: The goal of this paper is to provide an overview of current radiomic and AI
applications in veterinary diagnostic imaging. We discuss the essential elements of AI for veterinary
practitioners with the aim of helping them make informed decisions in applying AI technologies to
their practices and that veterinarians will play an integral role in ensuring the appropriate uses and
suitable curation of data. The expertise of veterinary professionals will be vital to ensuring suitable
data and, subsequently, AI that meets the needs of the profession.

Abstract: Great advances have been made in human health care in the application of radiomics
and artificial intelligence (AI) in a variety of areas, ranging from hospital management and virtual
assistants to remote patient monitoring and medical diagnostics and imaging. To improve accuracy
and reproducibility, there has been a recent move to integrate radiomics and AI as tools to assist
clinical decision making and to incorporate it into routine clinical workflows and diagnosis. Although
lagging behind human medicine, the use of radiomics and AI in veterinary diagnostic imaging is
becoming more frequent with an increasing number of reported applications. The goal of this paper
is to provide an overview of current radiomic and AI applications in veterinary diagnostic imaging.
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1. Introduction

Human health care has shown great advances in the application of radiomics and
artificial intelligence (AI) in a variety of areas, ranging from hospital management and
virtual assistants to remote patient monitoring and medical diagnostics and imaging [1].
Disciplines dealing with large data components, in particular, benefit from the assistance of
AI. Digital imaging is used in a wide variety of clinical settings, in both human and veteri-
nary medicine, including X-ray, ultrasound (US), computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET) scans, retinal photogra-
phy, dermoscopy, and histology, among others [1,2]. These fields already benefit from the
applications of radiomics and AI [1,2]. The combination of radiomics and AI with diagnos-
tic imaging offers a number of advantages, including their automated ability to perform
complex pattern recognition, which can be applied in an accurate and reproducible manner
to digital image analysis [1]. This can be integrated into a variety of medical imaging
applications, including disease detection, characterization, and monitoring. Traditionally,
this role is performed by trained diagnostic imaging specialists who assess and evaluate
medical images. However, image interpretation can be subjective and greatly influenced by
education and prior experience. Consequently, there has been a recent move to integrate
them as tools to assist clinical decision making and to incorporate it into routine clinical
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workflows and diagnoses. However, lagging behind human medicine, the use of radiomics
and AI in veterinary diagnostic imaging is becoming more frequent with an increasing
number of reported applications. The goal of this paper is to provide an overview of current
AI applications in veterinary diagnostic imaging.

2. Radiomics and AI
2.1. Radiomics

In medicine, various ways to generate big data exist, including the well-known fields
of genomics, proteomics, metabolomics, transcriptomics, and microbiomics. Imaging is
increasingly being utilized to build a specific omics cluster called “radiomics”, which is sim-
ilar to these “omics” clusters. Radiomics is a relatively recent area of precision medicine [3].
It is a quantitative approach to medical imaging that tries to improve the data available
to doctors through advanced and sometimes counterintuitive mathematical analysis [3].
The notion of radiomics is founded on the assumption that biological images contain
information about disease-specific processes that is undetectable to the human eye and
thus unavailable through typical visual analysis of the generated image [4]. It consists
of the extraction of a large number of features from medical images and modalities. The
mapping of these images into quantitative data, which can be mined with appropriate
and sophisticated statistical tools, can be an important step toward personalized precision
medicine (PPM) [5–7]. Radiomics has been applied to different fields in human health, in-
cluding magnetic resonance imaging (MRI), computed tomography (CT), positron emission
tomography (PET), and ultrasound (US) [8–11].

Traditionally, information from medical images was extracted solely based on visual
inspection. In addition to the intra- and inter-operator variability, visual extraction cannot
pull out important information hidden in these images. Radiomics was introduced as a
tool to extract as much quantitative hidden information as possible to aid practitioners in
diagnosis and decision making. As an example, in their study of tumor phenotype for lung
and head-neck cancer, and using CT images with a radiomic approach, Aerts et al. (2014)
found several new features that were not identified as significant previously, with high
prognostic power [12]. This radiomic signature was validated with biological data on three
independent data sets, demonstrating the performance of radiomics [12].

The workflow of radiomics is usually described in four steps: (i) preprocessing,
(ii) imaging and image segmentation, (iii) feature extraction such as shape, texture, intensity,
and filters, and (iv) feature analysis (see Figure 1) [13]. In the following, we briefly describe
each of these four steps.
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Figure 1. Illustration of the radiomics workflow steps: preprocessing, segmentation, feature extrac-
tion, and feature analysis.

1. Preprocessing: Image preprocessing is the practice of applying a series of transfor-
mations to an initial image in order to improve image quality and make statistical
analysis more repeatable and comparable. However, there is no predetermined ana-
lytic method to do this, and it varies depending on collected data and disease to study.
Since radiomics deals primarily with images, it depends highly on image parameters
of a given modality such as: the size of pixels (2D) or voxels (3D), the number of gray
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levels and range of the gray-level values, as well as the type of 3D-reconstruction
algorithms [14]. This is important because the stability and robustness of radiomics
features depend on the image processing settings [14,15]. Image acquisition, seg-
mentation, intensity normalization, co-regulation, and noise filtering are three more
analytical techniques that are crucial for processing the quantitative analysis of the
images (Figure 2).
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Figure 2. Variations in patient positioning, image acquisition, and segmentation affect each feature to
varying degrees. If radiomic models use features that are not robust against such influences, they will
perform poorly when applied to new data. Assessing feature robustness is thus recommended to
improve the generalizability of radiomic models and feature analysis.

2. Segmentation: This is the delineation of the region of interest (ROI) in 2D or volume of
interest (VOI) in 3D. This is the most critical step in the radiomics workflow since it
specifies the area/volume from which the features will be extracted. Segmentation is
tedious and is usually done manually by a human operator or semi-manually using
standard segmentation software [16]. However, segmentation is subject to intra- and
inter-operator variability. Therefore, fully automated segmentation was introduced
recently, using deep learning techniques [17]. Deep learning (DL) is based on artificial
neural networks where multiple layers (such as neurons in the human brain) are used
to perform complex operations and extract higher levels of features from data. DL
techniques require a large amount of data and considerable computing resources to
achieve the required accuracy.

3. Feature extraction: This is mainly a software-based process aimed at extracting and
calculating quantitative feature descriptors. Most of the feature extraction procedures
follow the guidelines of ISBI “Image Biomarker Standard Initiative”, which clusters
features in major categories such as intensity-based features, shape and edge features,
texture features, and morphological features [18]. On the other hand, using only gray-
level descriptors or histograms provides no information on the spatial distribution of
an image’s content, which can be obtained by evaluating texture features [19]. Because
of their varied textures, regions with comparable pixels/voxels can be distinguished
in some images. Because texture features can represent the intricacies of a lesion
observed in an image, they have become increasingly relevant [20]. The geometric
features extracted from the segmented object, such as its contours, junctions, curves,
and polygonal regions, are referred to as shape features. Quantifying item shapes is
a difficult task because it is dependent on the efficacy of segmentation algorithms.
Moreover, methods such as wavelet transformation, Laplacian of Gaussian, square
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root, and local binary pattern are used to polish this step. For example, a wavelet
transformation is a powerful tool for multiscale feature extraction. A wavelet is a
function that resembles a wave. Scale and location are the basic characteristics of the
wavelet function. The scale defines how "stretched" or “squished” the function is,
whereas placement identifies the wavelet’s position in time (or space). Decreasing
the scale (resolution) of the wavelet can capture high-frequency information and,
therefore, analyze well high-spatial frequency phenomena localized in space and
can effectively extract information derived from localized high-frequency signals.
Laplacian of Gaussian filter smooths the image by using a Gaussian filter, then applies
the Laplacian to find edges (areas of gray-level rapid change). Square and square root
image filters are tagged as Gamma modifiers. The square filter is accomplished by
taking the square of image intensities, and the square root filter by taking the square
root of the absolute value of image intensities [21]. Local binary pattern relies on
labeling a binary value to each pixel of the image by thresholding the neighboring
pixels based on the central pixel value, and the histogram of these labels is considered
as texture features [22].

4. Feature analysis: The number of features extracted can be very high, which makes the
analysis process cumbersome and the application of artificial intelligence ill-posed,
in particular, if the number of data is not high. Reducing the number of features
to a reasonable yet meaningful number is called “feature selection” or “dimension
reduction” and helps to exclude features that are redundant and non-relevant from
the data set before doing the final analysis. It also helps gather only the features that
are the most consistent and relevant to build a reliable model for further prediction
and classification [23]. Dimension reduction techniques, such as principal component
analysis and partial least squares, construct ‘super variables’—usually linear combi-
nations of original input variables—and use them in classification. Although they
may also lead to satisfactory classification, biomedical implications of the classifiers
are usually not obvious since all input features are used in the construction of the
super features and hence classification. Feature selection methods can be classified
into three categories. The filter approach separates feature selection from classifier
construction. This implies that the machine learning algorithm handles the feature
removal and data classification in separate steps. As a result, the algorithm begins
by picking out the most crucial features and eliminating the others, and then, in the
second step, it only uses those features to classify the data. The wrapper approach
measures the “usefulness” of features based on the classifier performance by using
a greedy search approach that evaluates all the possible combinations of features
against the classification-based evaluation criterion and keeps searching until a cer-
tain accuracy criterion is satisfied. The embedded approach embeds feature selection
within classifier construction. Embedded approaches have less computational com-
plexity than wrapper methods. Compared with filter methods, embedded methods
can better account for correlations among input variables. Penalization methods are a
subset of embedded methods in which feature selection and classifier construction are
achieved simultaneously by computing parameters involved in the penalized objec-
tive function. Many algorithms have been proposed to achieve this; the most popular
ones are lasso, adaptive lasso, bridge, elastic net, and SCAD, to name a few [24–28].
Table 1 summarizes an assessment of some publicly available open-source radiomics
extraction tools and their primary characteristics.
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Table 1. Primary characteristics of publicly available open-source radiomics extraction tools.

Programming
Language

IBSI 1

Feature
Definition

Full OS
Compatibility

DICOM-
RT 2

Import
Integrated
Visualization

Radiomics
Metadata
Storage

Built-in
Segme-
Ntation

Reference

MITK C++ No Yes Yes No No No
Götz
et al. 2019
[29]

MaZda C++/Delphi No No No Yes No Yes
Szczypinski
et al. 2009
[30]

PyRadiomics Python Yes Yes No No No No

van
Griethuysen
et al. 2017
[31]

IBEX Matlab/C++ No No Yes Yes Yes Yes
Zhang
et al. 2015
[32]

CERR Matlab Yes Yes Yes Yes Yes Yes
Apte
et al. 2018
[33]

1 ISBI “Image Biomarker Standard Initiative”. 2 DICOM-RT: “Digital Imaging and Communications in Medicine—
Radiation Therapy”, an international standard to store, transmit, process, and display imaging data in medicine.

2.2. AI

Artificial Intelligence (AI) has attracted a great deal of attention in the past decade. It
is a field that uses and develops computer systems to imitate human intelligence and learn
from experience to perform and improve the tasks assigned. Machine Learning (ML) is
a major subfield of AI that develops algorithms to learn from existing data and perform
statistical inference to make accurate predictions of new data. The training of the algorithm
on the data can be performed in two ways: supervised and unsupervised. Supervised
learning trains its algorithms on previously labeled/annotated data to find the relationship
between the labels and the data features and generalizes this knowledge to predict new
(unlabeled) cases. Unsupervised learning (also known as self-supervised learning) refers to
the process of grouping data into clusters using automated methods or algorithms on data
that has not been classified or categorized and finding the relationship between intrinsic
features to categorize the data into clusters (see Figure 3) [34]. Many machine learning
models are linear and, therefore, cannot capture all features that are intrinsically nonlinear.
Several machine learning algorithms based on nonlinear models have arisen in recent
decades to solve regression, classification, and estimation challenges. A linear model for
prediction uses a linear function, whereas a nonlinear model uses a nonlinear function
coupled with computational complexity (which limits its use). In classification, linearity
refers to the fact that the decision surface is a linear separator, such as a line that divides
positive and negative points in the training set in the case of a plane. Similarly, a nonlinear
model will use a nonlinear decision surface, such as a parabola, to divide classes. Details of
linear and nonlinear learning models are also summarized in Table 2.
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Table 2. List of the most commonly used machine learning algorithms in medical imaging.

Model Algorithm Reference

Linear Learning model
• Linear regression (LR)
• Principal component analysis (PCA)
• Linear discriminant analysis (LDA)

• Nelder and Wedderburn (1972) [35]
• Jolliffe (2002) [36]
• Mclachlan (2004) [37]

Nonlinear Learning model

• Logistic regression (LR)
• Naïve Bayes (NB)
• General additive models (GAM)
• Decision tree (DT)
• Support vector machine (SVM)
• Gradient boosting machine (Gboost)
• Advanced gradient boosting (XgBoost)
• Random forest (RF)
• Artificial neural network (ANN)
• K-nearest neighbors (K-NN)
• Deep learning (DL)

• PLS

• Walker and Duncan (1967) [38]
• Russell (2003) [39]
• Hastie and Tibshirani (1990) [40]
• Quinlan (1987) [41]
• Cortes (1995) [42]
• Hastie, Tibshirani(1990) [40]
• Chen and Guestrin (2016) [43]
• Ho (1998) [44]
• Kleene (1956) [45]
• Fix and Hodges (1951) [46]
• Bishop (2006) [47], Schmidhuber

(2015) [48]; LeCun, Bengio, and Hinton
(2015) [49]; Goodfellow (2016) [50]

• Tibshirani (1996) [24]

Deep learning (DL) is a more advanced subfield of ML. Instead of teaching the algo-
rithm to process and learn from the data, a DL algorithm teaches itself to process and learn
from the data. This is done through layers of artificial neural networks (ANN) using large
amounts of data (see Section 2.3) [51]. Another type of machine learning algorithm is called
reinforcement learning, where the algorithm is trained to take a sequence of decisions
based on trial and error in which, after each operation, the algorithm gets rewarded or
penalized until a solution is achieved [52]. There are several metrics to assess the outcome
of AI models. These are sensitivity, specificity, and accuracy. Sensitivity is the proportion
of positive cases (e.g., malignant tumors) that are reported as positive cases. Specificity
is the proportion of negative cases that are reported as negative cases. Accuracy is the
proportion of all correct cases that are reported as correct (either negative or positive) cases.
In most applications in medicine, supervised learning is the preferred strategy for associa-
tion/prediction or classification, particularly in radiomics. It applies the same concept as a
student learning under the supervision of the teacher. Figure 4 summarizes the principle
of employing supervised learning techniques from creating, training, and testing data to
prediction or classification.

2.3. Radiomics-AI Combination

The field of radiomics deals with an ever-growing number of images and imaging
modalities. The resulting excessive number of features extracted from these images requires
sophisticated and powerful data analytic tools beyond traditional statistical inference,
which only AI can provide. Moreover, these features provide valuable quantitative metrics
that are perfectly suited for AI algorithms. Consequently, the fields of radiomics and AI
became easily interchangeable in diagnostic imaging [53]. With the development of artificial
intelligence and new machine learning tools, auxiliary diagnostic systems have expanded
greatly and have been used in many different tasks with all medical imaging modalities.
One of the areas of artificial intelligence that has been gaining attention in the scientific
community most recently is deep learning [54]. Traditional machine learning methods
have limitations in data processing, mainly related to the need for segmentation and the
development of feature extractors to represent images and serve as input for the classifiers.
Therefore, researchers began to develop algorithms that integrated the processes of feature
extraction and image classification within the ANN itself. Therefore, in deep learning
techniques, the need for preprocessing or segmentation is minimized. However, the
method also has disadvantages, such as the need for a very large set of images (hundreds
to thousands), greater dependence on exam quality and clinical data, and difficulty in
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identifying the logic used (“processing black box”). The most widely known method of
deep learning in medicine is that involving a convolutional neural network (CNN). A CNN
is basically composed of three types of layers: the first (convolutional layer) detects and
extracts features; the second (pooling layer) selects and reduces the amount of features; and
the third (fully connected layer) serves to integrate AI features extracted by the previous
layers, typically by using a multilayer perceptron-like neural network to perform the final
image classification, which is given by the prediction of the most likely class [55,56].
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2.4. Validation

Another important step in the machine learning process is validation and performance
assessment. Given a set of images, a machine learning classifier must use at least two
different subsets to perform algorithm training and predictive model validation. A widely
used strategy in radiomics is cross-validation. In cross-validation, the samples are separated
into N subsets: one for training, one for validation, and one (independent subset) for testing
only [57,58]. Another strategy is K-fold validation, which is based on dividing data into K
subsets: one for training, one for validation, and one for test and shuffling randomly this
process K times. Performance is typically evaluated by calculating the accuracy, sensitivity,
specificity, and area under the receiver operating characteristic (ROC) curve for the method
in question. An area under the curve (AUC) closer to 1 (on a scale from 0 to 1) indicates
greater accuracy of the method

2.5. Open-Source Data for Radiomics

Publicly accessible data sets, such as the RIDER data set, aid in the understanding
of the impact of various parameters in radiomics [59]. Furthermore, the availability of a
public phantom data set for radiomics reproducibility tests on CT could aid in determining
the impact of collection parameters in order to minimize non-robust radiomic characteris-
tics [60]. However, more research is needed to see if data collected on a phantom can be
used on humans [61]. Similar endeavors for PET and MRI would aid in the knowledge of
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how changes in environments affect radiomics. To put it another way, open-source data is
critical to the future advancement of radiomics.

3. Application of AI and Radiomics in Veterinary Diagnostic Imaging
3.1. Lesion Detection

One of the earliest publications describing the use of AI in veterinary diagnostic
imaging involved the evaluation of a linear partial least squares discriminant analysis (PLS-
DA) and a nonlinear artificial neural network (ANN) model in the application of machine
learning for canine pelvic radiograph classification (see Table 3) [62]. Classification error,
sensitivity, and specificity of 6.7%, 100%, and 89% for the PLS-DA model and of 8.9%, 86%,
and 100% for the ANN model were achieved [62]. Although the classification in this study
was not focused on the presence of hip joint pathology but on the presence of a hip joint in
an image, this study was one of the first to demonstrate that common machine learning
algorithms could be applied to the classification of veterinary radiographic images and
suggested that for future studies the same models could potentially be used for multiclass
classifiers [62].

Table 3. Literature review of AI/radiomics studies in the veterinary imaging applications, with
reported accuracies and conclusions. CNN: convolutional neural networks. N/A: not available.

Reference Topic Scale Species AI/Radiomic
Algorithms Accuracy Conclusion

Basran et al.,
2021 [63]

Lesion detection:
equine proximal
sesamoid bone
micro-CT

Clinical
N = 8
cases and
8 controls

Equine Radiomics N/A

Radiomics analysis of
µCT images of equine
proximal sesamoid bones
was able to identify image
feature differences in
image features in cases
and controls

Becker et al.,
2018 [64]

Lesion detection:
murine hepatic
MRIs

Pre-
clinical
N = 8
cases and
2 controls.

Murine Radiomics N/A

Texture features may
quantitatively detect
intrahepatic tumor
growth not yet visible to
the human eye

Boissady et al.,
2020 [65]

Lesion detection:
canine and
feline thoracic
radiographic
lesions

Clinical
N = 6584
cases

Canine
and feline

Machine
learning
- CNN

N/A

The described network
can aid detection of
lesions but not provide a
diagnosis; potential to be
used as tool to aid general
practitioners

McEvoy and
Amigo, 2013
[62]

Lesion detection:
canine pelvic
radiograph
classification

Clinical
N = 60
cases

Canine

Machine
learning
- CNN

N/A

Demonstrated feasibility
to classify images,
dependent on availability
of training data

Yoon et al.,
2018 [66]

Lesion detection:
canine thoracic
radiographic
lesions

Clinical
N = 3122
cases

Canine

Machine
learning
- CNN
- BOF

CNN: 92.9–96.9%
BOF: 79.6–96.9%

Both CNN and BOF
capable of distinguishing
abnormal thoracic
radiographs, CNN
showed higher accuracy
and sensitivity than BOF

Banzato et al.,
2018 [67]

Lesion
characterization:
MRI
differentiation
of canine
meningiomas vs.
gliomas

Clinical
N = 80
cases

Canine

Machine
learning
- CNN

94% on post-contrast
T1 images, 91% on
pre-contrast
T1-images, 90% on
T2 images

CNN can reliably
distinguish between
different meningiomas
and gliomas on
MR images

D’Souza et al.,
2019 [68]

Lesion
characterization:
assessment of
B-mode US for
murine hepatic
fibrosis

Pre-
clinical
N = 22
cases and
4 controls.

Murine Radiomics N/A

Quantitative analysis of
computer-extracted
B-mode ultrasound
features can be used to
characterize hepatic
fibrosis in mice
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Table 3. Cont.

Reference Topic Scale Species AI/Radiomic
Algorithms Accuracy Conclusion

Kim et al.,
2019 [69]

Lesion
characterization:
canine corneal
ulcer image
classification

Clinical
N = 281
cases

Canine

Machine
learning
- CNN

Most models > 90%
for superficial and
deep corneal ulcers;
ResNet and VGGNet
> 90% for normal
corneas, superficial
and deep
corneal ulcers

CNN multiple image
classification models can
be used to effectively
determine corneal ulcer
severity in dogs

Wanamaker
et al., 2021 [70]

Lesion
characterization:
MRI
differentiation
of canine glial
cell neoplasia vs.
noninfectious
inflammatory
meningoen-
cephalitis

Clinical
N = 119
cases

Canine Radiomics

Random forest
classifier accuracy
was 76% to
differentiate glioma
vs. noninfectious
inflammatory
meningoencephalitis

Texture analysis using
random forest algorithm
to classify inflammatory
and neoplastic lesions
approached previously
reported radiologist
accuracy, however
performed poorly for
differentiating tumor
grades and types

Yoon and colleagues (2018) were among the first to perform a feasibility study that
evaluated bag-of-features (BOF) and convolutional neural networks (CNN) in veterinary
imaging for the purpose of computer-aided detection to identify abnormal canine radio-
graphic findings, which included cardiomegaly, abnormal lung patterns, mediastinal shift,
pleural effusion, and pneumothorax (see Table 3) [66]. The results indicated that while both
models showed the possibility of improving work efficiency with the potential for double
reading, CNN showed higher accuracy (92.9–96.9%) and sensitivity (92.1–100%) when com-
pared to BOF (accuracy 74.1–94.8%; sensitivity 79.6–96.9%) [66]. Later, Boissady et al. (2020)
developed a unique deep neural network (DNN) for thoracic radiographic screening in
dogs and cats for 15 different abnormalities [65]. For the purpose of training, more than
22,000 thoracic radiographs, with corresponding reports from a board-certified veterinary
radiologist, were provided to the algorithms. Following training, 120 radiographs were
then evaluated by three groups of observers: the best-performing network, veterinarians,
and veterinarians aided by the network. The results showed that the overall error rate of
the network alone was 10.7%, significantly lower (p = 0.001) than the overall error rate
of the veterinarians (16.8%) or the veterinarians aided by the network (17.2%) [65]. It is
interesting to note that the network failed to statistically improve the veterinarians’ error
rate in this study, which the authors hypothesized could be due to a lack of experience
with the use of AI as an aid and failure to trust CNN’s pattern recognition [65]. These
results indicated that although the network could not provide a specific diagnosis, it could
perform very well at detecting various lesion types (15 different abnormalities), confirming
the usefulness of CNN for the purpose of identification of thoracic abnormalities in small
animals [65].

Several papers have been published investigating the use of AI applied to rodents,
which are commonly used as animal models of disease (see Table 3). In these cases, the
studies focus on liver disease. In 2018, one such study investigated whether AI could be
used to detect texture features on mouse MRIs, which could be correlated with metastatic
intrahepatic tumor growth before they become visible to the human eye [64]. The results of
this study suggested that livers affected by both neoplastic metastases and micrometastases
develop systematic changes in texture features [64]. Three clusters or features derived
from each of the gray-level matrices were found to have an independent linear correlation
with tumor growth [64]. The authors concluded that changes in texture features at a
sub-resolution level could be used to detect micrometastases within the liver before they
become visually detectable by the human eye [64].

Another report on the use of radiomics in veterinary medicine describes a radiomics-
based approach to the analysis of micro-CTs (µCT) of equine proximal sesamoid bones
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to be able to distinguish image features in controls compared to cases who developed
catastrophic proximal sesamoid bone fractures (see Table 3) [63]. Using radiomics, it
was possible to consistently identify differences in image features between cases and
controls, as well as highlight several features previously undetected by the human eye [63].
This work provides an initial framework for future automation of image biomarkers in
equine proximal sesamoid bones, with potential applications including the identification of
racehorses in training at high risk of catastrophic proximal sesamoid bone fracture [63].

3.2. Lesion Characterization

The term ‘characterization’ of a lesion encompasses the segmentation, diagnosis, and
staging of a disease [1]. This depends on a number of quantifiable radiological characteris-
tics of a lesion, including size, extent, and texture [1]. Humans are limited in their capability
to interpret medical diagnostic images in this regard due to our finite capacity to handle
multiple qualitative features simultaneously. AI, on the other hand, has the capacity to
process a large number of quantitative features in a reproducible manner. In the veterinary
literature, several examples exist of the use of AI for lesion characterization in a variety
of applications.

Interpretation and characterization of brain lesions on MRI can be challenging. In 2018,
Banzato et al. evaluated the ability and accuracy of a deep CNN to differentiate between
canine meningiomas and gliomas on pre- and post-contrast T1-weighted and T2-weighted
MRI images and developed an image classifier based on this to predict whether a lesion
(characterized by final histopathological diagnosis) is a meningioma or glioma [67]. The
image classifier was found to be 94% accurate on post-contrast T1-weighted images, 91%
on pre-contrast T1-weighted images, and 90% on T2-weighted images, thus concluding
that it had potential as a reliable tool to distinguish canine meningiomas and gliomas on
MRIs [67].

Similarly, more recently, the use of Texture Analysis (TA) to differentiate canine glial
cell neoplasia from noninfectious inflammatory meningoencephalitis was investigated [70].
This can be challenging even for experienced diagnostic imaging specialists due to a num-
ber of overlapping image characteristics. A group of 119 dogs with diagnoses confirmed on
histology were used, 59 with gliomas and 60 with noninfectious inflammatory meningoen-
cephalitis [70]. The authors found that cohorts differed significantly in 45 out of 120 texture
metrics [70]. TA was unable to classify glioma grade or cell type correctly and could
only partially differentiate between subtypes of inflammatory meningoencephalitis (e.g.,
granulomatous vs. necrotizing) [70]. However, with a random forest algorithm (supervised
learning algorithm where the "forest" built is an ensemble of decision trees, usually trained
with the “bagging” method), its accuracy for differentiating between inflammatory and
neoplastic brain disease was found to approach that previously reported for subjective
radiologist evaluation [70].

Another study focusing on rodent livers described the use of quantitative analysis of
computer-extracted features of B-mode ultrasound as an alternative non-invasive method
to liver biopsy for the characterization of hepatic fibrosis [68]. Computer-extracted quanti-
tative parameters included brightness and variance of the hepatic B-mode ultrasounds [68].
Hepatic fibrosis induced in rats (n = 22) through oral administration of diethylnitrosamine
(DEN) showed an increase in hepatic echo intensity from 37.1 ± 7.8 to 53.5 ± 5.7 (at
10 weeks) to 57.5 ± 6.1 (at 13 weeks), while the control group remained unchanged at an
average of 34.5 ± 4 [68]. A similar effect was seen over time in the hepatorenal index, het-
erogeneity, and anisotropy. Three other features were studied that also increased over time
in the DEN group44. Subsequent hepatic histology revealed more severe fibrosis grades in
DEN rats compared to controls [68]. The results showed that increasing parameters in US
showed a significant positive correlation with increasing fibrosis grades, with anisotropy
having the strongest correlation (p = 0.58) [68]. Computer-extracted features of B-mode US
images consistently increased over time in a quantifiable manner as hepatic damage and
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fibrosis progressed in rats, making this quantitative tool a potentially beneficial adjunct to
the clinical diagnosis and assessment of hepatic fibrosis and chronic liver disease [68].

CNN technology has also been developed to classify canine corneal ulcer severity
(normal vs. superficial vs. deep) based on corneal photographs, which had previously been
classified by veterinary ophthalmologist evaluation [69]. Following labeling and learning
of images (1040 in total), they were then evaluated using GoogLeNet [71], ResNet [72],
and VGGNet [73] models to determine the severity, using simulations based on an open-
source software library, which was fine-tuned using a CNN model trained on the ImageNet
data set [69]. Accuracies greater than 90% were achieved for most of the models for the
classification of superficial and deep corneal ulcers, with ResNet [72] and VGGNet [73]
achieving accuracies >90% [69]. This study concluded that the proposed CNN method
could effectively differentiate ulcer severity in dogs based on corneal photographs and that
multiple image classification models are applicable for use in veterinary medicine [69].

4. Discussion

Several challenges exist that are inherent to data sets associated with veterinary diag-
nostic imaging. Due to the nature of the patient caseload and the variability of the species
and breeds encountered, the acquisition of large, uniform data sets can be challenging.
Therefore, learning tasks must often be performed using small and often variable data sets.
The lack of availability of examples of rare diseases for algorithm training is a limitation,
meaning some diagnoses may be missed if such examples are not included in the training
sets [2]. The availability of data sets will likely present one of the greatest challenges to
the advancement of the use of AI in veterinary diagnostic imaging in the future, hence
the need to develop large open-source data sets. Such data must also be curated in such
a manner as to ensure ease of access and retrieval [1]. A number of additional challenges
are also likely to present themselves in the future and will mirror those seen in the human
medical fields, such as those associated with regulation and benchmarking of AI-related
activities, as well as issues of privacy and a number of other ethical considerations such as
culpability for misdiagnoses [1].

Despite an overall openness and enthusiasm to adapt and implement AI for use in
human medical radiology, in general, a knowledge gap still exists that must be addressed
before it can be fully adopted in veterinary medicine [74]. As the study by Boissady et al.
(2020) showed, operators must be familiar and experienced with the use of AI as an aid,
and trust in its results, in order to benefit from it [65]. Otherwise, failure to do so can add an
error to the process. In addition, there is still a perception among a significant proportion
of radiographers that AI could threaten or disrupt radiology practice, mainly due to a
possible drop in demand or loss of respect for the profession [74,75]. It is likely that these
perceptions also exist within veterinary diagnostic imaging and thus also present a hurdle
to overcome before AI can be fully accepted within this profession in the future.

5. Conclusions

Although no reports exist in the veterinary literature, one logical next step for AI
application in veterinary diagnostic imaging involves its use for the monitoring of lesion
progression over time. Monitoring disease over time is essential not only for diagnosis
and prognostic estimation but also for the evaluation of response to treatment. It consists
of aligning diseased tissue across multiple diagnostic images taken over time, with the
comparison of simple data to quantify change, for example, change in size, as well as
variations in texture or heterogeneity computer-aided change analysis could detect subtle
changes in characteristics not easily identified by the human eye and would also avoid the
problems encountered with interobserver variability [1]. It is also likely that in the future,
AI will play a greater administrative role, including patient identification and registration
and medical reporting, and these advances are also likely to spill over into veterinary
fields [1].
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