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Introduction

Skeletal muscle makes up approximately 40% of the total
body mass; it is essential in providing structural support, to
regulate motion and as an energy store, thereby playing a
major role in the overall metabolism. Skeletal muscle retains
a high plasticity in order to respond to various stimuli, which
subsequently lead to changes in gene transcription and trans-
lation. Aside from the obvious transcription factors, non-
coding RNAs have received much attention over the last de-
cade and can be subclassed into long non-coding RNA and
small non-coding RNA termed microRNA (miR). These miRs
are similar to mRNA when first transcribed as primary RNA
and are subsequently processed by the endoribonuclease
DROSHA associated with PASHA to a precursor miR, which
is further processed by the endoribonuclease DICER1 to form
mature miRs.1 The mature miR binds to its target mRNAs
leading to a blocked translation or degradation thereby pro-
viding the cell with a post-transcriptional control of gene
expression.2,3

While some miRs are expressed ubiquitously in most tis-
sues and cell types, other miRs are highly and specifically
enriched in certain tissues.4 MyomiRs comprise a group of
miRs, who display an enriched expression in skeletal muscle
including miR-1, miR-133a, miR-133b, miR-206, miR-208,
miR-208b, miR-486, and miR-499. These miRs are under
the transcriptional control of myogenic regulatory factors
such as MyoD, myogenin, Myf5, and MRF4.5 The expression
of MyomiRs is modulated in skeletal muscle growth, its de-
velopment and maintenance, and during atrophy.5 Two key
players of muscle wasting are the E3 ubiquitin ligases
MAFbx and MuRF-1, the latter being the only E3 ubiquitin
ligase known to target contractile proteins in catabolic con-
ditions6 and which can be inhibited by small molecules.7 The

related proteins MuRF-2 and MuRF-3 bind to microtubules
and are implicated in sarcomere formation with evident
functional redundancy, which has proven to be important
for the maintenance of skeletal muscle, as double knockout
mice lead to myopathy, reduced fore generation, and fibre
type shift.8 In contrast to healthy adaptation, not only
myomiRs are regulated in cancer cachexia, a recent publica-
tion showed an up-regulation of hsa-miR-3184-3p, hsa-miR-
423-5p, hsa-let-7d-3p, hsa-miR-1296-5p, hsa-miR-345-5p,
hsa-miR-532-5p, hsa-miR-423-3p, and hsa-miR-199a-3p, but
no down-regulation of miRs in skeletal muscle biopsies of
patients with pancreatic and colorectal cancer (Table 1).9

In a rat model of paralysed muscle by spinal cord injury, a
down-regulation of miRs 23a, 23b, 27b, 145, and 206 was
observed 56 days after injury,10 while injection of 30 μg of
mir-206 attenuated muscle loss in a rat denervation
model.11 In patients with chronic obstructive pulmonary
disease (COPD), an up-regulation of miR-542-3p/5p in
quadricep muscle has been described, which caused muscle
wasting and reduced mitochondrial function when
overexpressed in mice possibly due to a suppression of
the mitochondrial ribosomal protein MRPS10, reduced 12S
ribosomal RNA expression, and increased TGF-b signalling.12

In patients with COPD with a low fat free mass, an in-
creased expression of miR-675 in quadricep muscle was
shown to repress muscle regeneration in vitro.13 Moreover,
quadricep expression of miR-422a was positively associated
with muscle strength (maximal voluntary contraction
r = 0.59, P < 0.001 and r = 0.51, P = 0.004, for COPD and
aortic surgery, respectively) and inversely associated with
the amount of muscle that would be lost in the first post-
operative week (r = �0.57, P < 0.001).14 Overexpression
of miR-23a/27a in muscle attenuated diabetes-induced mus-
cle cachexia and attenuates renal fibrosis lesions via muscle-
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kidney crosstalk in streptozotocin-induced diabetic mice.15

Recently, the lncRNA MAR1 has been shown to act as a
miR-487b scavenger to regulate Wnt5a protein expression
leading to stimulated muscle differentiation and regenera-
tion as well as increased strength in mice16 making the
already complex miR regulatory system even more
complicated.

miRs can be actively secreted from a cell or leaking
through the membrane in response to various stimuli and in-
sults resulting in varying circulating miR levels in the blood,
which are relatively stable making miRs interesting for the
use as biomarkers and therapeutic targets.1 This is of particu-
lar importance in muscle wasting, as there are very few
blood-based biomarkers such as myostatin or agrinin that
correlated with muscle mass.17–21 Several other circulating
factors like GDF-15,22 activin A,23 and low testosterone24

have been associated with muscle loss and survival in
sarcopenia and cachexia and therefore can be considered po-
tential biomarkers, but need to be validated in large trials.
miRs could serve not only as biomarkers for muscle status
and wasting but also as biomarkers to monitor muscle regen-
eration and therapy effects.

Resistance exercise has been of particular interest in
sarcopenia and also in cachexia.32–37 Moreover, exercise mi-
metics such as trimetazidine are of interest in the therapy
of muscle atrophy,38 but also need companion biomarkers.
MyomiRs are strongly regulated in resistance exercise, and
their expression patterns in muscle as well as their plasma
pattern levels may have the potential to serve as biomarkers
for exercise, and regular monitoring in sarcopenic or cachec-
tic patients could prevent detrimental over-exercise.
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Table 1. Differential regulation of miR expression in skeletal muscle after exercise

miR up-regulated miR down-regulated Exercise type Exercise duration Reference

miR-1, miR-133a,
miR-133b, miR181a

miR-9, miR-23a,
miR-23b, miR-31

Acute exercise Acute bout of moderate-
intensity endurance
cycling

Russel et al.25

miR-1, miR-133a Acute resistance
exercise

45 min of one-legged
knee extensor exercise

Ringholm et al.26

miR-1 12 weeks of
training with two
weekly resistance
exercise sessions

12 weeks of training with
two weekly resistance
exercise sessions

Mueller et al.27

miR-1, miR-133a,
miR-133b, miR-206

Endurance Cycle ergometer five times
per week frequency for
12 weeks

Nielsen et al.28

miR-1, miR-29b Endurance 10 days of endurance
training

Russel et al.25

miR-136, miR-200c,
miR-376, miR-377,
miR-499b, miR-558

miR-28, miR-30d,
miR-204, miR-330,
miR-345, miR-375,
miR-449c, miR-483,
miR-509, miR-520a,
miR-548, miR-628,
miR-653, miR-670,
miR-889, miR-1245a,
miR-1270, miR-1280,
miR-1322, miR-3180

Chronic resistance
exercise

12-week lower body
resistance exercise

Ogasawara et al.29

miR-451 miR-26a, miR-29a,
miR-378

Resistance exercise 12-week resistance exercise
training program (pushing,
pulling, and leg exercises,
with 60 weight-lifting
sessions in total

Davidsen et al.30

miR-133a, miR-378,
miR-486

Resistance exercise 8 × 5 unilateral leg press
repetitions on each leg at
80% of the 1repitition
maximum

Fyfe et al.31
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