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Abstract

Advances in community detection reveal new insights into multiplex and multilayer net-

works. Less work, however, investigates the relationship between these communities and

outcomes in social systems. We leverage these advances to shed light on the relationship

between the cooperative mesostructure of the international system and the onset of inter-

state conflict. We detect communities based upon weaker signals of affinity expressed in

United Nations votes and speeches, as well as stronger signals observed across multiple

layers of bilateral cooperation. Communities of diplomatic affinity display an expected nega-

tive relationship with conflict onset. Ties in communities based upon observed cooperation,

however, display no effect under a standard model specification and a positive relationship

with conflict under an alternative specification. These results align with some extant hypoth-

eses but also point to a paucity in our understanding of the relationship between community

structure and behavioral outcomes in networks.

Introduction

Community structure is a fundamental feature of complex networks. The community detec-

tion task consists of the identification of subgraphs where vertices exhibit dense within-group

ties relative to out-group ties [1]. These mesostructural patterns shed light on physical, biologi-

cal, and social networks, with applications ranging from disease surveillance to paper citations

[2–9]. Early work on modularity developed a principled assessment of the quality of network

divisions [10–12], and the current battery of detection tools permits investigation of multi-

layer, multiplex, and time-dependent networks, including algorithms that can accommodate

signed edges and heterogeneously structured networks [13–18].

For computational social scientists, this methodological expansion permits investigation of

theoretical questions that previously posed modeling challenges at the mesostructural level.

The enduring debate on the relationship between interconnectedness and conflict in Interna-

tional Relations (IR) is an exemplary case. On the one hand, Jean-Jacques Rousseau believed

that “. . .interdependence breeds not accommodation and harmony, but suspicion and incom-

patibility” ([19] page 321). More recently, Kenneth Waltz argued that “the fiercest civil wars
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and the bloodiest international ones have been fought within arenas populated by highly simi-

lar people whose affairs had become quite closely knit together” ([20] page 138). On the other

hand, Immanuel Kant emphasized “that the growth of interconnectedness demonstrated the

existence of the unique human capacity for establishing systems of cooperation. . .” [21]. More

contemporary liberal IR theorists also stress the pacifying effects of interdependence [22, 23].

Empirical investigations of this question typically conceptualize interdependence at the

dyad level—such as trade flow ratios between states vi and vj—and infer relationships to con-

flict via (generalized) linear models, e.g. [24, 25]. This conceptualization implies, for example,

that if three states vi, vj, and vk enjoy a closed triadic cooperation agreement and vi reneges on

the agreement, the exit of state vi from the commitment to vj is independent of the exit of state

vi from the commitment to vk. This introduces statistical issues associated with the use of

dyads to study k-adic phenomena [26] and misses the fundamental mechanism of theoretic

interest, or as Lupu & Traag ([27] page 1012) put it: “. . .[scholars] have assumed independence

in order to study interdependence”. Indeed, it has been suggested that until we “create and test

more complex models, we are not likely to make theoretical progress in sorting out this ques-

tion” ([28] page 56).

We draw upon two recent developments relevant to the question of interconnectedness

and conflict. First, in international politics, an emerging literature deploys community detec-

tion algorithms to examine the role of trade, democracy, and intergovernmental organization

dependencies [27, 29], as well as separate attention to alliances [13] and UN votes [30]. The

common intuition underlying each of these studies is that the community structure of the

international system is an underdeveloped predictor of behavioral outcomes. Second, recent

findings in the broader network cooperation literature suggest that community structure helps

to explain the emergence and maintenance of cooperation on graphs [31, 32] and that multi-

layer and multiplex structure fosters cooperative stability [33, 34]. These findings are impor-

tant for network analytic approaches to international politics, because in contrast to laboratory

settings with well-mixed populations, states are indeed embedded in multiple layers of poten-

tially interdependent relations. The network cooperation literature, however, has less to say

about the relationship between multiplex community structure and other behavioral out-

comes, such as conflict.

This paper employs advances in multilayer community detection to locate dense clusters of

states and then inferentially models these communities against the emergence of conflict in the

international system. Previous work finds pacifying effects of community membership in the

traditional Kantian-inspired foci of trade, democracy, and intergovernmental organization

networks [27, 29]. We innovate through attention to data beyond these networks in order to

better define the scope of the beneficial effects of community membership on conflict: does the

broader cooperative mesostructure of the international system display similar effects, or are

previous findings contingent on Kantian-based networks in particular? We consider weaker

signals of expressed affinity in the United Nations (UN), as well as stronger signals of observed

bilateral cooperation agreements. For the former, we employ layers of UN votes and speeches.

For the latter, we search across network layers of science, military, commodity, fishery, and

telecommunication cooperation agreements.

The results suggest the following. First, diplomatic cohesion in UN votes and speeches asso-

ciates negatively with conflict onset. That is, the presence of an affinity community tie in a

given dyad correlates with a decrease in conflict likelihood within that dyad. This result pro-

vides an extension to a previous finding based upon UN votes alone through the addition of

diplomatic speeches in a multilayer setting [30]. Second, states embedded in cooperation com-

munities appear no more or less likely to engage in conflict under a standard model specifica-

tion and are more likely to engage in conflict under an alternative specification. This finding
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contrasts with the often implicit assumption that cooperation community membership

reduces the likelihood of conflict amongst members. Furthermore, states who bridge multiple

cooperation communities are significantly more likely to experience conflict. These findings

lend some support for extant hypotheses but also point to a paucity in current knowledge

about the relationship between community structure and behavioral outcomes in social

systems.

Results

Community detection procedure

We follow recent work in conceptualizing the international system as a multilayer network

[29]: a network representation where nodes are connected across layers of different tie sets

[35–37]. Whereas a single mode representation is especially useful for the isolation of specific

theoretical mechanisms (e.g. a trade tie’s impact on Y), we instead aim to capture broader

cooperative structure that might exist across layers of the international system. Yet, because

innumerable slices of relationships exist in international politics, the resulting communities

can quickly become uninterpretable. We therefore focus on two types of multilayer graphs

based upon data previously scrutinized by network analysts in IR, namely bilateral cooperation

agreements and position affinity expressed in the UN. The former represent stronger signals

of observed country-country relations, whereas the latter represent weaker, correlational sig-

nals of affinity in expressed preferences.

For strong signal communities, we employ five cooperation topics from the World Treaty

Index: science, military, commodities, fisheries, and telecommunications [38, 39]. Previous

research finds that network dynamics in part drive bilateral agreement formation and evolu-

tion on these topics [40]. These topics represent key areas of coordination [41, 42] and help to

avoid redundancy across layers due to their relative orthogonality. For example, state motiva-

tions behind fishery agreement formation differ from motivations behind science agreement

formation [43]. This topical diversity increases confidence that detected communities repre-

sent groups of intensive cooperators across issue areas.

For each year, we take the multilayer graph Gt ¼ ðV; EÞ ¼ fGt1
; . . . ;Gtk

g, i 2 {1, . . ., k}

where Gti
¼ ðV;EÞ is a single elementary network layer that corresponds to one of the five dis-

tinct topics. Each layer contains an aligned node set V ¼ V with an undirected and

unweighted edge eij = eji = (vi, vj) 2 E between nodes vi and vj if there exists a bilateral agree-

ment between these two countries in layer Gti
. We use a moving window such that an edge is

present if a bilateral agreement was initiated within the past ten years, and we assume that the

edge dissipates outside of this window. This provides a sequence of yearly multilayer graphs

SGt
¼ fG1; . . . ;Gtg.

For weak signal communities, we employ UN votes and a recently released dataset of

speeches delivered during the annual UN General Debate [44]. UN votes represent a key

source of information about the expressed preferences of states [45–48]. Furthermore, previ-

ous network research examines UN voting communities in detail [49], including the relation-

ship between community membership and conflict [30]. In contrast to previous community

detection work, however, we employ country ideal points rather than raw UN votes. Noting

methodological challenges associated with UN votes, Bailey et al [48] propose the use of unidi-

mensional ideal points estimated from a dynamic ordinal spatial model. Thus, ideal points

derive from a more theoretically-informed model of vote choice given a state’s preferences.

For each year, we calculate the Euclidean distance between each country pair’s ideal points,

converting each distance to a similarity score in order to construct a V × V similarity matrix.

Multiplex communities and the emergence of international conflict
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We utilize speeches as the second graph layer in order to align with recent political science

research that turns to text data in order to more accurately capture the expressed positions of

political actors, e.g [50–53]. UN votes often display high cohesion, with states casting votes

along regional bloc lines, for ceremonial purposes, or because specific agenda items arise

beyond the state’s control [44, 47]. State speeches, on the other hand, provide delegations with

greater flexibility to express positions. For example, in 1974 Greece and Turkey voted the most

similarly amongst NATO members in the UN General Assembly (with ideal points of 0.68 and

0.42, respectively). Yet, that same year the two country’s air forces engaged in a dogfight which

led to the death of a Turkish pilot during tensions that arose from Turkey’s invasion of Cyprus.

In contrast to their votes, their UN General Debate speeches revealed these tensions, with each

blaming the other for the crisis. The Supplementary Information (SI) describes this example

and others, such as India and Pakistan who engaged in a border conflict in 1999, in greater

depth. Thus, the addition of the speech layer helps to capture greater heterogeneity in state

positions relative to previous community detection work that focuses on votes alone.

We first embed the speeches into vector space using the Global Vectors for Word Represen-

tation (GloVe) algorithm. Word embeddings encode more semantically interesting speech

patterns compared to the typical bag-of-words representation of text data [54]. For each year,

we utilize the Word Mover’s Distance (WMD) in order to locate distances between states’

speeches [55]. WMD conceptualizes the state-state speech distance problem as one of mini-

mizing the required effort to move one state’s speech embeddings to the vector space location

of another state, which we in turn convert to similarity scores [55]. This yields a V × V speech

similarity matrix for each year. Because the resultant vote and speech matrices are densely pop-

ulated, with each state seemingly connected to every other state, we follow previous work that

employs mutual k-nearest neighbor graph clustering to yield candidates for multilayer com-

munity detection [30, 56]. The notation for the sequence of multilayer weak signal graphs is

identical to the bilateral agreements outlined above.

With these strong and weak signal candidate layers in hand, we set about detecting multi-

plex communities. In international politics, different layers might exhibit heterogenous struc-

ture. As mentioned, states might initiate bilateral agreements for topic-dependent reasons, and

the vote and speech matrices in Fig 1(A) exhibit heterogenous similarity structures. Most com-

munity detection methods, however, posit the same community structure across network lay-

ers. Therefore, we employ a newly developed method that can accommodate heterogenous

structure, namely the Multilayer Extraction procedure [17]. The algorithm identifies densely

connected vertex-layers in multilayer networks through a significance-based score that com-

pares the connectivity of an observed vertex-layer set to a fixed degree random graph model.

The introductory paper provides technical details [17].

Community detection on yearly instances of strong and weak multilayer networks yields

separate sequences of detected community memberships. Single-mode projections of these

memberships produce strong and weak multiplex communities for each year, formally

Mstrong ¼ fMstrong1970
; . . . ;Mstrongt

g and Mweak ¼ fMweak1970
; . . . ;Mweakt

g, t 2 {1970, . . ., 1990},

with ties weighted by the number of common communities between two states. The year 1970

represents the beginning of the sequence, because this is the first available year in the corpus of

speeches. The year 1990 serves as the final year in the sequence, because previous international

conflict research finds evidence that the structural changes associated with the end of the Cold

War led to changes in the causal processes that underlie conflict [57]. Thus, we avoid imposing

a model that bridges into the post-Cold War era to avoid the conflation of data generating pro-

cesses. Furthermore, World Treaty Index data availability declines from the 1990s onwards

(see [40] page 774).

Multiplex communities and the emergence of international conflict
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Fig 1(A) presents the pipeline for the Multilayer Extraction procedure. Fig 1(B) and 1(C)

display the number of detected weak and strong signal communities over time, respectively.

Point weights indicate the percentage of states that belong to at least one community. Point

shading indicates the percentage of nodes that bridge at least two communities. These plots

provide a novel glimpse into international polarity with respect to the number of clusters in

the system and the ties within and across clusters [58]. Larger points and larger numbers of

communities suggest a system in which states are more exhaustively divided into groups (i.e.

poles). Lighter points indicate a more modular system with fewer bridging ties (i.e. a system

that is more polarized given the constellation of poles). The communities detected from coop-

eration agreements suggest that states are less exhaustively divided into clusters towards the

end of the Cold War, evidenced by a decline in the number of communities and a smaller per-

centage of states assigned to a community. The communities detected from signals of diplo-

matic affinity suggest a mean increase in the number of communities over time, with a

relatively steady and large percentage of states assigned to a community. Further, greater het-

erogeneity exists in the weak signal graphs, evidenced by a consistently higher number of com-

munities relative to cooperation agreements over time.

Fig 1. Multilayer community detection procedure. A: mutual 5-nearest neighbor graph clustering on yearly speech (top) and ideal point (bottom)

similarity matrices yields candidate adjacency layers for multilayer community detection. Then, we project the edge list recovered from the multilayer

extraction algorithm into a single mode network of detected communities. Here, the year 1973 serves as an illustration. The procedure is identical for

communities based on cooperation agreements, less the nearest neighbor clustering, since the data are already in adjacency matrix form. B and C: the

number of detected communities over time for weak and strong signal communities, respectively. Point weights represent the percentage of states that

belong to at least one community. Point shading represents the percentage of states that serve as bridges across at least two communities. Note that

these results represent the average of the different preprocessing and parameter settings examined. For ease of trend visualization, the plots include a

local weighted regression curve.

https://doi.org/10.1371/journal.pone.0223040.g001
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The emergence of interstate conflict

The detected multiplex communities represent the following. The communities based upon

stronger signals represent tightly-knit groups of cooperators, taking into account the relational

structure at each layer of the multilayer cooperation network. The communities based upon

weaker signals represent clusters of states that exhibit similar expressed preferences in the UN,

taking into account the similarity structure in the speech and voting layers. Thus, these multi-

plex communities provide a useful description of the cooperative mesostructure of the interna-

tional system.

We now investigate the relationship between these communities and the onset of violent

conflict in IR. We first consider the effect of community ties at the system level. Then, we

restrict the node set to only the most active states in the system to investigate the ways in

which different structural roles within these communities correlate with conflict onset. Fig 2

provides a stylized representation of the tie- and node-level effects under consideration.

As noted in the Introduction, the networked nature of IR often implies a nonindependence

of observations that renders logistic regression unsuitable [59]. To circumvent these inferential

challenges, we employ a temporal extension to the exponential random graph model [(T)

ERGM] [60, 61]. ERGMs are generative models for network data [62], and their results can be

interpreted similarly to coefficients from logistic regression: the coefficients provide an esti-

mate for the change in the log-odds likelihood of observing a tie given a one unit change in the

independent variable. The outcome network of interest is a yearly snapshot of the conflict

onset network. An undirected tie between two states vi and vj exists if conflict was initiated in a

Fig 2. Conflict effects. A: the relationship between a community tie and conflict onset at the system level. B: the effect associated with disjoint

community membership and conflict onset, i.e. nodes within the same community that lack membership in other communities. C: the relationship

between bridging nodes and conflict onset, i.e. nodes with membership in more than one community.

https://doi.org/10.1371/journal.pone.0223040.g002
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given year. Model 1 follows a specification by Pauls & Cranmer [30] that contains a battery of

covariates traditionally associated with conflict onset. This provides a baseline specification

and brings our results into proximity with extant findings. The weak and strong multiplex

communities then enter the model as an edge-level covariate in Models 2 and 3, respectively.

Table 1 presents these system-level results.

The coefficient sizes and directions are substantively reasonable. The edges term can be

interpreted akin to the intercept term in a logit model. For example, the probability of observ-

ing conflict within a given dyad is approximately 0.0004 in Model 1. The significance and coef-

ficient directions of the endogenous network statistics of alternating 2-stars and geometrically

weighted edgewise shared partners (GWESP) indicate that conflict tends to cluster within the

network. Further, traditional IR covariates display expected signs and effect sizes. For example,

two contiguous states display a ceteris paribus 3.78 times higher log odds of conflict onset rela-

tive to two non-contiguous states, i.e. an odds increase of 43.82.

In Model 2, the coefficient on ties in weak signal communities is significant and negative.

This indicates that conflict is less likely between countries that display strong cohesion in their

votes and speeches. Specifically, a given dyad’s log-odds of experiencing conflict decreases by

-0.60 for each additional weak signal community tie within that dyad, all else equal. In Model

Table 1. TERGMs: Analysis of international conflict onset, 1970-1990.

Model 1

Baseline

Model 2

Weak

Model 3

Strong

Model 4

Strong

(No Contig.)

Edges −7.76

[−8.03; −7.49]

−7.72

[−8.09; −7.42]

−7.69

[−7.98; −7.44]

−7.38

[−7.68; −7.14]

Multiplex Comms.
Tie Structure −0.60

[−1.36; −0.08]

0.01

[−0.26; 0.26]

0.41

[0.13; 0.73]

Network Effects
Alternating 2-Stars 1.00

[0.85; 1.13]

1.04

[0.83; 1.19]

1.02

[0.86; 1.15]

0.96

[0.81; 1.09]

4-Cycles 0.55

[0.46; 0.99]

0.56

[0.45; 1.13]

0.54

[0.44; 0.83]

0.48

[0.39; 0.77]

GWESP (0) −0.44

[−1.07; −0.18]

−0.47

[−5.25; −0.14]

−0.42

[−1.05; −0.14]

−0.26

[−0.84; 0.05]

Traditional Covariates
Joint Democracy −0.15

[−0.57; 0.24]

−0.16

[−0.58; 0.22]

−0.13

[−0.56; 0.27]

−0.77

[−1.30; −0.32]

Direct Contiguity 3.78

[3.47; 4.15]

3.65

[3.30; 4.07]

3.73

[3.43; 4.10]

Capabilities Ratio −0.12

[−0.20; −0.07]

−0.10

[−0.19; −0.03]

−0.11

[−0.19; −0.03]

−0.12

[−0.20; −0.05]

Trade Dependence −0.37

[−1.17; −0.06]

−0.26

[−1.10; 0.04]

−0.39

[−1.25; −0.06]

0.25

[−0.03; 0.40]

Security IGO Dependence −0.26

[−0.43; −0.14]

−0.22

[−0.38; −0.10]

−0.24

[−0.40; −0.12]

0.18

[0.07; 0.27]

Economic IGO Dependence 0.00

[−0.02; 0.02]

0.00

[−0.02; 0.03]

−0.01

[−0.03; 0.01]

0.05

[0.03; 0.08]

Memory (AR, lag = 1) 2.97

[2.62; 3.31]

2.97

[2.58; 3.36]

3.01

[2.64; 3.36]

4.39

[4.16; 4.66]

Coefficients in bold are significant at or below the p = 0.05 level. Confidence intervals in brackets are obtained from 2,000 bootstrapped pseudolikelihood replications.

Results represent the average of multiple models fitted using a range of robustness checks.

https://doi.org/10.1371/journal.pone.0223040.t001
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3, the coefficient on ties in strong signal communities fails to reach significance. This implies

that states with ties in the multiplex cooperation network are no more or less likely to engage

in conflict than states without cooperative ties. Model 4 presents a more parsimonious specifi-

cation (i.e. the omission of direct contiguity) in order to examine the effect of these strong

community ties if one were to be observed. The omission of direct contiguity is also intuitive

to the extent that cooperation agreements encode regional dynamics (e.g. telecommunication

agreements often include neighboring countries), and thus the two variables might compete to

explain variance. Under this specification, the cooperation community ties become significant

and positive. This finding would indicate that a given dyad experiences an increase in the like-

lihood of conflict given the presence of a cooperation community tie (or ties) within the dyad.

Although the absence of contiguity in this model leads us to caution against over-interpreta-

tion of this result, the finding is consistent with the absence of discernible conflict suppression

effects given the presence of cooperation agreements.

With these system-level results in hand, we next investigate the different structural roles

that members serve in these communities. This provides a more granular understanding of the

mechanisms through which conflict might emerge and diffuse given the structure of the com-

munity. For this analysis, we use the UN as a pivot point and restrict the node set to only those

states who voted and delivered a General Assembly speech in a given year. This criteria helps

to identify relatively active states in international politics. We note that the results in Table 1

are substantively unchanged by this difference in node set.

Two potential mechanisms are of interest. First, the joint community member effect

captures states that are in the same community and no other community. For strong signal

communities, these states display the highest levels of cooperative dependency, because

they lack ties to states in other communities. For weak signal communities, these states

display high levels of intragroup diplomatic affinity and lack appreciable connections to

other groups in the UN. Second, the community bridge effect captures states who bridge

across more than one community. For strong signal communities, these states are less

dependent on any single community but are potentially more vulnerable to conflict due to

their exposure to multiple communities. For weak signal communities, these states exhibit

relatively pragmatic positions that bridge multiple groups in the UN. Table 2 presents these

results.

For weak signal communities, the results presented in Model 5 indicate a lack of effect for

both joint community members and community bridges. This implies that weak community

members are no more or less likely to engage in conflict with each other and that bridges are

no more or less likely to experience conflict. For strong signal communities, the results of

Model 6 suggest a lack of joint community member effect but a significant and positive rela-

tionship between conflict and strong community bridges. This implies that states who bridge

multiple communities are more likely to experience conflict and perhaps provide a pathway

through which conflict might diffuse across communities.

Discussion

The above results represent the first evidence on the relationship between multiplex communi-

ties and the onset of international conflict beyond previous attention to the Kantian triad (see

[29]). For communities detected across layers of UN votes and speeches, the results confirm

and extend the finding of a previous study based upon voting behavior alone: diplomatic cohe-

sion appears to negatively associate with conflict in the international system [30]. Although the

result is substantively similar, the addition of the speech layer provides useful information on

the expressed preferences of states that is otherwise absent in roll call data alone.
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The communities detected across layers of cooperation agreements present a more chal-

lenging picture. The most optimistic model specification yields a lack of association between

community ties and conflict onset. A more pessimistic specification yields a positive associa-

tion between cooperative ties and conflict onset. This result is surprising, because cooperation

and conflict are often thought to display an inverse relationship, see e.g. [22, 63]. At least two

mechanisms might explain this result. First, states at times employ bilateral agreements to

manage contentious issues [64]. When agreements fail, this tie could provide an indicator for

potential conflict onset. Second, those states who interact more often or are most active in

agreement formation might face greater opportunities for disputes to arise. Similar arguments

have been made in the case of alliance formation and geographically contiguous dyads [65–

67]. For example, Traag & Bruggeman [13] uncover a similar result in the assessment of their

detection algorithm on alliance data, namely that conflict tends to emerge within detected

communities. As Waltz ([20] page 138) pointed out, “[i]t is impossible to get a war going

unless the potential participants are somehow linked.” Either way, this finding calls into ques-

tion the extent to which cooperators enjoy more peaceful outcomes than non-cooperators.

Table 2. TERGMs: Analysis of node effects, 1970-1990.

Model 5

Weak

Model 6

Strong

Edges −7.71

[−8.08; −7.42]

−7.59

[−8.02; −7.23]

Node Effects
Joint Comm. Member 0.23

[−0.01; 0.46]

−0.04

[−0.26; 0.17]

Comm. Bridge −0.20

[−0.70; 0.21]

0.60

[0.26; 1.09]

Network Effects
Alternating 2-Stars 1.06

[0.81; 1.23]

1.08

[0.87; 1.23]

4-Cycles 0.54

[0.44; 1.24]

0.53

[0.43; 1.05]

GWESP (0) −0.46

[−5.24; −0.12]

−0.45

[−5.20; −0.12]

Traditional Covariates
Joint Democracy −0.18

[−0.59; 0.17]

−0.24

[−0.70; 0.15]

Direct Contiguity 3.67

[3.33; 4.12]

3.72

[3.39; 4.14]

Capabilities Ratio −0.11

[−0.20; −0.03]

−0.12

[−0.21; −0.05]

Trade Dependence −0.29

[−1.25; 0.03]

−0.41

[−1.50; −0.02]

Security IGO Dependence −0.23

[−0.40; −0.10]

−0.15

[−0.29; −0.04]

Economic IGO Dependence −0.00

[−0.03; 0.02]

−0.02

[−0.04; 0.01]

Memory (AR, lag = 1) 2.78

[2.43; 3.14]

2.84

[2.32; 3.29]

Coefficients in bold are significant at or below the p = 0.05 level. Confidence intervals in brackets are obtained from

2,000 bootstrapped pseudolikelihood replications. Results represent the average of multiple models fitted using a

range of robustness checks.

https://doi.org/10.1371/journal.pone.0223040.t002
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This communities and conflict puzzle is in part empirically explained by attention to struc-

tural roles within communities. Conflict diffusion via network ties is a well-established pattern

in IR [68]. This study augments this finding: states that bridge cooperative communities are

especially conflict prone, and this bridge points to a path through which conflict might diffuse

to clusters of states. Those states with exclusive membership in a single community, however,

are no more or less likely to engage in conflict with community members. This finding reiter-

ates the open question surrounding interdependence and conflict. Further, this study finds

scant evidence that community roles in the UN explain meaningful variance in conflict out-

comes: states exclusively aligned with a single bloc and states who pragmatically bridge multi-

ple communities enjoy no detectable change in conflict likelihood. This finding suggests that

community membership is more important for conflict outcomes than the specific role that

countries serve within communities in the UN.

Taken together, these results suggest at least two implications. First, for IR cooperation

research, increases in tie density do not necessarily lead to decreased levels of conflict. Indeed,

previous network science findings indicate that cooperative stability requires enough structure

to support cooperation but not so much as to stifle it [32]. Second, for network cooperation

research, future work could more rigorously explicate the theoretical mechanisms through

which cooperation might suppress conflict. Cooperators tend to cluster on graphs [69]. The

above analysis suggests that conflict might diffuse via nodes that bridge these clusters, which

could paradoxically increase the likelihood that community members face conflict. Nonethe-

less, this study’s results reiterate the present paucity of observational findings on the relation-

ship between communities and outcomes in social systems. Domain-specific empirical

applications will help to narrow the scope of this problem whilst shedding light on the utility

of new detection algorithms for questions of computational social science interest.

Materials and methods

Data

As described above, we utilize bilateral cooperation agreements and United Nations (UN)

votes and speeches in order to construct the strong and weak signal multilayer graphs, respec-

tively. We obtain the former from the World Treaty Index [38, 39], which provides the most

complete record of bilateral agreements in international relations (IR). These data represent a

rich source of information about international cooperation (see e.g. Kinne [40]) and have

previously been used to operationalize peaceful relations between countries (see e.g. Kasten

[70]). We specifically include the treaties under the categories of “Science and Technology”

(7SCIEN), “Military Procedures” (9MILIT), “Raw Materials Trade” (3COMMO), “Fisheries”

(8FISH), and “Telecommunications” (6TELCO). The dataset contains an edge list of dyads

that are party to the treaty, as well as the year that the treaty was signed and a qualitative

description of the treaty’s purpose.

For the weak signal data, we employ UN votes and UN General Debate speeches. For roll

call data, we utilize yearly country ideal points estimated on a single dimension via a dynamic

ordinal spatial model [48]. This model provides a unidimensional reduction of countries’ yea,

nay, or abstain decisions on a variety of UN agenda voting items, often interpreted in political

science to be a useful indication of a country’s expressed preferences or positions with respect

to a given topic. The employment of these ideal points helps to avoid the issues posed by the

high levels of voting similarity in the UN when attempting to detect communities, as identified

in Macon et al [49]. Furthermore, in contrast to more common unipartite projections of bipar-

tite graphs based on similarity measures (see e.g. Yildim & Coscia [71]), the ideal points are

based on a more explicit theoretical model of vote choice given a state’s preferences (see Bailey
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et al [48]). These data are available online at Harvard Dataverse: hdl:1902.1/12379. In addition,

we utilize the record of annual speeches delivered by country representatives—predominantly

heads of state or government—during the annual UN General Debate [44]. These speeches are

stored as plain text files with associated metadata and are available online at Harvard Data-

verse: doi.org/10.7910/DVN/0TJX8Y.

The paper’s main text describes the vote and speech similarity measures that we employ. In

order to move from similarity matrices to candidate adjacency matrix layers for multilayer

community detection, we utilize a mutual k-nearest neighbor graph approach (see e.g. Ozaki

et al [56]). We employ the mutual k-nearest neighbor graph approach in order to ensure that

our replication procedure follows closely the original clustering procedure of Pauls & Cranmer

[30], such that any differences in results can be attributed to the addition of the speeches layer

in the multilayer setting. For useful discussions about backboning methods and graph sparsifi-

cation, see e.g. Serrano et al [72], Slater [73], and Zhang et al [74].

After the performance of community detection on the strong and weak signal graphs, we

model the detected communities against the onset of violent conflict in IR. We utilize data

from a previous study by Pauls & Cranmer [30] that looked at a similar question as the current

study, and we thank the authors for sharing these materials. The outcome network of interest

is constructed from conflict onset data from the Correlates of War (COW) project’s Milita-

rized Interstate Dispute (MID) dataset (v4.1) [75]. An undirected tie is considered to be pres-

ent if a MID of level 4 or 5 was initiated between a dyad during the year of interest. These are

the two levels of greatest hostility covered in the dataset, with the former corresponding to

such actions as occupation of territory or declaration of war, and the latter corresponding to

the initiation of war. More details on the conflict data are available online at the Inter-Univer-

sity Consortium for Political and Social Research: doi.org/10.3886/ICPSR24386.v1.

The inferential model also includes the following covariates. Democracy is a node attribute

equal to 1 if the country’s Polity IV score is greater than or equal to 7. Direct contiguity enters

the model as an indicator variable equal to 1 if two countries share a geographic border or

share a sea border within 400 miles of each other. Capabilities ratios capture the ratio of two

countries’ Composite Index of National Capabilities scores, which utilizes various measures of

state capabilities, including population, military expenditures, and iron and steel production.

Trade dependence is operationalized as the total yearly trade flow from vi to vj, divided by the

GDP of vi. Finally, security and economic IGO dependence are operationalized as the total

number of third-party states to which vi and vj are jointly connected through security and eco-

nomic-oriented intergovernmental organizations, respectively. Pauls & Cranmer [30] provide

more details on these variables.

Models

To locate vector space representations of the corpus, we utilize the Stanford NLP group’s

Global Vectors for Word Representation (GloVe) unsupervised learning algorithm [54].

GloVe is a popular log bilinear, weighted least squares model that trains on global word-word

co-occurence counts to make efficient use of the corpus statistics. Because it factorizes a word-

context co-occurrence matrix, it shares affinities with traditional count methods like latent

semantic analysis or principle component analysis. First, the raw texts are stemmed and

trimmed of any tokens that appear fewer than 5 times or in fewer than 5% of speeches across

the corpus. This pre-processing was found to improve the quality of the located embeddings.

We use a context window of 5 (i.e. 5 words before and 5 words after the target feature). To

tune the model’s parameters, we fit the model to word vectors of size 50, 100, and 200 with

maximum term co-occurrences of 15 and 25 for the weighting function. This yields “main”
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and “context” vectors which are subsequently averaged together per the suggestion of the origi-

nal GloVe paper [54] to locate the final embedding space.

We then calculate the distances between each pair of states in each year using the relaxed

variant of the Word Mover’s Distance (RWMD) [55]. This measure utilizes the embedding

space and each country’s term-document matrix to measure the cumulative distance required

to transform one state’s speech point cloud into that of another state. This procedure helps to

ensure that distances are not simply a function of the use of different words, but rather differ-

ences in the semantic structure of two countries’ speeches. The SI presents more details on this

procedure. We use the quanteda package [76] for corpus ingestion, and the text2vec
package [77] for fitting the GloVe models and calculating the RWMDs. All analysis is con-

ducted in the R statistical programming environment [78].

To model the evolution of the conflict onset network, we employ a temporal extension to

the exponential random graph model [(T)ERGM] [60, 61]. Originally proposed by Wasserman

& Pattison [62] (and also known as p� models), ERGMs are generative models for the perfor-

mance of inference on network data that have found widespread employment across the net-

work and social sciences [79–81]. The model used here assesses uncertainty using a bootstrap

approach proposed by Desmarais & Cranmer [82, 83], and the models were fitted using the

btergm package [84] in the R statistical programming environment [78]. Regarding interpre-

tation, our results speak to the likelihood of conflict between two states vi and vj given the

intensity of cooperation between vi and vj. We do not extrapolate these results further, such as

the likelihood of conflict between vi and some third party state vk given the cooperative activity

of vi and vj. At the same time, the results do permit the conclusion that highly active states—

i.e. states with several community ties—would experience changes in the likelihood of conflict

onset commensurate with the number of community ties. See Desmarais & Cranmer [85] for

more information about the interpretation of ERGMs with respect to various levels of the

network.

In addition to the variables outlined above, we specify the following variables in the model.

The edges term represents the total number of ties in the graph, akin to the intercept term in

regression models. Alternating 2-stars adds alternating sequences of two-paths (i.e. unclosed

triangles) to the model, and 4-cycles captures the existence of four nodes connected in a box-

like structure, namely eiv = eiu = ejv = euj = 1 [86]. Finally, geometrically weighted edgewise

shared partners (GWESP) adds a statistic equal to the geometrically down-weighted shared

partner distribution, here with a fixed decay parameter of 0. The latter three of these statistics

capture potential clustering in the conflict onset network. The community detection results

depend on a number of choices surrounding data representation and parameter selection,

such as the hyperparameters for the embedding model and the proportion of vertices used to

initialize the Multilayer Extraction algorithm. To enhance robustness, we conduct the analysis

using the different GloVe hyperparameters described above, as well as vertex initialization pro-

portions of .20, .25, and .30 during the Multilayer Extraction procedure for the strong signal

graphs. The results presented in the paper’s Emergence of Interstate Conflict section represent

the mean results of these analyses.
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