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One assumption of DSC-MRI is that the injected contrast agent is kept totally intravascular and the arterial wall is impermeable to
contrast agent. The assumption is unreal for such small contrast agent as Gd-DTPA can leak into the arterial wall. To investigate
whether the unreal assumption is valid for the estimation of the delay and dispersion of the contrast agent bolus, we simulated flow
and Gd-DTPA transport in a model with multilayer arterial wall and analyzed the bolus delay and dispersion qualified by mean
vascular transit time (MVTT) and the variance of the vascular transport function. Factors that may affect Gd-DTPA transport
hence the delay and dispersion were further investigated, such as integrity of endothelium and disturbed flow.The results revealed
that arterial transmural transport would slightly affect MVTT and moderately increase the variance. In addition, although the
integrity of endothelium can significantly affect the accumulation of contrast agent in the arterial wall, it had small effects on the
bolus delay and dispersion. However, the disturbed flow would significantly increase both MVTT and the variance. In conclusion,
arterial transmural transport may have a small effect on the bolus delay and dispersion when compared to the flow pattern in the
artery.

1. Introduction

Dynamic susceptibility contrast magnetic resonance imaging
(DSC-MRI) has been shown to be a powerful technique to
qualify cerebral blood flow and is playing an increasing role
in diagnosis of acute ischemic stroke [1, 2]. However, the
accuracy of perfusion parameters obtained fromDSC-MRI is
challenged by the delay and dispersion of the contrast agent
bolus caused by the estimated arterial input function (AIF)
[3, 4].

Cerebral blood flow quantification requires knowledge
of the arterial input function that is the concentration of
contrast agent in the feeding vessel to the tissue of interest.
In theory the AIF should be measured at the feeding vessel
close to the tissue of interest [5, 6]. However, due to technical
difficulties, it is commonly estimated from a major artery
(e.g., the middle cerebral artery) for analysis of cerebral
perfusion [5]. Delay and dispersion of the contrast agent may

occur between the position of the AIF estimated and the
tissue of interest, which would lead to underestimation of the
blood flow [5].

Another implicit assumption of the technique of DSC-
MRI related to the estimation of AIF is that no or a negligible
amount contrast agent penetrates the arterial wall, due to
the fact that, in general, the vascular wall is considered
irrelevant for the contrast mechanism in DSC-MRI. The
assumption is tenable for the intact blood brain barrier
(BBB) [7]. However, for a damaged BBB which usually
occurs in the stroke and normal arterial wall except in
the brain, the assumption is unreal. The commonly used
contrast agent gadolinium diethylenetriominepentax-acetic
acid (Gd-DTPA) with hydrodynamic diameter of less than
2 nm can easily leak into the arterial wall, since it has been
demonstrated that the hydrophilic solute with the diameter
less than 7.0 nm can be transported through the intercellular
junction of endothelial cell into arterial wall [8]. Whether
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the unreal assumption is valid for the estimation of the delay
and dispersion of the contrast agent bolus has never been
verified. It seems that the leakage of contrast agent into the
arterial wall may affect contrast agent transport, which might
cause distortion of the contrast concentration-time curve and
hence the delay and dispersion of the contrast agent bolus.

To investigate the delay and dispersion effects of a bolus
of contrast agent, two approaches were usually applied. One
that has been commonly used was convolving the estimated
AIFwith a vascular transport function (VTF).TheVTFswere
quite differently assumed, ranging from the simple model
of a single-exponential to the more sophisticated model of
a feeding artery in series with small parallel vessels [3, 9].
The disadvantage of the method is that accuracy of the
different VTF models is hard to assess. The other was the
simulation of the blood flow and contrast agent transport
using computational fluid dynamics (CFD) to describe the
delay and dispersion errors of the contrast agent bolus [10–
12]. The approach has been used to investigate the effect
of carotid artery stenosis on the cerebral blood flow quan-
tification and to simulate the dispersion along a simplified
coronary artery with different stenosis under steady and
unsteady flow condition. Although these studies indicate that
CFD simulations were useful to investigate the delay and
dispersion of the contrast agent bolus, all the studies were
based on the unverified assumption of impermeable arterial
wall.

In the present study, to investigate whether the unreal
basic assumption of DSC-MRI is valid for the estimation
of the delay and dispersion of the contrast agent bolus,
we formulated the arterial wall as a five-layer model and
numerically simulated the flow and the transport of contrast
agent in themodel using CFD.This five-layer model included
the endothelial glycocalyx layer (EGL), the endothelium, the
intima, the internal elastic lamina (IEL), and the media,
which were all treated as macroscopically homogeneous
porous media. The effects of different factors that may affect
contrast agent transport such as the integrity of endothelium
and the disturbed flow after the stenosis of artery on the delay
and dispersion of contrast agent were further analyzed.

2. Methods

2.1. Geometry of the Model. As a basic geometrical model,
the arterial segment concerned was simplified as a straight
axisymmetric cylinder. The inner diameter of model (𝐷)
and the wall thickness of the artery (𝑡) are chosen to be
𝐷 = 3.7mm and 𝑡 = 0.34mm [13, 14]. The wall of the
arterial segment wasmodeled as a five-layer structure and the
thickness of each wall layer is shown in Figure 1(b) [15, 16],
where the ratio of intima and media thickness was chosen to
be approximately 0.75 [17].

For the stenosed model, the variation of the vessel radius
along the stenosis was described using a cosine function and
the reduction in the cross-sectional area of the lumen was set
as 75% [18].

2.2. Governing Equations

2.2.1. Lumen. Theflow simulation in the lumen of the arterial
segment was based on the incompressible Navier-Stokes and
continuity equations:

𝜌(
𝜕u
𝜕𝑡

+ u ⋅ ∇u) + ∇𝑝 − 𝜇Δu = 0,

∇ ⋅ u = 0,

(1)

where u and𝑝 represent, respectively, the fluid velocity vector
and the pressure. 𝜌 and 𝜇 are the density and viscosity of
blood (𝜌 = 1050 kg⋅m−3, 𝜇 = 3.45 × 10−3 kg⋅m−1 s−1).

The mass transport of contrast agent Gd-DTPA in the
flowing blood can be described by

𝜕𝑐

𝜕𝑡
+ u ⋅ ∇𝑐 − 𝐷

𝐺

Δ𝑐 = 0, (2)

where 𝑐 is the concentration of Gd-DTPA, and 𝐷
𝐺

is the
diffusion coefficient of Gd-DTPA in blood. At 37∘C, when
assuming that the radius of Gd-DTPA (𝑟) is 1 nm [19], 𝐷

𝐺

can be calculated as 6.5847 × 10−11m2 s−1 from the following
Stokes-Einstein equation [20]:

𝐷
𝐺

=
𝑘𝑇

6𝜋𝜇𝑟
, (3)

where 𝑘 is Boltzmann constant, and 𝑇 is the absolute temper-
ature.

2.2.2. Arterial Wall Layers. The transmural flow across the
arterial wall can be described by the Brinkman equation as
follows [16]:
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, (4)

∇ ⋅ u
𝑙

= 0, (5)

whereu
𝑙

and𝑝
𝑙

represent, respectively, the superficial velocity
vector and the pressure based on the volume averaged
method. 𝜀

𝑙

and 𝐾
𝑙

are the porosity and the hydraulic perme-
ability of the wall layer concerned. For all layers, the viscosity
of plasma 𝜇

𝑙

was assumed to be 0.72 × 10−3 kgm−1 s−1 [16].
The transport of Gd-DTPA across the arterial layers was

modeled by the following equation [16]:

𝜕𝑐
𝑙
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+ (1 − 𝜎

𝑙

) u
𝑙

⋅ ∇𝑐
𝑙
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Δ𝑐
𝑙

= 0, (6)

where 𝑐
𝑙

is the superficial concentration of Gd-DTPA; 𝐷
𝑙

is
the effective diffusivity of Gd-DTPA in the arterial layers; 𝜎

𝑙

is the filtration reflection coefficient.

2.3. Parameters. In order to solve (4)∼(6), we have to acquire
the values of the 4 parameters in the equations, namely, the
porosity (𝜀

𝑙

), the hydraulic permeability (𝐾
𝑙

), the effective
diffusivity of Gd-DTPA (𝐷

𝑙

) and the filtration reflection
coefficient (𝜎

𝑙

) for each layer of the arterial wall. However,
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Figure 1: Schematic illustration of the computational geometry and boundary conditions. (a) The computational geometry of the stenosed
model; (b) five-layer arterial wall with the thickness of each layer illustrated in the parentheses; (c) flowwaveform at the inlet. EGL: endothelial
glycocalyx layer; IEL: internal elastic lamina;𝐷: inner diameter.

because it is hard to measure the parameters, the transport
parameters are scarce. In the present study, most of the
parameters were obtained from theoretical models. The
calculation of the parameters is presented in Appendix. The
parameters used are summarized in Table 1.

2.4. Boundary Conditions. As shown in Figure 1(a), flow
transport equations ((1), (4)∼(5)) are subject to the following
boundary conditions.

BC-A at the inlet of the lumen of the arterial segment,
a time-dependent fully developed (parabolic) inlet
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Table 1: Model parameters for each layer.

EGL Endothelium Intima IEL Media
Hydraulic permeability (𝐾, (m2)) 6.0383 × 10−18 1.7383 × 10−20 4.2 × 10−17 8.4 × 10−20 6.09 × 10−19

Effective diffusivity (𝐷
𝑒

, (m2 s−1)) 1.0128 × 10−10 3.0276 × 10−13 1.2219 × 10−10 2.4094 × 10−13 9.3392 × 10−14

Reflection coefficient (𝜎) 0.0555 0.1212 0.2514 0.2514 0.3617
Porosity (𝜀) 0.6735 0.0005 0.8025 0.002 0.258

flow velocity profile was used for the pulsatile flow
simulation (Figure 1(c)) [21]. The mean velocity was
chosen to be 0.24m s−1 [22].

BC-B the pressure at the outlet boundary of the artery
lumen was set at 100mmHg.

BC-C at the media-adventitia interface, a constant
pressure boundary condition with 30mmHg was
employed.

BC-D symmetric conditions were set at the axis of
symmetry.

BC-E no viscous flow was set on both the axial ends
of the arterial wall.

The boundary conditions for the mass transport equations
((2) and (6)) are as follows.

BC-1: the injection of the contrast agent at the inlet
was described by a gamma-variate function [12]:

𝑐 (𝑡, 𝑧 = 0) = {
𝑎 (𝑡 − 𝑡

0

)
𝑏

𝑒−𝑔(𝑡−𝑡0), 𝑡 > 𝑡
0

0, 𝑡 ≤ 𝑡
0

,
(7)

where 𝑎 = 1.013 × 10−3, 𝑏 = 2.142, and 𝑔 = 0.454 s−1.
𝑡
0

was set to 3 s, whichmeant that the bolus of contrast
was injected after the periodicity of the flow field was
completely developed.

BC-2: for other boundaries, zero concentration gradi-
ent was assumed.

2.5. Computation Procedures. The numerical simulations
were carried out using a validated finite element algorithm
COMSOL Multiphysics. Three full cardiac cycles (3 s) sim-
ulation of the pulsatile flow with a time step of 4ms were
carried out to achieve a periodic flow independent of the
initialization. Based on the initial velocity field, the mass
transport equations were solved coupling with flow transport
equations for 37 s with time step from 1ms to 4ms depending
on the temporal variations of contrast concentration.

2.6. Quantification of Dispersion. The effect of the dispersion
of the contrast agent bolus on the AIF can be described
by convolving the estimated AIF with a vascular transport
function (VTF) [4, 23]:

AIF (𝑡 − 𝑡
0

) = AIF (𝑡)est ⊗ VTF (𝑡 − 𝑡
0

, 𝑧) , (8)

where 𝑡
0

is the bolus delay and 𝑧 is distance to the inlet.
Using the variance of the VTF around its mean, the degree
of dispersion can be quantified:

𝜎
2

VTF (𝑧) =
∫
∞

0

(𝑡 −MVTT (𝑧))2 ⋅ VTF (𝑡, 𝑧) 𝑑𝑡

∫
∞

0

VTF (𝑡, 𝑧) 𝑑𝑡
, (9)

where the mean vascular transit time (MVTT) is given by the
ratio of the first to the zeroth moment of the VTF and can be
used to quantify the bolus delay:

MVTT (𝑧) =
∫
∞

0

𝑡 ⋅ VTF (𝑡, 𝑧) 𝑑𝑡

∫
∞

0

VTF (𝑡, 𝑧) 𝑑𝑡
. (10)

AIFest is prescribed directly from the contrast agent concen-
tration at the inlet ((7) 𝑐(𝑡, 𝑧 = 0)) and AIF is computed as
the area weighted average of the concentration of contrast
agent on several lumen cross-sections between the inlet and
the outlet perpendicular to the axial vessel direction (𝑐(𝑡, 𝑧)).
To obtain the mean delay (MVTT) and the variance (𝜎2VTF),
it is not necessary to calculate VTF firstly, since they can be
calculated directly with the zeroth, first, and second integral
moment of the concentration of the contrast agent [4]:

𝜎
2

VTF (𝑧) =
𝑐(2) (𝑧)

𝑐(0) (𝑧)
−
𝑐(2) (0)

𝑐(0) (0)
+ [

𝑐(1) (0)

𝑐(0) (0)
]

2

− [
𝑐(1) (𝑧)

𝑐(0) (𝑧)
]

2

,

MVTT (𝑧) = 𝑐(1) (𝑧)

𝑐(0) (𝑧)
−
𝑐(1) (0)

𝑐(0) (0)
.

(11)

The moments of the concentration of the contrast agent are

𝑐
(𝑛)

(𝑧) = ∫
∞

0

𝑡
𝑛

⋅ 𝑐 (𝑡, 𝑧) 𝑑𝑡. (12)

3. Results

3.1. Effects of the Arterial Transmural Transport on Contrast
Agent Transport and the Bolus Dispersion. To demonstrate
the deformation of the concentration-time curve along the
flow direction in the unstenosed model, the area weighted
average of the concentration of contrast agent on cross-
sections at axial direction of 10𝐷 and 20𝐷 (𝑐(𝑡, 𝑧)) was cal-
culated. As shown in the Figures 2 and 3, the concentration-
time curve illustrates the characteristics of bolus delay with
phase shift and bolus dispersion with relatively low maximal
concentration and spread width profile. For instance, in the
lumen of the artery, the maximal concentration at 20𝐷 shifts
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Figure 2: The concentration-time curves at inlet, 10𝐷, and 20𝐷 in
the model with arterial transmural transport.

about 0.5 second and decreases 2%, when compared with
that at the inlet (Figure 2). The delay and dispersion are
enlarged in the arterial wall, resulting in that the maximal
concentration at 20𝐷 in endothelial layer is about 1.3 second
later and 18% lower than that at the 10𝐷 (Figure 3). In
addition to the delay and dispersion in the axial direction, as
demonstrated in Figure 2, the concentration of the contrast
in the radial direction is much more decreased and spread.
For instance, the maximal concentration of intima layer is
approximately 20 times smaller than that of the endothe-
lial layer and the time interval between the half maximal
and maximal concentration at 20𝐷 at the intima layer is
approximately 4 times longer than that at the endothelial layer
(Figure 3).

The development of the bolus delay and dispersion in
the unstenosed model are quantified by the mean vascular
transit time (MVTT) and the variance of the VTF from
(11). As illustrated in Figure 4(a), MVTT and the variance
are increased almost linearly in relation to the distance
to the inlet, which reflects consistently the concentration-
time curve in Figure 2. When compared to the simulation
with contrast agent transport only in the lumen, the arterial
transmural transport would lead to slight increase in the
MVTT and small increase in the variance (Figures 4(a)-
4(b)) resulting in only increase of 0.186 s2 at 10𝐷 and
0.288 s2 at 20𝐷. The quantitative difference in variance in
Figure 4(c) further demonstrates that although the increase
in the variance would increase gradually in relation to the
distance to the inlet, the increase ratio would decrease sharply
resulting in approximately 25% at 20𝐷.

3.2. Effects of Endothelium on Contrast Agent Transport and
the Bolus Dispersion. When the endothelium is damaged in
diseased condition, the transport of the contrast agent may
be affected and hence the bolus dispersion. To investigate the
role of endothelium in the transport of the contrast agent, the
endotheliumwas assumed to be totally damaged and the four
transport parameters of the damaged endothelium and EGL

were simplified to be similar to that of the intima. In addition,
the transport parameters of other layers were consistent with
that of the model with intact endothelium.

Figures 5(a)–5(d) demonstrate the concentration-time
curve of the damaged endothelial model in the four arterial
layers. As evident from these figures, due to the damage of the
endothelium, the contrast agent is sharply accumulated in the
arterial wall.

As illustrated in Figures 5(e)-5(f), the difference in the
MVTT between the damaged endothelial model and intact
one is slight and the difference in the variance between the
two models decreases along the axial direction resulting in
almost no difference at the outlet. These results indicate that
the damage to the integrity of endothelium would have a
small effect on the bolus delay and dispersion.

3.3. Effects of Disturbed Flow on Contrast Agent Transport
and the Bolus Dispersion. Until now, the numerical simu-
lations have been carried out only for a simplified straight
axisymmetric blood vessel. However, the geometry of the
physiological blood vessel is much more complex with such
characteristics as branching, twisting, taper, and curvature,
which would lead to far more than parabolic flow profile
in the simplified model but very complicated flow patterns
[24, 25]. One common flow pattern developed in the arterial
system is the disturbed flow, which is inclined to occur
in locations such as aneurysm, stenosed artery, the inner
wall of curved segments, and the outer walls of arterial
bifurcations [26, 27]. To further investigate the effects of arte-
rial transmural transport on the bolus delay and dispersion
under disturbed flow, contrast agent transport in the stenosed
model was calculated.

Figure 6(a) shows the concentration distribution in the
stenosed region at differentmoments of the contrast injection.
It can be observed that the concentration in the disturbed
flow region after the stenosis is quite uneven and significantly
later than that of the regions of high flow.

Figures 6(b)–6(e) demonstrate the concentration-time
curve in the four arterial layers at the disturbed flow region
(10𝐷). The concentration in the disturbed flow model
decreases and spreads much more significantly than that in
the straight model at the same axial location.

In the stenosed model the influence of the disturbed flow
on the bolus delay and dispersion was observed immediately
behind the stenosis (Figure 7). After the initial significant
increase in the MVTT and variance behind the stenosis a
reduction in theMVTT and variance follows in the disturbed
flow zone.The arterial transmural transport would also affect
the bolus delay and dispersion by decreasing the MVTT and
increasing the variance. However, the effect of the arterial
transmural transport on theMVTT and the variance is much
less than that of the disturbed flow caused by the stenosis.

4. Discussion

One unreal assumption of DSC-MRI is that the arteries
are impermeable to contrast agent. In the present study,
we numerically coupled contrast agent transport in the
arterial wall with that in arterial lumen to investigate whether
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Figure 3: The concentration-time curves across the arterial wall at the axial direction of 10𝐷 and 20𝐷 in the model with arterial transmural
transport.

the unreal assumption is valid for the estimation of the
delay and dispersion of the contrast agent bolus. The results
obtained reveal that the arterial transmural transport would
slightly affect the bolus delay qualified by MVTT and mod-
erately increase the bolus delay qualified by the variance. The
MVTT and the variance induced by the arterial transmural
transport are much less than that by the disturbed flow
after the stenosis. In addition, although the integrity of
endothelium can significantly affect the accumulation of
contrast agent in the arterial wall, it has small effects on the
bolus delay and dispersion.

The bolus dispersion would lead to a systematic blood
flow underestimation. Graafen et al. simulated the dispersion

in coronary arteries using a computational fluid dynamics
approach and demonstrated that the variance between 1.0
and 2.5 s2 would lead to the myocardial blood flow underes-
timation between about 6% and 10% [11]. The present study
demonstrated that the variance in both the stenosed and the
unstenosed model is less than 2.5 s2 and the variance caused
by the arterial transmural transport is less than 0.5 s2, which
indicated that themyocardial blood flow error induced by the
arterial transmural transport may be well below 10%.

As the transport of contrast agent is mainly governed
by the convective transport in the lumen and the diffusion
transport in lumen and the arterial wall, the local flow
pattern, the flow rate, and the arterial transmural transport
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Figure 4: Comparison of the quantitative parameters of the bolus delay (MVTT) and dispersion (variance) in the unstenosed artery between
the model with arterial transmural transport and without. (a)Themean vascular transit time (MVTT); (b) the variance of vascular transport
function (variance); (c) the difference and percentage difference in variance.

would affect the degree of bolus dispersion. Among the three
factors, the arterial transmural transport may be the least
important one, since the present simulation indicated that
the disturbed flow produced much more dispersion of the
bolus than the arterial transmural transport. However, the
contribution of local flow pattern and the flow rate to the
dispersion is comparable. Our simulations demonstrated the
disturbed flow induced by the stenosis would significantly
increase the bolus dispersion. In contrast, Graafen et al.
indicated that stenosis in the coronary arterial model leads
to a reduction of dispersion [11]. Calamante et al. found
that for the two patients with similar degree carotid stenosis,
only one of them had larger dispersion, while the other was
found to produce a dispersion of the bolus similar to that
found in the normal subjects [10]. These studies and our
results indicated that, to achieve an accurate estimation of
the dispersion, the simulations with patient-specific geomet-
rical and boundary layer model should be performed and

the effects of the arterial transmural transport may be
neglected in practice.

This study revealed that local flow pattern caused by
the stenosis would significantly affect the local contrast
agent transport and hence the local bolus dispersion, which
is constant with mass transport simulations based on the
patient-specific model. For instance, Liu et al. demonstrated
that the disturbed flow would significantly hinder the mass
transport in the human aorta and computational studies
indicated that the oxygen transport was significantly low
in the outer wall of carotid artery where disturbed flow
developed [28, 29]. Due to the fact that flow patterns are
quite complex in the arterial segments such as the aneurysm,
stenosed artery, the inner wall of curved segments, and the
outer walls of arterial bifurcations [26, 27], the present results
combining previous studies indicated that the arterial input
function may be estimated beyond these regions to avoid
large bolus dispersion [12].
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Figure 5: Effects of endothelium on contrast agent transport and the bolus dispersion in the unstenosed model. (a–d) Comparison of the
concentration-time curve across the arterial wall between the damaged endothelium model and the intact one at the axial direction of 10𝐷.
(e-f) Comparison of the quantitative parameters of the bolus delay (MVTT) and dispersion (variance) between the damaged endothelium
model and the intact one.

In this pilot study, the accuracy of the results may be
reduced by the simplifications of the transport parameters,
the blood rheological properties, and the geometries.

Due to the scarcity of the transport parameters, most of
the parameters were obtained from theoretical models. The
estimated parameters, especially the diffusivity of the contrast
agent, would affect the simulation results.The diffusivity used

in the present study (6.5847 × 10−11m2 s−1) is lower than
the estimated diffusion coefficient of contrast agent in the
previous studies (5.5 × 10−10m2 s−1 and 1.5 × 10−10m2 s−1)
[11, 12]. The lower diffusion coefficient in the lumen would
lead to an increase of the dispersion due to a smaller exchange
of contrast agent particles perpendicular to the flowdirection.
However, the lower diffusion coefficient in the arterial wall
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Figure 6: Effects of disturbed flow on contrast agent transport. (a) Concentration distribution in the stenosed region at three time points of
the contrast injection at the inlet. 𝑡

1

is the moment with half maximal concentration in the increasing phase; 𝑡
2

is the moment with maximal
concentration; 𝑡

3

is themoment with half maximal concentration in the decreasing phase. (b–e) Comparison of the concentration-time curve
across the arterial wall between the unstenosed model and the stenosed one at the axial direction of 10𝐷.

reduces the arterial transmural transport and hence decreases
the dispersion in the lumen, which is shown in the present
result that when compared to the damaged endothelial model
the normal one with relatively low diffusivity leads to a small
dispersion.

The blood in the present study was simplified as New-
tonian fluid and the non-Newtonian rheological properties
such as shear thinning nature of the blood were neglected. It
is reported that the shear thinning non-Newtonian nature of
blood could slightly reduceoxygenflux (similarmicromolecule

as contrast agent) in most regions of the arteries, and this
effect became much more apparent in areas with disturbed
flow [29]. Therefore, it may be valid to assume the blood
Newtonian fluid to estimate the bolus dispersion in most
regions of the model However, the assumption of Newtonian
fluid may lead to an underestimation of dispersion in the
disturbed flow region.

Another limitation of the present study is that all simula-
tionswere performedon simplified geometries.Thegeometry
of the physiological blood vessel is very complex with such
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Figure 7: Comparison of the quantitative parameters of the bolus delay (MVTT) and dispersion (variance) in the stenosed artery between
the model with arterial transmural transport and without. (a)Themean vascular transit time (MVTT); (b) the variance of vascular transport
function (variance).

characteristics as branching, twisting, taper, and curvature,
whichwould lead to complicated flowpatterns.Therefore, it is
necessary to use the realistic geometries to simulate the exact
dispersion of the contrast agent bolus. As the main aim of the
present study is not to estimate the exact dispersion errors
in an individual patient, the results obtained from the typical
parabolic flow and disturbed flow can still shed some light
on the effects of arterial transmural transport of the contrast
agent on the bolus delay and dispersion.

5. Conclusion

The arterial transmural transport would slightly affect the
bolus delay and small increase the bolus dispersion, which
may have small effects on the estimation of the blood flow
estimation. In comparison with disturbed flow induced by
the presence of stenosis, the arterial transmural transport
plays a less important role in the bolus delay. Although
the assumption of impermeable arterial wall of DSC-MRI is
unreal, it may still be a good simplification for the estimation
of the delay and dispersion of the contrast agent bolus.

Appendix

A. Parameters of the Model

A.1. Parameters of the EGL. TheEGL layer of the arterial wall
was assumed to be composed of symmetrical EGL fibers and
leaky junctions of cells resulting from either dying or being in
mitosis. According to the results by Liu et al. [15], the porosity
and hydraulic permeability (𝐾egl) of EGLfibers were obtained
as 0.6735 and 6.0383 × 10−18m2.

The total filtration reflection coefficient of the EGL layer
is determined by

𝜎
𝑡egl =

𝐾egl𝜎egl + 𝐾𝑙𝑗𝜎𝑙𝑗

𝐾egl + 𝐾𝑙𝑗
. (A.1)

The reflection coefficient of the fibers (𝜎egl) is given by [30]

𝜎egl =
(𝛼 + 𝛽)

2 ln (1 + (𝛼/𝛽)) − 𝛼2𝛽2 − 𝛼3𝛽 − 𝛼𝛽 − (𝛼4/4) − (𝛼2/2)
𝛽

2

− (𝛽

4

/4) − ln (𝛽) − (3/4)
,

(A.2)

where 𝛼 is the ratio of the contrast agent Gd-DTPA radius
(𝑟 = 1 nm) to the outer radius of the fluid annulus 𝑅 =

31/4(2𝑟
𝑓

+ Δ)/√2𝜋 (𝛼 = 𝑟/𝑅) and 𝛽 = 𝑟
𝑓

/𝑅. 𝑟
𝑓

is the fiber
radius (6 nm). Δ is the space between fibers (8 nm).

In (A.1), the reflection coefficient (𝜎
𝑙𝑗

), the hydraulic
permeability (𝐾

𝑙𝑗

), and the effective diffusivity (𝐷
𝑙𝑗

) of the
leaky junctions are determined using the pore theory as
follows [20]:

𝜎
𝑙𝑗

= 1 −
2

3
𝛼
2

𝑙𝑗

(1 − 𝛼
𝑙𝑗

) 𝐹 (𝛼
𝑙𝑗

)

− (1 − 𝛼
𝑙𝑗

) (
2

3
+
2

3
𝛼
𝑙𝑗

−
7

12
𝛼
2

𝑙𝑗

) ,

𝐹 (𝛼
𝑙𝑗

) = 1.0 − 1.004𝛼
𝑙𝑗

+ 0.418𝛼
3

𝑙𝑗

+ 0.210𝛼
4

𝑙𝑗

− 0.1696𝛼
5

𝑙𝑗

,

(A.3)

where 𝛼
𝑙𝑗

= 𝑟/𝑤 is the ratio of the radius of contrast agent
Gd-DTPA to the half-width of the leaky junction (𝑤), which
is taken to be 20 nm [31]:

𝐾
𝑙𝑗

= 𝐾
𝑠𝑙𝑗

𝐴
𝑙𝑗

𝑆
, (A.4)
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where 𝐴
𝑙𝑗

/𝑆 is the portion of leaky junctions on surface area
𝑆 and𝐾

𝑠𝑙𝑗

is the hydraulic permeability of one leaky junction
(𝐾
𝑠𝑙𝑗

= 𝑤2/3). If we assumed that the leaky cell is located at
the center of each periodic circular unit of radius 𝜉 [31], then
𝐴
𝑙𝑗

/𝑆 can be determined by (2𝜋𝑅cell)(2𝑤)/(𝜋𝜉
2). Since the

fraction of the leaky junctions, 𝜙, which is defined as the ratio
of the area of leaky cells to the area of all cells (𝜙 = 𝑅2cell/𝜉

2),
can be determined from experimental results, (A.4) can be
given by

𝐾
𝑙𝑗

=
4

3

𝑤3

𝑅cell
𝜙. (A.5)

The total effective diffusivity of the EGL is calculated from

𝐷
𝑡egl = 𝐷egl + 𝐷𝑙𝑗, (A.6)

where𝐷
𝑙𝑗

is the effective diffusivity of leaky junction:

𝐷
𝑙𝑗

= 𝐷
𝑠𝑙𝑗

𝐴
𝑙𝑗

𝑆
. (A.7)

The effective diffusivity of a single leaky junction is deter-
mined by [20]

𝐷
𝑠𝑙𝑗

= 𝐷free (1 − 𝛼𝑙𝑗) 𝐹 (𝛼𝑙𝑗) , (A.8)

where 𝐷free is the Gd-DTPA diffusivity in the free plasma,
which is 3.1537 × 10−11m2 s−1 at 37∘C calculated from (3) with
viscosity of 𝜇

𝑙

.
The effective diffusivity (𝐷egl) for the EGL is obtained

from the stochastic theory [32]:

𝐷egl = 𝐷free [1 − (1 − 𝜀egl)
0.5

(1 +
2𝑟

𝜋0.5𝑟
𝑓

)] . (A.9)

After taking 𝑅cell as 15 𝜇m and setting 𝜙 as 0.0005 [33], 𝜎
𝑡egl

and 𝐷
𝑡egl are determined as 0.0555 and 1.0128 × 10−10m2 s−1,

respectively.

A.2. Parameters of the Endothelium. Filtration flow can
move through the endothelium via both normal junctions
and leaky junctions of the endothelial cells. Therefore, the
hydraulic permeability (𝐾end) and the reflection coefficient
(𝜎end) of the endothelium are given by

𝐾end = 𝐾
𝑙𝑗

+ 𝐾
𝑛𝑗

,

𝜎end =
𝐾
𝑛𝑗

𝜎
𝑛𝑗

+ 𝐾
𝑙𝑗

𝜎
𝑙𝑗

𝐾
𝑛𝑗

+ 𝐾
𝑙𝑗

.
(A.10)

For the normal junctions, the hydraulic permeability

𝐾
𝑛𝑗

= 𝐿
𝑛𝑗

𝜇
𝑙

𝑙end, (A.11)

where 𝑙end is the thickness of the endothelium and 𝐿
𝑛𝑗

= 1.576
× 10−9ms−1mmHg−1 according to the experimental results
[34].

The reflection coefficient of the normal junction is defined
as

𝜎
𝑛𝑗

=
16

3
𝛼
2

𝑛𝑗

−
20

3
𝛼
3

𝑛𝑗

+
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3
𝛼
4

𝑛𝑗

−
16

9
𝛼
2

𝑛𝑗

(1 − 𝛼
𝑛𝑗

)
2

𝐹 (𝛼
𝑛𝑗

) ,

𝐹 (𝛼
𝑛𝑗

) = [2 (1 − 𝛼
𝑛𝑗

)
2

− (1 − 𝛼
𝑛𝑗

)
4

]

× [1 − 2.1𝛼
𝑛𝑗

+ 2.09𝛼
3

𝑛𝑗

− 0.95𝛼
5

𝑛𝑗

] .

(A.12)

𝐷
𝑛𝑗

is the Gd-DTPA diffusivity in the normal junctions,
which can be determined as 3.02 × 10−13m2 s−1 according
to the radius of Gd-DTPA [35]. From (A.10) and (A.7),
the hydraulic permeability, the reflection coefficient, and the
effective diffusivity of the endothelium can be calculated
as 1.7383 × 10−20m2, 0.1212, and 3.0276 × 10−13m2 s−1,
respectively.

A.3. Parameters of the Intima. Using the results fromDabagh
et al., the porosity and hydraulic permeability (𝐾int) of the
intima are assumed to be 0.8025 and 0.42 × 10−16m2 [36].
Applying the same method by Liu et al. [15], the effective
diffusivity and the reflection of the intima can be obtained
as 1.2219 × 10−10m2 s−1 and 0.2514, respectively.

A.4. Parameters of the IEL. The IEL is assumed to have a
constant thickness with fenestral pores. It seems that the
fenestral poreswere filledwith the samefibermatrix as intima
[37, 38]. Thus we took the same properties of the intima for
the IEL to calculate the parameters and assumed that the
fenestral pores were approximated as cylinder pores with a
radius (𝑟fen) of 1.5 × 10−7m [33]. The hydraulic permeability
(𝐾IEL), the reflection coefficient (𝜎IEL), and the effective
diffusivity of IEL (𝐷IEL) are then determined as follows:

𝐾IEL = 𝐾int𝜀IEL, (A.13)

𝜎IEL = 𝜎int, (A.14)

𝐷IEL = 𝐷fen𝜀IEL, (A.15)

where 𝜀IEL is the porosity of the IEL (0.002) and 𝐷fen is the
effective diffusivity of the contrast agency in the fenestral
pores, which is calculated from

𝐷fen = 𝐷int𝐹 (𝛼𝑛𝑗) , (A.16)

𝐹 (𝛼fen) = 1 − 2.1044𝛼fen + 2.08877𝛼
3

fen

− 0.94813𝛼
5

fen − 1.372𝛼
6

fen

+ 3.87𝛼
8

fen − 4.19𝛼
9

fen.

(A.17)

𝛼fen is the ratio of the radius of contrast agent Gd-DTPA to
the radius of fenestral pores (𝛼fen = 𝑟/𝑟fen). From (A.13) and
(A.15), the hydraulic permeability and the effective diffusivity
of the IEL can be calculated as 8.4 × 10−20m2 and 2.4094 ×
10−13m2 s−1, respectively.
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A.5. Parameters of the Media. The media are modeled as a
porous medium composed of smooth muscle cells with a
hydraulic permeability of 𝐾

𝑚

, given as [39]

𝐾
𝑚

= 𝐾
𝑝𝑚

1 − 𝐹

1 − 𝐹
, (A.18)

where 𝐾
𝑝𝑚

is the permeability of the porous medium and 𝐹
is the fractional void volume of smooth muscle cells in the
media. 𝐾

𝑚

equals 6.09 × 10−19m2 after taking 𝐾
𝑝𝑚

and 𝐹 as
1.43 × 10−18m2 and 0.4.

The effective diffusivity of the media is obtained from the
following equation:

𝐷
𝑚

= 𝐷
𝑝𝑚

1

1 − 𝐹
⋅

1

𝑓 (𝐹)
, (A.19)

where𝐷
𝑝𝑚

is

𝐷
𝑝𝑚

= 𝐷free exp[− (1 − 𝜀𝑝𝑚)
1/2

(1 +
𝑟

𝑟
𝑝𝑚

)] . (A.20)

𝜀
𝑝𝑚

is the porosity of the extracellular fibrous phase in the
media (0.43), 𝑟

𝑝𝑚

is the radius of fibers in the extracellular
matrix (3.22 nm), and 𝑓(𝐹) is expressed as

𝑓 (𝐹) =
2

√1 − (4/𝜋) 𝐹

× (arctan 1 −
√(4/𝜋) 𝐹

√1 − (4/𝜋) 𝐹
+ arctan

√(4/𝜋) 𝐹

√1 − (4/𝜋) 𝐹
)

−
𝜋

2
+ 1 − √

4

𝜋
𝐹.

(A.21)

The reflection coefficient of the media is given by

𝜎
𝑚

= (1 − 𝜙
𝑚

)
2

, (A.22)

where

𝜙
𝑚

= exp[− (1 − 𝜀
𝑝𝑚

)(2
𝑟

𝑟
𝑝𝑚

+
𝑟2

𝑟2
𝑝𝑚

)] (1 − 𝐹) .

(A.23)

The porosity of the media is calculated as

𝜀
𝑚

= 𝜀
𝑝𝑚

(1 − 𝐹) . (A.24)

Thus,𝐷
𝑚

, 𝜎
𝑚

, and 𝜀
𝑚

are determined as 9.3392 × 10−11m2 s−1,
0.3617, and 0.258, respectively.
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