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ABSTRACT

Nucleosome organization plays a key role in the
regulation of gene expression. However, despite the
striking advances in the accuracy of nucleosome
maps, there are still severe discrepancies on individ-
ual nucleosome positioning and how this influences
gene regulation. The variability among nucleosome
maps, which precludes the fine analysis of nucleo-
some positioning, might emerge from diverse
sources. We have carefully inspected the extrinsic
factors that may induce diversity by the comparison
of microccocal nuclease (MNase)-Seq derived nu-
cleosome maps generated under distinct conditions.
Furthermore, we have also explored the variation
originated from intrinsic nucleosome dynamics by
generating additional maps derived from cell cycle
synchronized and asynchronous yeast cultures.
Taken together, our study has enabled us to
measure the effect of noise in nucleosome occu-
pancy and positioning and provides insights into
the underlying determinants. Furthermore, we
present a systematic approach that may guide the
standardization of MNase-Seq experiments in order
to generate reproducible genome-wide nucleosome
patterns.

INTRODUCTION

Eukaryotic chromatin is organized in a compact, precisely
regulated, but yet not fully understood manner.
Nucleosome is the fundamental structural unit of this
compaction (1,2), formed by the wrapping of 147-bp
double-stranded DNA in 1 and g left-handed superhelix
around a histone octamer (3). The presence of histone
proteins determines the accessibility of DNA to other
interacting proteins and plays a role in altering mutation
rate (4), in determining exon architecture (5) and in regu-
lation of transcription (6,7).

Genome-wide studies of micrococcal nuclease (MNase)
susceptibility have revealed that nucleosomes are not
randomly placed across genome but they are rather
enriched in certain areas while depleted in others (8–13).
The most pervasive regions depleted in nucleosomes appear
upstream the transcription start site (TSS), at gene pro-
moters. Such nucleosome-free regions (NFRs) are often
flanked by two nucleosomes, one very strongly located
downstream TSS (+1 position), and a second one more
weakly located upstream (�1 position) (14,15,8,10,13).
The integrity of this organization seems to be crucial for
a correct gene regulation (16–18), since the introduction of
a high-affinity nucleosome binding sequence in a promoter
region can inhibit transcription (19).

Despite the tremendous amount of studies, the
underlying mechanisms governing in vivo nucleosome pos-
itioning still remain elusive. Three main models have been
postulated as determinants of nucleosome positioning: (i)
statistical positioning, suggesting that a barrier favors de-
position of a well-positioned nucleosome, typically after a
NFRs, which in turn forces the periodic positioning of the
neighboring nucleosomes (20,21); (ii) the intrinsic
properties of naked DNA that favors histone binding in
certain sequences (8,12,22–28) and (iii) DNA-interacting
proteins like transcription factors (TFs) (11,29–31), which
force nucleosome depletion in certain regions. Notably,
there is still controversy among these three models, since
all of them seem supported by experimental findings (32–
36).

Systematic analyses of nucleosome dynamics still
remain a challenge, particularly in determining the exact
positioning, fuzziness and affinity (37–42). The struggle
partially arises from the paucity of consistent nucleosome
maps, even in the same model organisms. Thus, different
studies show quite similar average nucleosome profiles,
but individual nucleosome positioning might differ re-
markably, so that very well-positioned nucleosomes
detected in one study might appear as fuzzy or simply
absent in another (43–46). As an example, a recent study
showed that Pearson’s correlation coefficients range from
0.2 to 0.45 among different in vivo nucleosome profile
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datasets, indicating that in average <10% of nucleosome
positioning is actually reproduced by different studies
(47). The extreme variability among datasets, not only
makes difficult the derivation of consensus nucleosome
maps, but also it just makes impossible the development
of predictive models to explain nucleosome positioning.

Discrepancy between nucleosome maps may originate
from different sources: (i) the experimental conditions
(such as MNase digestion levels or sequencing protocol);
(ii) data processing for nucleosome calling; (iii) heterogen-
eity of the samples, derived from diversity of cellular states
in the culture, such as cycle phase; (iv) variations among
the samples derived from differences in the growth media
(such as pheromones, stress, etc.) and (v) nucleosome
dynamics across the genome, that will be detected as pos-
itional ‘fuzziness’ in the experimental nucleosomal (48,49).

We present here a systematic analysis of the effect of
noise and nucleosome dynamics in defining nucleosome
profiles in Saccharomyces cerevisae. We have been able
to reduce cell-to-cell variability and cell cycle-induced nu-
cleosome dynamics by using carefully synchronized cells
and compare them against unsynchronized control cells
grown under the same basal conditions. We have then
explored the potential sources of variability in nucleosome
maps related to different MNase digestion levels (from
very mild to very strong) and sequencing procedure
(single- versus paired-end). Furthermore, to reduce poten-
tial uncertainties related to nucleosome calling algorithms,
we have applied a single algorithm with standard defaults,
in conjunction with analyses of nucleosome architecture,
which are independent of the nucleosome calling
algorithm.

Taken together, our findings have allowed us a compre-
hensive evaluation of nucleosome positioning and stability
that may contribute to partially uncover the underlying
principles of nucleosome architecture dynamics. The
picture derived from our analyses presents navigating nu-
cleosomes along one-dimensional string (i.e. the DNA
fiber) that are mainly positioned at specific places in
response to strong nucleosome depletion signals generated
by either intrinsic properties of DNA, the presence of
competing DNA-binding proteins or chromatin-remodel-
ing systems. The proposed model allows a very simple
integration of different nucleosome positioning models,
and provides clues on the impact of nucleosome fuzziness
in the modulation of gene activity.

MATERIALS AND METHODS

Cell-cycle synchronization

Yeast strain BY4741 was grown using fresh YPD media at
30�C until an OD600 of 0.2. Then, alpha-factor mating
pheromone (GenScript) was added to the culture to a
final concentration of 10 mM and the culture was
incubated for 2 h to induce cell-cycle arrest in late G1.
As a control, an asynchronous culture was grown in
parallel to an OD600 of 0.8. Both G1-arrest synchronized
and asynchronous samples were collected and washed
twice with phosphate buffered saline (PBS).

Cell synchrony was monitored by three approaches: flow
cytometry (FACS), fluorescence microscopy and budding
index calculation. For FACS analysis, cells were fixed with
100% EtOH, spun down and washed once with 1� SSC
buffer (150mM NaCl, 15mM sodium citrate, pH 7.80).
Removal of RNA and proteins were carried out by incu-
bation with RNase A (0, 5mg/ml, Roche) and proteinase K
(0.5mg/ml, Roche), correspondingly. Samples were briefly
sonicated by using the Bioruptor system and mixed with
500ml SSC buffer containing 0.1mg/ml propidium iodide
(PI, Sigma-Aldrich). Fluorescence emitted from DNA-
intercalated PI was measured by Beckman Coulter
EPICS� XL flow cytometer.
Cell-cycle phase was also monitored by fluorescence mi-

croscopy and budding index calculation. For these
purposes, cells were briefly sonicated and fixed with
EtOH in a similar manner as for FACS. Fixed cells were
then resuspended in 200 ml PBS containing Hoechst stain
at 30 mg/ml. Finally, cells were placed on a glass slide and
visualized by fluorescence microscopy (Nikon E600 micro-
scope). For budding index calculation, a sample from
EtOH-fixed cells was placed on a hemocytometer and
visualized under a phase contrast microscope to count
the number of budded and unbudded cells.

Nucleosomal DNA extraction

Nucleosomal DNA from G1-arrest and asynchronous
samples was prepared as previously described (15). The
overall nucleosome digestion was accurately controlled
by carrying out several digestion reactions with MNase
at concentrations of 0.04, 0.08, 0.12 and 0.16U, respect-
ively, at 37�C for 30min. The reactions were stopped by
addition of EDTA to a final concentration of 0.02M and
subsequently incubated with RNase A (0.1mg) for 1 h at
37�C and further treated with Proteinase K at 37�C for
1 h. DNA was extracted using phenol–chloroform extrac-
tion and concentrated by ethanol precipitation.
The percentage of mononucleosomal DNA fragments

was examined by 2% agarose gels. Furthermore, the integ-
rity and size distribution of digested fragments were
determined using the microfluidics-based platform
Bioanalyzer (Agilent) prior to DNA sequencing.
Typically, samples containing >80% mononucleosomal
fragments were sent for sequencing. In addition, over-
and under-digested samples were selected based on the pro-
portion of mononucleosomal fragments. Over-digested
samples were obtained by 0.12U MNase digestions,
which yielded to only mononucleosomes. Under-digested
samples were obtained by 0.04U of MNase yielding to
mono-, di- and tri-nucleosomes.

Nucleosomal DNA sequencing

Libraries of nucleosome fragments were prepared and
adapted for deep sequencing using the standard Illumina
protocol and sequenced them as single-end paired-end on
Genome Analyzer IIx and HiSeq 2000 devices. Data were
processed with a standard GA base calling pipeline to
convert initial raw images into sequences, as described
previously (15). Raw reads are available at the
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ENA-SRA website (http://www.ebi.ac.uk/ena) with
accession number ERP004019.

RNA Isolation and gene-expression arrays

Cells were collected at the same interval as nucleosomal
DNA samples in icy-water and harvested by spinning for
3–4min at 6000 rpm, frozen in liquid nitrogen and stored
at �80�C. Total cellular RNA was extracted using the
RNeasy kit (Qiagen), following the manufacturer’s in-
structions with the spheroplasting protocol (0.5mg/ml
zymolase). The total RNA was hybridized to Affymetrix
GeneChip Yeast Genome 2.0 arrays for gene-expression
analysis. Raw and processed files available in
ArrayExpress under accession number E-MTAB-2195.

Data processing and nucleosome calling

Reads from all samples were mapped to yeast genome
(SacCer3, UCSC) with Bowtie (50) aligner and imported
in R/Bioconductor framework (51). Single-end reads were
resized to 50bp and shifted downstream to align reads
mapping in opposite strands using nucleR (52). Paired-
end reads were trimmed to 50bp maintaining the original
center. Genome-wide coverage was normalized using the
total number of reads in every experiment and scaled by
a factor of 106 to obtain the units of reads per million
(r.p.m.). Peak calling was performed after noise filtering
using nucleR parameters: peak width=125bp, peak detec-
tion threshold=35%, maximum overlap=50bp.

TSS clustering

Using the nucleosome calls obtained previously, we clas-
sified every gene according to their nucleosome architec-
ture around the TSS. The closest nucleosome at or
immediately downstream TSS was annotated as the +1
nucleosome. The nucleosome immediately upstream of
the+1 nucleosome was annotated as the �1 nucleosome.
After a visual analysis of the classifications, nucleosome
calls were considered as well-positioned (W) when nucleR
peak width score (score_w; positioning) and height score
(score_h; coverage) were higher than 0.4 and 0.6, respect-
ively. Otherwise, the nucleosome call was considered fuzzy
(F). Accordingly with previous observations (39), the
NFR was defined as the distance between the dyads of
the �1/+1 nucleosome and it was annotated as ‘open’ if
this distance was >215 bp or as ‘closed’ otherwise. The
classification of a given gene was determined by the pos-
itioning of the �1 nucleosome, the width of the NFR and
the positioning of the+1 nucleosome. Special cases such
as when the �1 nucleosome was >300 bp further from the
TSS (annotated as M, missing), the �1/+1 nucleosome
calls were overlapped or when the regions �300:+300 bp
had more than a 25% of uncovered bases were excluded
from the analysis.

Evaluation of nucleosome architecture variability
between genes

In order to obtain an accurate estimate of gene architec-
ture similarity/dissimilarity between samples, we defined
the following metrics. Profile: we considered a gene

promoter stable between two samples if Pearson’s correl-
ation in the window of�300:300 bp around TSS was >0.7;
conversely, we consider variable if the correlation was
<0.5. Cluster: we considered a gene promoter stable if
cluster dimensions (–1/NFR/+1) matched; otherwise we
annotated as a relevant variation of this architecture
when two of the clustering dimensions varied between
samples. The +1/–1 nucleosome: we considered a stable
nucleosome classification if nucleR provided the same
classification (with thresholds for score_w and score_h
noted above) for the two samples; we considered a
relevant change if the nucleosome call was changing in
classification and the absolute difference of the aggregated
score (nucleR’s default score=0.5*score_h+0.5*score_w)
was >0.25 (which implies a change of at least one quartile
of the classification). NFR: we considered it stable if the
NFR distance was annotated equally between samples
(open/close/overlap/missing); or variable when a change
in class was happening and the distance between �1/+1
nucleosomes differed >100 bp. Those genes that do not
satisfy any of the criteria are considered out of the stabil-
ity/variability threshold.

Elastic energy model

Elastic energy was calculated using a mesoscopic model of
DNA flexibility (53–56) with parameters derived from mo-
lecular dynamics simulations (57) as described previously
(15). In short, for every tiled sequence of 147 bp in the
genome, we calculated the increment of energy required
to pass from a relaxed DNA conformation to a nucleo-
some-shaped conformation, using an experimental refer-
ence structure (58).

Statistical positioning model

The very simple statistical-positioning model featured in
this article considers that, after the energetic barrier in the
NFR, nucleosomes are arranged statistically with a lineal
increasing fuzziness. We decided to simulate a population
of nucleosome reads centered in the+1 nucleosome with a
dyad deviation of 25 bp. Dyads of downstream nucleo-
somes (+2, +3, . . .) were spaced 147+14bp (accounting
for average linker DNA length) with an increasing devi-
ation of the dyad of+5bp in every step and a decreasing
number of reads equal to the 4% of the previous peak.
The dyad of the �1 nucleosome was placed 147+100 bp
(247 bp in total) upstream the+1 for the closed NFR and
147+200 bp (347 bp in total) for the open NFR. The fol-
lowing upstream nucleosomes (–2, �3, . . .) were defined as
in the case of the downstream model but adjusting the
deviation in 35 bp in the �1 nucleosome plus 5 bp in
every following step, with a linker length of 18 bp.
Different values of the different parameters in the model
were selected after a grid search maximizing the correl-
ation of the model with the average experimental
distribution.

TFBS prediction

Transcription factor binding sites (TFBSs) were derived
from the position weight matrices (PWMs) available in
JASPAR database for yeast (59). For every PWM, the
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genome-wide binding scores and predicted TFBS were
calculated using R/Bioconductor Biostrings library with
default parameters. Regions with annotated TFBS were
pooled and their coverage was calculated as a measure
of global TF affinity genome-wide.

RESULTS

In an attempt to eliminate the noise resulting from cell-
population heterogeneity, we have synchronized yeast
cultures at the late G1 cell-cycle phase. Two synchronized
cultures (Supplementary Figure S1) were considered as
biological replicas. We labeled them as replicas 1 and 2
and subsequently isolated their nucleosomal DNA under
similar MNase-digestion conditions. The digestion level
was determined visually by agarose gel electrophoresis
and the microfluidics-based platform Bioanalyzer
(Agilent), as shown in Supplementary Figure S2.
Accordingly, both samples yielded a major peak
�147 bp corresponding to mononucleosomes, a secondary
defined peak �295 bp corresponding to di-nucleosomes
and residual peaks at �60 bp that might be assigned to
either tetrasomes or other DNA–protein complexes.

The effect of single- versus paired-end sequencing

Eventually, replicas 1 and 2 were sequenced both as single-
end (1x) and paired-end (2x), assuming a minimal
sequencing bias. We obtained high sequencing read
depths in all our datasets (fold-coverage ranges between
13X and 177X for individual experiments), which were
then processed using nucleR package as described in
methods (52). Nucleosome profiles around TSSs were clas-
sified based on the positioning of �1 nucleosome (fuzzy
(F), well positioned (W) or missing (M)) and+1 nucleo-
some (F or W) according to their nucleR score (Materials
and methods section), and the width of NFR. NFR state
was identified as open (typically �130-bp wide) or closed
(�30-bp wide) according to previously reported bimodal
distribution (39). We were able to classify �90% of yeast
gene promoters into nucleosome architectures for both
replicas (Supplementary Figure S3). The remaining 10%
could not be classified due to either low coverage, un-
defined+1 or overlapping nucleosomes and were not con-
sidered in the remaining analysis. We explored the
variability of the results based on different assignment
criteria, and notably, nucleosome calls appeared quite
robust regardless the threshold parameters applied in
nucleR (Supplementary Table S1), proving the accuracy
of the algorithm and further validating that detected vari-
ability does not respond to bioinformatics artifacts.

In principle, since every sample was both single- and
paired-end sequenced, nucleosome maps should strongly
resemble one another. However, when we compared the
nucleosome profiles around TSSs, they displayed different
architectures depending on the sequencing method
(Figure 1, comparison of A and C with B and D).
Single-end sequencing generated noisier nucleosome
maps, leading to higher populations of fuzzy nucleosomes.
This observation is illustrated in more detail in
Supplementary Table S2, which shows the distribution

of genes according to classifying parameters such as �1/
+1 positioning or NFR width. Conversely, the percentage
of �1 or+1 fuzzy nucleosomes is considerably reduced in
paired-end sequenced samples, confirming that single-end
sequencing yields an artificial enrichment of fuzzy nucleo-
somes. Interestingly, while the general coverage around
TSSs is reasonably preserved (Supplementary Table S3
first column), only �38–36% of the nucleosome architec-
tures are conserved (Supplementary Table S3, second
column) and �23%of the genes show clearly distinct nu-
cleosome classifications depending on the sequencing
(1x versus 2x) method (Supplementary Table S3, seventh
column). Intriguingly, when we analyzed the individual
parameters describing a nucleosomal architecture, we
observed that 63–64% of +1 nucleosome positions have
the same annotation in both single- and paired-end
sequencing, and only 5–7% display very different annota-
tions. In the case of �1 nucleosome position, the preser-
vation is less pronounced, with 61% conservation (52%
for replica 2) and 7% discrepancy (12% for replica 2).
Moreover 69% (56% in replica 2) of the NFRs maintain
the same annotation, while 6%–9% can show width
changes of up to >100 bp.

The effect of biological replica variability

In order to minimize the noise coming from experimental
protocols (out of the specific sequencing procedure), we
compared the nucleosome maps of the two synchronized
replicas generated by paired-end sequencing, which both
present a similar coverage of 50X. As shown in Figure 1,
nucleosome patterns are quite similar in both replicas,
dominated by WoW, WcW and a myriad of families
characterized by a +1W and �1F/M (Figure 1,
Supplementary Figure S3). However, when we analyzed
individual genes (Supplementary Table S3), significant dif-
ferences arise between replicas. Nearly 90% of genes show
reasonably similar coverage profiles, but only 48% of
them maintain their nucleosome architecture in the two
replicas. Even though the majority of changes are subtle,
usually only affecting one nucleosome position (e.g.
W!F or F!M), �15% of genes show significant
changes in class annotation. Interestingly, only 3%
of genes show dramatic changes in NFR in contrast to
6–7% that show different �1 and+1 nucleosome localiza-
tions (Supplementary Table S3), indicating that NFR is
more conserved and less prone to variations than flanking
nucleosome positions.
Taken together, our findings show that inter-replica

variations are not negligible and point out that nucleo-
some positioning is intrinsically highly plastic and
dynamic. In accordance with this observation, elastic
energy models propose that a 10-bp sliding of a nucleo-
some would face a general energy barrier (i.e. the differ-
ence between the best and worse wrapping configuration)
of �13 kcal/mol in average (<1 kcal/mol for sliding one
single position), while in a larger scale, we would find
mesoscopic barriers of �47 kcal/mol (Supplementary
Figure S4), which might contribute to phasing.
Similarly, atomistic molecular dynamics simulations
detect spontaneous sliding of one base step at the
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multi-nanosecond time scale (60). Consequently, with
such a dynamic organization, nucleosomes tend to
change positions constantly and hence, well-positioned
nucleosomes might not actually be intrinsically tightly
placed in the absence of negative ‘nucleosome depletion’
signals. Indeed, the deformation energy required to wrap
fuzzy or well-positioned nucleosomes is similar
(�200 kcal/mol for a 145-bp double-stranded DNA,
Supplementary Figure S5). Fuzziness is then likely to be

the default state for nucleosomes in a random DNA in the
absence of additional factors, such as NFR.

The effect of cell diversity

In order to determine the variability caused by cell hetero-
geneity, we included an asynchronous yeast culture in
our analysis, labeled as ‘asynchronous’ sample
(Supplementary Figure S1). This sample also produced

Figure 1. Nucleosome coverage and gene clustering in single- and paired-end sequencing. Heat maps showing nucleosome occupancy around TSS in
replicas 1 (top) and 2 (bottom) for single-end sequencing (1x, left) and paired-end sequencing (2x, right). Genes are clustered based on their
nucleosome profile and their coverage is plotted taking +1 nucleosome dyad as 000.

4938 Nucleic Acids Research, 2014, Vol. 42, No. 8

``
''
around 
145 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku165/-/DC1
. 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku165/-/DC1


well-defined nucleosomal maps, where 94% of yeast genes
had well-located+1 nucleosomes and around 87% of pro-
moters could be assigned to a particular nucleosomal
architecture around TSS.

The asynchronous sample shows clear differences when
compared to the synchronized replicas 1 and 2, as shown
in Figures 1 and 2 and Supplementary Table S1. WoW
and WcW nucleosome classes decrease while �1F/M or
+1F nucleosome positions are more prevalent in asyn-
chronous maps (proportion test P-value< 2.2� 10�16),
suggesting that cell-cycle progression may induce chroma-
tin rearrangements around TSSs that may be reflected as
diffuse nucleosome signals in MNase-Seq experiments
derived from asynchronous samples.

Interestingly, analysis of individual genes provides a
clearer impact of cell heterogeneity-dependent variability.
Differences in nucleosome coverage profiles and nucleo-
some architectures are higher when the asynchronous
sample is compared against biological replicas than
when biological replicas are directly compared
(Supplementary Table S2, columns 6 and 7). As
anticipated from Figure 2, the increase in �1 and +1
nucleosome fuzziness seems to be the main responsible
for variations in chromatin structure around TSSs
(Supplementary Tables S1 and S2). In average 475 genes
pass from WoW or WcW in rep1/2 to some fuzzy struc-
ture in the asynchronous replica. As a result the ratio well-
positioned/non-well-positioned �1 nucleosomes decreases
from 1.8–2.3 (replicas 1 and 2) to 1.4 (in asynchronous)
(proportion test for replica 1P-value=1.07� 10�10, for
replica 2P-value< 2.2� 10�16), and similarly in case of+1
nucleosomes, going from 5.0–7.0 (replicas 1 and 2) to 3.7
(proportion test for replica 1P-value=5� 10�11, for
replica 2P-value < 2.2� 10�16). Conversely, NFR width
between synchronized and asynchronous samples shows
similar changes as between biological replicas, suggesting
that cell cycle-dependent chromatin rearrangements do
not lead to massive nucleosome eviction around TSSs,
which would dramatically alter NFR dimensions
(proportion test for replica 1 P-value=0.22, for replica
2 P-value=0.09).

Overall, our detailed comparison of cell cycle
synchronized and asynchronous samples reveals that asyn-
chronous experiments contain an additional source of
noise due to the cell cycle-dependent nucleosome
dynamics, and that caution is necessary with maps
derived from asynchronous samples (those typically avail-
able in the literature), since average maps can mask the
existence of two populations with completely different nu-
cleosomal architectures. Fuzzy nucleosome signals can be
in reality the result of a mixed population where some cells
contain well-localized nucleosomes while others are nu-
cleosome-depleted at the same region, or rather that a
well-localized nucleosome has moved to a neighboring
position in different cells (Supplementary Figure S6).
Indeed, we observed that 105 genes displayed very
similar coverage profiles around TSSs between biological
replicas (Pearson’s correlation> 0.7), but clearly differed
with the asynchronous sample (Pearson’s correl-
ation< 0.5). Of note, although GO and pathway annota-
tion analyses were not able to find any particular

Figure 2. Nucleosome coverage and clustering under different experi-
mental conditions. Similar to Figure 2, but for asynchronous (top),
over-digested (middle) and under-digested (bottom) samples.
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enrichment in this set of genes, 15 of them are annotated
as cell cycle periodic genes in Cyclebase (61), which rep-
resents a small enrichment in cell-cycle related functions
(from 9.8% in genomic mean to 14%; proportion test
P-value=0.087). Interestingly, cell cycle-related genes
belong to the G1/S regulon rather than to the alpha-
factor pathway, indicating that the source of variation
does not derive from alpha-factor stimuli. A more
detailed analysis would require data for every individual
cell stages, but nonetheless, the present results support the
notion that chromatin reorganization might be coupled to
cell-cycle regulation mechanisms.

The effect of MNase digestion

To investigate the bias effect of MNase digestion on the
generation of nucleosome maps (a quite ignored source of
variability), we have used two additional MNase-Seq
experiments derived from a G1-synchronized culture but
treated under either more aggressive (over-digested
sample) or milder (under-digested sample) MNase-
digestion conditions. The samples were sequenced using
paired-end technology and a similar data processing for
a direct comparison with other replicas.
As shown in the Bioanalyzer histograms (Supplementary

Figure S2), over-digestion of chromatin leads to the dis-
appearance of the di-nucleosome signal and to a broader
mono-nucleosome peak that is shifted towards shorter frag-
ments, probably caused by certain intra-nucleosomal
cleavage. Nucleosome architectures of the over-digested
sample are well-defined, with a clear +1 nucleosome
signal in 95% of the gene promoters and unambiguously
assigned nucleosome families, similar to replicas 1 and 2.
Yet, the analysis of nucleosome pattern distributions
reveals clear differences between the over-digested sample
and replicas 1 and 2 (Figure 2, Supplementary Table S2). In
over-digested chromatin, the prevalence of canonical nu-
cleosome classes (i.e. WoW and WcW) decreases and
fuzzy �1 nucleosomes are enriched. Thus, �800 genes
move from WoW/WcW patterns in replicas 1 and 2 to a
fuzzier configuration in the over-digested sample (propor-
tion test P-value< 2.2� 10�16). The number of missing �1
nucleosomes increases from 711–510 (replicas 1 and 2) to
1154 (proportion test P-value< 2.2� 10�16). Overall, these
findings suggest that excessive MNase digestion can lead to
partial degradation of some well-positioned nucleosomes,
resulting in fuzzier nucleosome peaks, or even to the
complete disassociation of unstable nucleosomes, leading
to loss of certain nucleosome signals. This behavior is
further confirmed with a higher mean deviation of
the nucleosome dyad position in the over-digested
sample (Kolmogorov–Smirnov test P-value=2·10�6)
(Supplementary Figure S7).
We have further explored the impact of over-digestion

on nucleosomal architectures by the analysis of individual
genes (Supplementary Table S3). While only 15% of the
genes show clearly different nucleosome arrangements
between replicas, up to 25% (18% in replica 2) change
with respect to the over-digested sample. Similarly, the
variability in �1 and+1 nucleosome annotations also in-
creases from 6–7% to 10–13%. In contrast, NFR width

seems to be very resistant to digestion conditions, pointing
out that a more aggressive digestion mostly result in
partial degradation of nucleosomes but rarely in their
complete eviction around TSSs (Supplementary Tables
S2–S3 and Figure 2).

On the other hand, the under-digested sample exhibits
well-defined mono-, di-, tri- and even tetra-nucleosomal
peaks (Supplementary Figure S2). Intriguingly, paired-
end sequencing only yielded 78% of gene coverage and
�69% of TSSs could be classified into nucleosome
families, whereas the classification was 86.5±3.7% in
previous experiments. The significantly (proportion test
P-value=8� 10�9 for replica 1, P-value=2� 10�16 for
replica 2) enrichment of depleted areas might account for
the under-representation of longer fragments in the
sequencing reactions, since it is well established that
deep sequencing favors the amplification of short over
long fragments (62). Moreover, we observed a higher fre-
quency of overlapping nucleosomes (10.2% in over-
digested in comparison with 4.6% and 2.5% in replicas
1 and 2, proportion test P-value< 2.2� 10�16), which
might correspond in reality to DNA in complex with
other proteins. Interestingly, the uncovered regions
specific to under-digested sample are distributed over the
entire genome without any significant enrichment accord-
ing to GO analysis. Yet, they show a clear preference for
AT-rich segments (3.38 higher fold) and intergenic regions
(15% enrichment over background, simulated
P-value< 10�5).

Despite the poor ability of sequencing protocols to deal
with long fragments, we were able to recover several long
reads analogous to di-nucleosomal signals, being �3% of
them longer than 300 bp in the under-digested sample. In
contrast, we only rescued 0.4% of these long reads in the
over-digested sample. Therefore, the presence of di-nu-
cleosome signals introduce another source of noise in the
nucleosome maps, since nucleosome calling algorithms
usually consider peak signals as mono-nucleosomes and
align them on the genome based on their middle
position, which is assumed to correspond to the nucleo-
some dyad. However, the mid-point of di-nucleosomes is
actually located on the linker region, leading to a counter-
phase location with respect to mono-nucleosome signals.
This observation is shown in Figure 3, where short-, mid-
or long-sized fragments of over- and under-digested
samples are compared. The counter-phasing is more
explicit in under-digestion, which contains more di-nu-
cleosome derived signals and thus, leads to a higher
noise in terms of linker length and nucleosome phasing
(Figure 3B).

Overall, our observations show that MNase digestion
levels may strongly bias nucleosome maps by intra-nucleo-
somal cleavage or the introduction of longer
internucleosomal or non-nucleosomal protected regions.
Caution is then necessary, since MNase is not a mere spec-
tator of nucleosome architecture, but bias it in one way or
the other, introducing a noise that need to be considered
when maps obtained under different degradation condi-
tions are compared. This warning is especially important
since MNase is an enzyme whose activity is not always
easy to control.
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The effect of sequencing read depth

Interestingly, when comparing paired-end experiments
with extremely large read depth (for example over-
digested (2x) and asyncronized (2x) datasets, with a
coverage of 146X and 177X, respectively), the nucleo-
somal maps do not show better agreement than when
comparing datasets with lower read depth (such as
single-end replicas 1 and 2, with coverage �13X and
45X, respectively). Certainly, low read-depth can
increase the noise in nucleosome maps but it does not
seem to be a dramatic contributor in the present article.

The effect of basal expression level

In order to assess the possible effect of noise due to dif-
ferent transcription rates, we measured the absolute levels
of gene expression in our G1 synchronized samples
(replicas 1 and 2) using expression arrays (see Materials
and methods section). Based on the hybridization results,
we then selected the top 500 and the bottom 500 genes
according to their normalized expression level and
analyzed in detail the nucleosome organization around
TSSs. Lowly expressed genes display better defined nu-
cleosome organization than highly expressed genes (with
�8% more robust coverage profiles; Wilcoxon rank sum
test P-value< 0.0002). Notably, this differential organiza-
tion is increased to 13% when gene body is considered
(Wilcoxon rank sum test P-value< 2.2e – 16).

Underlying factors in nucleosome positioning

Heterogeneity in MNase-Seq experiments may be the re-
sponsible of the low accuracy in the available nucleosome
positioning predictive models when other than the training
datasets are employed, challenging the validation of nu-
cleosome positioning models. In contrast, our systematic
analysis under controlled conditions allowed us to obtain
a robust set of nucleosome profiles (showing a correlation
>0.7 and displaying the same nucleosome architecture in
biological replicas). This set (comprising 3096 genes) rep-
resents the well-conserved nucleosome architectures in late
G1 cell-cycle phase and reveals that WcW (1306 genes)
and WoW (1164 genes) are the most pervasive classes,
followed by M–W (263 genes) and FcF (155 genes)
classes. We can use then these maps to evaluate the
goodness of different predictive models, without being
exposed to noise and uncertainties in the experimental
data.
We compared the experimental WcW and WoW nu-

cleosome maps with an extremely simple statistical
model (see Materials and methods section) that places nu-
cleosomes every 161–165 bp (147+14 – 18 bp due to linker
variation), starting from NFR with decreasing nucleo-
some phasing (Figure 4A). Once the NFR is defined, the
model is able to explain the majority of nucleosome pos-
itioning around TSSs, further confirming that nucleosome
location in TSSs is largely determined by a barrier, i.e.

Figure 3. Effect of variable read length on map coverage. (A) Coverage distribution of short, mid and long reads in under-digested (left) and
over-digested (right) samples. (B) Normalized coverage profiles of trimmed reads around TSSs derived from different sequencing lengths.
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NFR, which subsequently places arrays of nucleosomes
with decay in positioning as they separate from the
NFR signal. It seems then that the crucial step to
position nucleosomes is to determine the placement of
the NFR. To analyze the determinants of NFR position
we studied TFBS and compute the deformation energy
required to wrap DNA around the histone core
(see ‘Materials and Methods’ section). As shown in
Figure 4B, NFRs at WoW architectures present intrinsic-
ally different DNA properties leading to an anomalously
large deformation energies at NFR. This suggests that

physical properties can define the boundaries off the
NFRs in this family, but they also erroneously predict a
well-positioned nucleosome in the middle of the NFR. It is
clear (Figure 4B) that competition with TFs avoids the
binding of the nucleosome in the middle of the NFR.
Clearly, TF binding is then crucial in determining the in-
tegrity of NFRs and hence the phasing of the nucleosome
arrays in WoW architectures. The synergetic effect of
physical properties and TFBS is also clear in nucleosome
placements in the WcW family, where the region around
TSS is marked by an unusual profile of physical properties

Figure 4. Statistical positioning and intrinsic DNA energetic barriers. (A) Average experimental nucleosome coverage from WoW (top) and WcW
(bottom) patterns in replica 1 are compared against a nucleosome positioning statistical model. (B) The experimental coverage of WoW (top) and
WcW (bottom) classes (red) are overlapped with deformation energy (cyan) and predictive TFBS (blue) around TSSs.
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and a distinct pattern of TFBSs. The strong +1 nucleo-
some signal fits perfectly in a region of low cost for
wrapping DNA around a nucleosome and depleted in
TFBS.

Taken together, our analysis of robust nucleosome
maps suggest that simple statistical positioning is a key
responsible of the basal nucleosome positioning, with
NFR being the main signal organizing nucleosome
string. Physical properties and binding to effector
proteins, such as TFs, act in a synergistic manner to
define NFR location and boundaries and to define then
the phasing of the nucleosome string. Clearly, the
chromatin remodelers will act on this basal activity to
facilitate positioning of nucleosomes in a regularly
spaced array.

Lastly, we analyzed the heterogeneity in nucleosome
architecture along coding regions, taking into account
that they do not show the typical TSS nucleosome
pattern (see Supplementary Tables S4–S5). Interestingly,
our findings indicate that the conclusions obtained for
TSS regions are also valid for gene body regions. Clearly,
the heterogeneity and plasticity in nucleosome architecture
is not a differential property of the TSS vicinities, since also
coding regions show a significant degree of flexibility that
surely reflects the intrinsic mobility of nucleosomes, espe-
cially for highly expressed genes.

DISCUSSION

Many genome-wide nucleosome maps are now available
in the literature for model organisms, but the correlation
among the aligned maps is typically poor. This variability
is a first indication that nucleosomes are not as rigidly
placed as suggested from single dataset analyses.
However, it is difficult to determine at what extent such
variability is due to biological sources (for instance action
of chromatin remodelers) or related to experimental pro-
cedures (such as MNase different activity rate).

In an attempt to remove, as much as possible, experi-
mental and sequencing biases, we have addressed several
sources of noise that might lead to artifactual nucleosome
fuzziness in MNase-Seq derived nucleosome maps
(Figure 5). Single- and paired-end sequencing of identical
samples demonstrates that single-end sequencing gener-
ates a high level of fuzziness, prompting to low reprodu-
cible nucleosome maps and challenging accurate analyses
of nucleosome arrangements along the DNA fiber.
Furthermore, when identical samples are treated under
different MNase digestion conditions, high MNase levels
lead to intra-nucleosomal cleavage and partial degrad-
ation of some well-positioned, but not necessarily very
stable, nucleosomes. Since the two ends of the nucleosome
might not be equally protected due to differences in
DNA–histone interactions (63,64), over-digestion can
lead to unsymmetrical degradation of nucleosome, which
could be reflected in nucleosome maps as an increase in
the overall fuzziness. On the other hand, milder digestion
can also lead to severe noise, since the poor sequencing of
long reads might cause loss of information about those
regions enriched in long fragments. Moreover, the

alignment of di-nucleosomal signals can yield to
counter-phased positioning with respect to mono-nucleo-
somal signals, generating noise in the nucleosome maps,
especially in the linker regions.
Computational processing of raw data is another source

of ‘spurious noise’. Converting read-alignment informa-
tion into nucleosome positions implies the assumption of
some predictive models (especially for single-end
sequencing reads). Furthermore, the classification of nu-
cleosome signals also requires the use of arbitrary thresh-
olds. We have minimized these potential factors by
applying various classification thresholds in the nucleR
nucleosome calling algorithm and by the use of orthog-
onal metrics such as direct read information. Our findings
suggest that the detected variability in our analyses do not
respond to computational artifacts. Additionally, the
observed variability is not a consequence of poor
sequencing coverage either, since no reduction of variabil-
ity is found when samples with relatively high and low
coverage are compared.
Up to date, most of the available MNase-Seq derived

nucleosome maps originate from asynchronous popula-
tions. This asynchrony can produce considerable amount
of noise due to cell cycle-dependent nucleosome changes
which may be related to gene-expression alterations or
chromatin compaction and relaxation. Therefore these
maps actually reproduce average nucleosome phasing in
different populations, some of which might be stable and
well-positioned in one cell while more diffuse in others.
Such variations can generate misleading nucleosome
maps that might not accurately reproduce the actual chro-
matin organization, and in fact only reflect the statistical
averaging of different cell populations. Consistently, our
comparative analysis between synchronized and asyn-
chronous samples shows that asynchrony contributes to
an increase of �30% in nucleosome fuzziness. Regions
with striking chromatin alterations along cell cycle are
usually detected as regions with fuzzy and not well-defined
nucleosomes in the usual asynchronous maps.
Interestingly, highly active genes in a certain cell-cycle
stage show in general less-conserved nucleosome distribu-
tions, connecting gene activity and nucleosome mobility.
We have tried to further minimize the biological noise

level by generating nucleosome maps from cell cycle
synchronized biological replicas, in order to have a
reliable detection and accurate analysis of nucleosome
positioning. Although average nucleosome maps are iden-
tical, differences at the gene level are not negligible.
Thus, even if general nucleosome profiles are reasonably
conserved, only 30% of the well-positioned nucleosomes
are located at the same genomic place (within ±5-bp de-
viation) in two biologically equivalent replicas. Our results
suggest that in principle nucleosomes are mobile along the
DNA fiber, since intrinsic sliding barriers are small. This
can lead to a kind of ‘spread’ of signal along average
position, or alternatively, to the population of different
nucleosomal arrangements in different cells, giving in all
cases to a fuzzy signal in nucleosomal maps.
The localization pattern that we (and many others

before) have found obeys at great extent to a simple stat-
istical positioning, where nucleosome arrays are placed
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starting from NFRs (which are defined with a small noise
level and a high reliability in biological replicas), with a
lineal decrease in positioning as separated from the NFR.
NFR borders are marked by unusual DNA physical
properties that hampers wrapping of DNA around
histone core (in vitro and in vivo) and by regions which
are highly prevalent in TFBSs (in vivo). Under normal
physiological conditions, sequence-encoded physical
properties and protein binding (including TFBSs) act syn-
ergistically to define the NFR and accordingly, the nucleo-
some array. Such synergy can be enhanced or reduced by
chromatin remodelers, which are shown to facilitate nu-
cleosome positioning by packing them against a barrier,
like NFRs (18,31). This could partially explain the

differences often found between in vivo and in vitro nucleo-
somal maps.

Taken together, our robust set of nucleosome profiles
have enabled us to carefully inspect the various sources of
noise and dissociate them from the actual nucleosome
dynamics in the cell, which in all cases are otherwise
captured as positional ‘fuzziness’ in the nucleosome
maps. Finally, our systematic approach provides an
insight into nucleosome positioning determinants and
may guide the standardization of MNase-Seq experiments
in order to generate reproducible genome-wide nucleo-
some patterns. Finally, our results shed light in the
requirement of discarding the current static picture of
nucleosome positioning and start considering nucleosomes

Figure 5. Possible sources of intrinsic nucleosome noise. (A) In single-end sequencing, reads mapped in opposite strands (light red, light blue) are
shifted 74-bp downstream to align the nucleosome dyad (dark red, dark blue). Despite this approach is suitable for mono-nucleosome fragment
alignment (left), shorter (middle) or longer fragments (right) are misaligned, causing a fuzzy peak coverage. (B) In paired-end sequencing, the
detection of mono-nucleosome dyads can be obtained by trimming the reads (left). However, in the case of long di-nucleosome fragments, the
trimmed reads are aligned to the linker space between mono-nucleosomes, which in turn increase the fuzziness. (C) Energetic barriers due to intrinsic
DNA deformability potential or presence of competing proteins (represented as purple line) act as a phasing element in adjacent nucleosomes (top)
leading to well-localized nucleosome signals. In the absence of such barriers, the periodicity of this potential cannot act in nucleosome phasing
(bottom) leading to diffuse signals originated by spontaneous nucleosome sliding. (D) Individual nucleosome arrays of asynchronous cells in different
stages of the cell-cycle capture intrinsic chromatin dynamics (left) which is visualized as fuzzy signals. This effect is minimized in synchronized cell
populations (right).
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as intrinsically mobile entities navigating along the DNA
fiber.
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