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Visual-based social group detection aims to cluster pedestrians in crowd scenes according to social interactions 
and spatio-temporal position relations by using surveillance video data. It is a basic technique for crowd 
behaviour analysis and group-based activity understanding. According to the theory of proxemics study, the 
interpersonal relationship between individuals determines the scope of their self-space, while the spatial distance 
can reflect the closeness degree of their interpersonal relationship. In this paper, we proposed a new unsupervised 
approach to address the issues of interaction recognition and social group detection in public spaces, which 
remits the need to intensely label time-consuming training data. First, based on pedestrians’ spatio-temporal 
trajectories, the interpersonal distances among individuals were measured from static and dynamic perspectives. 
Combined with proxemics’ theory, a social interaction recognition scheme was designed to judge whether there 
is a social interaction between pedestrians. On this basis, the pedestrians are clustered to identify if they form 
a social group. Extensive experiments on our pedestrian dataset “SCU-VSD-Social” annotated with multi-group 
labels demonstrated that the proposed method has outstanding performance in both accuracy and complexity.

1. Introduction

In recent years, with the high development of information technology and artificial intelligence, the coverage and mining granularity of new 
data environment in time and space have been greatly improved, which creates conditions for the accurate perception of crowd activity information. 
At the same time, with the development of digitization and smart city construction [1], the video data obtained from public space is increasing 
explosively. Compared with other non-visual data (e.g., Wifi, GPS etc), video data contains rich spatio-temporal information about people, and is 
a powerful supplement to non-visual data. In this context, combined with video data and artificial intelligence technology, around the concept of 
“people-centred” [2], it is of great significance to deeply analyse and understand the activity information of people in urban public space, so as to 
build and develop a livable city that reflects the wishes of citizens and accelerate the current urbanization process.

In the study of public life, understanding the dynamic characteristics of the crowd becomes a critical study field, with the applications in 
potentially identifying suspicious behaviour within large number of people or the identification of moving dense areas of traffic in surveillance 
systems. Recently, groups have been recognised as the basic elements which compose the crowd, leading to comprehending group attributes and 
activities becoming the fundamental of the crowd analysis. Consequently, in order to handle the issue of understanding the crowds, we need to 
decompose the entire crowd into smaller groups first, which is defined as group detection task.

As the critical fundamental of crowd analysis, group detection has become a hot research topic in the computer vision area, increasing attentions 
in recent years. This task aims to divide pedestrians into small parts according to their social relations or interactions for further applications of 
analysing human attributes or behaviours at a group level. Here, the term “group” refers specifically to “social group”. In other words, we do not 
consider groups as those people who coincidentally move together for a short time. On the contrary, we regard social groups as groups of people 
that know each other (have social relations) and move together, possibly while socially interacting according to [3]. In addition, we also assume 
social interaction as latent interaction (i.e., conversations) between individuals.
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Fig. 1. Schematic diagram of four kinds of spatial distance division [15, 16].

Recently, researches on groups have attracted extensive attentions. Some of them are based on proxemics entering in the pedestrian dynam-

ics/pedestrian psychology sphere [3, 4, 5, 6], and some focus on studying group characteristics [3, 4, 5]. In particular, it has been shown that 
pedestrian groups in themselves present variations in locomotion depending on various traits (e.g., age, gender, relation, height) and states (e.g., 
engagement in interaction) [3, 4, 5] especially the dyads (two people groups) or triads (three people groups). In addition, as an effective information, 
trajectory data is widely used in related field and we can obtain the trajectory directly from GPS or through tracking. Researches on person tracking 
have a long history with different input data: Pellegrini et al. introduced a Linear Trajectory Avoidance (LTA) model for walking people accounting 
for social interactions as well as scene knowledge with video data [7], whereas 3-D range sensors are exploited to person tracking in public spaces 
which are mounted above human height to have less occlusion between persons [8]. Once we gain trajectories of pedestrians, we can further analyse 
group related characteristics. For the methods not based on machine learning, trajectory data is applied to automatically discover moving clusters 
from a long history of recorded trajectories [9], consider the discovery of flock patterns among the moving objects [10], and identify family-group 
relying on mutual proximity and its time-consistency [11]. As for the methods based on machine learning, some studies focus on the relationship 
between group properties and social relations [12], while others localize pedestrians in small groups by modelling the relevant attributes of groups, 
such as interpersonal distance, motion direction and so on [13, 14].

Members of social groups prefer keeping a reasonably short distance between themselves, and they are characterised by a specific group “prox-

emics” (a term that refers to the manner in which individuals behave or interact with each other in terms of their personal space and interpersonal 
distances [15]). In proxemics theory, people have a certain space distance from each other for any kind of social communication, and the category 
and closeness degree of social relations can be inferred from spatial distance. According to the nature of social communication, it can generally 
be divided into: friendship communication, colleague communication, business communication and public communication. Generally speaking, the 
interpersonal relationship and situation of both side of people determine the scope of self space between each other. Based on this concept, Edward 
T. Hall divided four kinds of spatial distances [15, 16], all of which are commensurate with the relationship between the two sides, as shown in 
Fig. 1. However, the spatial distance of interpersonal contact is not fixed all the time, but depends on the specific situation, the relationship between 
the two sides and other factors. Understanding the self space and appropriate distance required for communication can help people choose the 
optimal distance to contact with others, while the relationship between the two sides can also be inferred through spatial distance so as to better 
carry out social communication.

Therefore, according to proxemics theory, the spatio-temporal relationship between individuals is a critical measurement basis for inferring social 
relation in the group clustering process. Based on the spatio-temporal trajectories of pedestrians, measuring the interpersonal distance properly can 
reflect the relationships between pedestrians, and finally provide theoretical and technical support for subsequent social group detection task.

So, in this paper, we propose a new unsupervised social group detection approach based on spatio-temporal interpersonal distance measurement 
[17] with no training parameters. The contributions of our work are summarised as follows:

1. A new social interaction and social group clustering scheme based on the spatio-temporal interpersonal distance measurement [17] was pro-

posed, which can identify the social interaction between pedestrian pairs, construct the social interaction matrix and graph in the whole scene, 
and finally carry out social group detection according to the constructed graph.

2. A new dataset named “SCU-VSD-Social” was proposed, which was further annotated in our pedestrian dataset “SCU-VSD” [17] with multi-group 
labels.

3. Except the conservative metrics (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝐹1-𝑆𝑐𝑜𝑟𝑒), two new evaluation metrics, namely Group Clustering Accuracy (𝐺𝐶-𝐴𝑐𝑐) 
and mean Group Clustering Intersection over Union (𝑚𝐺𝐶-𝐼𝑜𝑈 ) were proposed, which evaluated the performance of group clustering from the 
perspective of recognition rate and average intersection union ratio.

The rest of the paper is organised as follows. Section 2 introduces the related work of proxemics and group detection methods. Section 3

describes the detail contents of proposed approaches. The experimental results and discussion are analysed in Section 4. Finally, Section 5 presents 
the conclusion of this paper.
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2. Related work

In this section, basic theories of proxemics and group detection methods are briefly introduced.

2.1. Proxemics

Proxemics [15, 16] is a discipline that studies human use of space and the impact of population density on behaviour, communication and social 
interaction. It is closely related to interpersonal distance. In addition, the interpersonal relationships and the situation they are in both determine 
the mutual self-spatial range, and the spatial distance of interpersonal also reflect the intimacy degree of interpersonal relationship between both 
sides [18, 19, 20, 21, 22].

In recent years, the use of various big data and newly developing technology has made significant progress in the research of interpersonal 
distance and proxemics [23, 24, 25, 26]. For example, based on interaction geometry, Groh et al. [23] used infrared tracking technology to make 
geometric representation and quantitative measurement of social interaction in a small space-time scale, and then identified whether there is a 
social situation between people. Cristani et al. [24] took advantage of visual information of human position and head orientation to detect social 
interaction in crowed scene. They also analysed social distance by computer vision technology, so as to infer social relationships [25]. Experiments 
showed that social distance and physical distance often match each other. The closer the relationships between people, the nearer it will be. Kroczek 
et al. [26] explored the impact of interpersonal distance and social anxiety on individual subjective experience, physiology and behaviour in real-

time social interaction of virtual reality (VR). These existed methods have made contributions in inferring social relationships or interactions by 
considering the knowledge of proxemics, interpersonal distance and other useful information. Different from these approaches, this paper utilises a 
novel method to measure interpersonal distance by applying both Euclidean distance and Fréchet distance of trajectories between people with both 
static and dynamic perspectives [17]. At the same time, combined with relevant theories of proxemics, this paper further infers the social relations 
or interactions between pedestrians and clusters social groups based on the method of interpersonal distance measurement [17].

2.2. Group detection methods

Group detection aims to cluster pedestrians into small parts for further applications. According to different purposes of group detection, the 
existing work can be divided into two categories as follows:

One category clusters pedestrians based on different motion patterns of crowds [27, 28, 29, 30, 31, 32], with wide applications in medium and 
high-density crowd scenes, such as crowd flow monitoring and crowd behaviour analysis. For example, Shao et al. [27] adopted a robust group 
detection algorithm and a rich set of group-property visual descriptors through learning the collective transition prior; they then utilised visual 
descriptors to quantify group-level properties for crowd understanding [28]. Chen et al. [29] proposed an anchor-based manifold ranking (AMR) 
method to classify individuals into local clusters according to topological relationship to the anchors, and exploited a coherent merging strategy 
to recognise global consistency in crowed scenes. Wang et al. [30] designed a multi-view clustering method for group detection by combining the 
orientation and context similarities of feature points, whereas Han et al. [31] developed a crowd activity discovery algorithm to explore latent 
action patterns among crowd activities and clustering them. Considering that scene context can promote clustering, Zhang et al. [32] incorporated 
scene information to present a scene perception-guided clustering strategy, and they fully utilised various attributes of the pedestrians to make the 
clustering process more reasonable.

Another category focuses on clustering people to form small or social groups through capturing social interactions among individuals [33, 
34, 35] with applications in low/medium density scenes, which is the premise study of group-based activity understanding and the proposed 
method belongs to this category. In such studies, they often adopted pairwise proximity [33], velocity information [33], trajectory data [34, 35] 
or interaction characteristics [35] to measure inter-group closeness for group detection. As for deep learning-based approaches [36, 37, 38, 39], 
they utilised various deep network frameworks to process extracted features so as to handle group detection task, such as GAN based method [36], 
DNN based method [37], GCN based method [38] and graph attention networks (GAT) based method [39]. Specifically, Fernando et al. [36] used 
generative adversarial networks (GAN) [40] to extract the relevant attributes describing the pedestrians’ social identities to perform unsupervised 
social grouping detection. Akbari et al. [37] applied deep neural networks (DNN) to integrate various features, such as Euclidean distance, proximity 
distance, motion causality and trajectory shape, between pedestrian pairs to detect social groups. Sun et al. [38] presented a group-based social 
interaction model to explore the relationship among persons by constructing a Recursive Social Behavior Graph (RSBG). Ehsanpour et al. [39] 
utilised graph attention networks (GAT) [41] to capture potential interaction relationships among individuals to cluster social groups and recognise 
multi-group activities.

Most of the existing approaches need to spend a lot of time on data labelling and network training. In addition, they only take the Euclidean 
distance into consideration in a static view. Hence, we proposed a new unsupervised social group detection approach based on spatio-temporal 
interpersonal distance measurement [17] with no training parameters. Besides, we collected a new dataset named “SCU-VSD-Social” to better 
illustrate the performance of our social group detection method.

3. The proposed approaches

We propose an unsupervised social group detection approach based on spatio-temporal interpersonal distance measurement. Firstly, based on our 
previous work [17], we adopt spatio-temporal interpersonal distance measurement approach to measure interpersonal distances between pedestrians 
according to the trajectories of them which uses Euclidean distance and Fréchet distance [42]. Then, the social interaction recognition scheme is 
presented to identify whether there is a social interaction between pedestrians according to the distance between them, so as to obtain social 
interaction matrix. In addition, taking pedestrians as nodes and social interaction matrix as an adjacent matrix, a social interaction graph can be 
drawn, so the final results of social group detection can be derived. The whole process is shown in Fig. 2, and we will introduce the details in the 
following paragraphs.
3
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Fig. 2. The process of clustering and social group detection.

Fig. 3. Fréchet distance diagram (the dotted line represents the distance between spatial positions P and Q at the same time, and the longest dotted line is the 
Fréchet distance).

3.1. Trajectory transformation and distance measurement

The foundation of social group detection is to speculate the social relation and interaction between people. According to proxemics theory, the 
interaction between people is closely related to interpersonal distance. Therefore, we need to measure interpersonal distance properly.

Based on our own previous work [17], we adopt spatio-temporal interpersonal distance measurement approach to measure interpersonal dis-

tances between trajectory pairs, which utilise Euclidean distance and Fréchet distance [42] to measure distances in both static and dynamic 
perspectives. In this case, we only compute distances between all pedestrians appearing in the same frame one by one. If one of them is out of 
the sight, we do not measure the distances between them anymore. In other words, when we see pedestrian 𝑃 in a certain frame but pedestrian 𝑄
does not appear in this frame, or pedestrian 𝑃 has left a frame but pedestrian 𝑄 still stays in this frame, we will not calculate the distance between 
them.

The Euclidean distance is used to measure the real distance between two points in m-dimensional space, while the Fréchet distance is the 
maximum value of the two spatio-temporal trajectory curves. And the Fréchet distance diagram is shown in Fig. 3. In this paper, we calculate the 
discrete Fréchet distance instead of the continuous one, which is an approximation of continuous Fréchet distance.

Because the surveillance video is taken at any angle, we first calibrate them by performing the perspective transformation to map the original 
video into the bird’s eye view [17]. After calibration, the two trajectory curves 𝑃 and 𝑄 are expressed discretely as 𝑝 and 𝑞 sampling points in 
the bird’s eye view, also written as 𝜎 (𝑃 ) = 𝑃

(
𝑝1,⋯ , 𝑝𝑝

)
and 𝜎 (𝑄) = 𝑄 

(
𝑞1,⋯ , 𝑞𝑞

)
respectively. 𝜎 (𝑃 ) = 𝑃

(
𝑝1,⋯ , 𝑝𝑝

)
represents a series of trajectory 

𝑃 ’s discrete coordinates like 
(
𝑥1, 𝑦1

)
, 
(
𝑥2, 𝑦2

)
, … , 

(
𝑥𝑝, 𝑦𝑝

)
, while 𝜎 (𝑄) = 𝑄 

(
𝑞1,⋯ , 𝑞𝑞

)
represents a series of trajectory 𝑄’s discrete coordinates like (

𝑥′
1, 𝑦

′
1
)
, 
(
𝑥′
2, 𝑦

′
2
)
, … , 

(
𝑥′

𝑞
, 𝑦′

𝑞

)
. And the coupling 𝐿 between 𝑃 and 𝑄 is composed of a series of sampling point pairs from 𝜎(𝑃 ) and 𝜎(𝑄), presented 

as Eq. (1):

𝐿 =
(
𝑝𝑎1

, 𝑞𝑐1

)
,

(
𝑝𝑎2

, 𝑞𝑐2

)
,… ,

(
𝑝𝑎𝑚

, 𝑞𝑐𝑚

)
(1)

where 𝑎1 = 1 and 𝑐1 = 1, 𝑎𝑚 = 𝑝 and 𝑐𝑚 = 𝑞, and for all 𝑖 = 1, ⋯ , 𝑞, we have 𝑎𝑖+1 = 𝑎𝑖 or 𝑎𝑖+1 = 𝑎𝑖 + 1, 𝑐𝑖+1 = 𝑐𝑖 or 𝑐𝑖+1 = 𝑐𝑖 + 1. However, in such cases, 
each sampling points are derived at the same moment (in the same frame) in spatio-temporal coordinate system, so the number of these points are 
equal, namely 𝑝 = 𝑞, so we do not use the equations (𝑎𝑖+1 = 𝑎𝑖 or 𝑎𝑖+1 = 𝑎𝑖 + 1, 𝑐𝑖+1 = 𝑐𝑖 or 𝑐𝑖+1 = 𝑐𝑖 + 1) as an approximation in this case.

Then, we take the maximum value of sampling points in 𝐿 as the discrete Fréchet distance, presented as Eq. (2):

𝛿𝑑𝐹 (𝑃 ,𝑄) = max
𝑖=1,…,𝑚

𝑑

(
𝑝𝑎𝑖

, 𝑞𝑐𝑖

)
(2)

where we utilise the Euclidean distance as the distance metric function 𝑑(⋅). Because the Fréchet distance is the maximum value in a long time 
between pedestrian pairs, so it can better measure the spatio-temporal distance between pedestrians to reflect the similarity of their trajectories, 
which is of importance to determine whether there are social interactions between them.

By multiplying the distance with the scaling factor 𝑠, the social distance in the real world can be estimated. On the one hand, the Euclidean 
distance 𝑑

(
𝑝𝑎 , 𝑞𝑐

)
is used to measure the distance between each sampling point pair of trajectories from a local perspective, presented as Eq. (3).
𝑖 𝑖
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Table 1. The rela-

tions in 𝑏1 , 𝑏2 and 𝑏3 .

𝑏1

𝑏3 𝑏2
0 1

0 0 1

1 1 1

𝐷𝑠 = 𝑠 ⋅ 𝑑
(
𝑝𝑎𝑖

, 𝑞𝑐𝑖

)
(3)

On the other hand, from a holistic view, the discrete Fréchet distance 𝛿𝑑𝐹 (𝑃 ,𝑄) is exploited to measure the distance between trajectory pairs, 
presented as Eq. (4)

𝐷𝑡 = 𝑠 ⋅ 𝛿𝑑𝐹 (𝑃 ,𝑄) (4)

3.2. Social interaction recognition

According to the theory of proxemics, the interpersonal distance can reflect the closeness of social relations. Usually, there are some situations 
that indicate there is an interaction between people. To better illustrate the idea of our proposed method, we take an example as follows: if two 
pedestrians have the same or highly similar trajectories, we can conclude that there is a social interaction relationship between them (we choose 
𝑏1 to represent this situation below, and here 𝑏1 = 1); if two pedestrians have very close distance most of the time, even though they might be far 
from each other in a specific moment for some reasons (e.g., one of them wants to get the purse on the ground, and catches up with the other one 
immediately), they can also be considered as interactive pairs (we opt 𝑏2 to show this situation in the following paragraphs, and here 𝑏2 = 1). As 
shown in Fig. 2, person 1 and 2 are interactive pairs so as to form Group 1, because they are highly close most of the time although they are a little 
far from each other during the walking process; pedestrians in Group 2 or Group 3 have very similar trajectories and the spatial distance is very 
close, so they belong to the same group respectively. In addition, the distance between person 3 and any other person is quite large, so person 3 is 
isolated from others.

On the basis of the spatio-temporal interpersonal distance measurement method mentioned in Section 3.1, a social interaction recognition scheme 
is designed to identify whether there is a social interaction relationship between pedestrian pairs, and then the pedestrians are clustered according 
to the recognition results to address social group detection task. The proposed social interaction recognition scheme includes the following two 
judgement conditions. As long as any one of them is true, it is considered that there is a social interaction relationship between the pedestrian pairs:

(1) Using Fréchet distance to measure pedestrians’ spatio-temporal trajectories is essentially a measurement of the similarity of the trajectories. 
For a pair of pedestrians, the sampling point pairs of their trajectories can be presented as a set 

{(
𝑝𝑖, 𝑞𝑖

)
∣ 𝑖 = 1,2,⋯ ,𝑁

}
, 𝑁 is the total number of 

the elements in this set. Setting an interaction distance threshold 𝜏𝑖, if the discrete Fréchet distance of the trajectory pair is not above the 𝜏𝑖, the 
distances between all sample pairs of the two trajectories during the entire measurement process is not greater than the threshold. That is to say this 
trajectory pair is highly similar, and the spatial distance is always close. According to this scenario, it can be determined that there exists a social 
interaction between this pedestrian pair. The judgement condition can be formulated as Eq. (5)

𝑏1 = 𝟏
[
𝑠 ⋅ 𝛿𝑑𝐹 (𝑃 ,𝑄) ≤ 𝜏𝑖 and 𝑁 ≥ 𝜏1

]
(5)

where 𝑃 and 𝑄 are corresponding projected trajectories in the bird’s eye view, 𝛿𝑑𝐹 (⋅) is the discrete Fréchet distance, 𝑠 is the scaling factor, 𝜏𝑖 is the 
interaction distance threshold. Setting a quantity threshold 𝜏1, 𝑁 ≥ 𝜏1 is used to prevent the total number of sampling point pairs of two trajectories 
from being too less. 𝟏[⋅] denotes the indicator function (if the condition in [⋅] is true, the value of 𝟏[⋅] is 1, otherwise it is 0), the binary variable 𝑏1
indicates whether the pedestrian pair has a social interaction or not (1 means yes, and 0 represents no). But for this judgement condition, there is 
a limitation. If a pair of pedestrians have a social interaction, the spatial distance between them is very close during the most of the measurement 
time, and the distance is relatively far (greater than the threshold) only at a few moments. In this scenario, if using the discrete Fréchet distance 
between these two trajectories as the evidence to recognise the interaction, the misjudgement will occur. Also, this condition is vulnerable and 
sensitive to noise. Therefore, another judgement condition is introduced to deal with this issue.

(2) The distances between the trajectory sampling pairs are measured one by one in the entire period, and the number of the pairs with distance 
no greater than 𝜏𝑖 can be written as Eq. (6)

𝑛 =
𝑁∑
𝑖=1

𝟏
[
𝑠 ⋅ 𝑑

(
𝑝𝑖, 𝑞𝑖

)
≤ 𝜏𝑖

]
(6)

where 
(
𝑝𝑖, 𝑞𝑖

)
is the trajectory sampling pairs in the bird’s eye view, 𝑑(⋅) is the Euclidean distance, 𝟏[⋅] is the indicator function. Setting a ratio 

threshold 𝜏𝑝 and a quantity threshold 𝜏2, if the ratio of 𝑛 and 𝑁 , namely 𝑛∕𝑁 , is greater than or equal to 𝜏𝑝, and 𝑛 is greater than or equal to 𝜏2, it 
is deemed that there is a social interaction between the two pedestrians, presented as Eq. (7)

𝑏2 = 𝟏
[

𝑛

𝑁
≥ 𝜏𝑝 and 𝑛 ≥ 𝜏2

]
(7)

where 𝑏2 is a binary variable which denotes if the pedestrian pair has a social interaction (1 means yes, and 0 represents no). 𝑛 ≥ 𝜏2 avoids the 
situation that the number 𝑛 is too less. It indicates that in the entire measurement process, as long as the spatial distance between two pedestrians 
is relatively close most of the time (not less than the 𝜏𝑝), the existence of social interaction between the two persons can also be determined. This 
condition is a favourable supplement to the above condition.

Combining the above two criteria 𝑏1 and 𝑏2, the comprehensive judgement condition to recognise whether there exists a social interaction 
between two pedestrians, with logical expression as Eq. (8)

𝑏3 = 𝑏1 + 𝑏2 (8)
5
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Algorithm 1 The computation process of 𝑃 , 𝑅 and 𝐹1-𝑆𝑐𝑜𝑟𝑒.

Require: input x and y as disjoint-set data structures

1: 𝜑(𝑥) are the unique roots of connected components 𝑥
2: Γ(𝑥) is the size of the connected component with root 𝑥
3: for 𝑇 ∈ 𝑥∕𝑦 do

4: if Γ(FIND(𝑥∕𝑦(𝑇 ))) = 1 then

5: UNION(𝑥∕𝑦, 𝑥∕𝑦(𝑇 ))
6: else

7: UNION(𝑥∕𝑦, 0)
8: for 𝑞 ∈ 𝜑(𝑥∕𝑦) do

9: 𝑛𝑥∕𝑦+ = Γ(𝑞) − ||||𝜑
(
∪FIND(𝑥∕𝑦(𝑇 ))=𝑞

𝑦∕𝑥(𝑇 )
)||||

10: 𝑠𝑥∕𝑦+ = Γ(𝑞) − 1

11: 𝑅𝑥∕𝑦 = 𝑛𝑥∕𝑦∕𝑠𝑥∕𝑦

12: 𝐹1 −𝑆𝑐𝑜𝑟𝑒 = 2𝑅𝑥𝑅𝑦∕(𝑅𝑥 +𝑅𝑦)

where “+” denotes logical OR, as long as any of 𝑏1 and 𝑏2 is equal to 1, the binary variable 𝑏3 is 1, which means the results of the social interaction 
recognition between the pedestrian pairs is yes. Only when the values of 𝑏1 and 𝑏2 both are 0, 𝑏3 is 0, indicating the recognition result is no. As 
shown in Table 1, with 𝑏1 in rows and 𝑏2 in columns, we present the relations of the input variable 𝑏1 and 𝑏2, and the output variable 𝑏3.

3.3. Clustering for social group detection

Based on the spatio-temporal interpersonal distance measurement method, exploiting the proposed social interaction recognition scheme, the 
value of 𝑏3 between each pedestrian pair can be derived. A social interaction matrix, referred as I, can then be obtained where the elements are the 
corresponding 𝑏3 (0 or 1) between pedestrian 𝑖 and 𝑗. Taking pedestrians as nodes and matrix I as an adjacent matrix, a social interaction graph G
can be drawn, with edges connecting node pairs whose 𝑏3 is 1.

According to graph G, the pedestrians are clustered to form different social groups. Individuals in one social group have social interactions 
(𝑏3 = 1) with one or more people in the same group, whereas the value of 𝑏3 between any two individuals in different social groups is 0. Thus, 
social groups with at least 2 members in the video sequence can be detected. If there is no social interaction between one people and every other 
pedestrian in the video, this person does not belong to any social group. The process of clustering and social group detection is shown in Fig. 2.

3.4. Social group detection analysis scheme

In this paper, we adopt traditional metrics to evaluate the performance of our proposed method. At the same time, we also designed new 
evaluation metrics so as to improve the analysis scheme. The evaluation metrics [34, 36] commonly used in the social group detection task are 
selected to evaluate the performance of the proposed method: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃 ), 𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) and 𝐹1-𝑆𝑐𝑜𝑟𝑒. Formally, consider two clustering solutions 𝑥, 
𝑦 and a representative of their spanning forests 𝑋 and 𝑌 . The components of 𝑋 and 𝑌 are identified by a set of trees 𝑋1, 𝑋2… and 𝑌1, 𝑌2…. We also 
consider the number of elements in 𝑋𝑗 is |||𝑋𝑗

|||, and need 𝑛 
(
𝑋𝑗

)
= |||𝑋𝑗

|||−1 links so as to create a spanning tree. In addition, we define Ω𝑌

(
𝑋𝑗

)
as the 

partition of a tree 𝑋𝑗 with respect to the forest 𝑌 , which is a set of subtrees obtained by considering the membership relations in 𝑋𝑗 found in 𝑌 . If 
𝑌 partitions 𝑋𝑗 in |||Ω𝑌

(
𝑋𝑗

)||| subtrees then 𝑛 
(
𝑋𝑗

)
= |||Ω𝑌

(
𝑋𝑗

)||| − 1 links are adequate to restore the original tree. Given that all trees 𝑋𝑗 the global 
recall of 𝑋 (the precision of 𝑌 ) is shown as Eq. (9)

P = R𝑋 = 1 −
∑

𝑗 𝑛
(
𝑋𝑗

)
∑

𝑗 𝑠
(
𝑋𝑗

) =

∑
𝑗

|||𝑋𝑗
|||− |||Ω𝑌

(
𝑋𝑗

)|||∑
𝑗

|||𝑋𝑗
|||− 1

(9)

The precision of 𝑋 (recall of 𝑌 ) can be calculated by exchanging 𝑋 and 𝑌 , presented in Eq. (10). Besides, the 𝐹1-𝑆𝑐𝑜𝑟𝑒 comprehensively 
considers the precision and recall, presented as Eq. (11):

R = R𝑌 = 1 −
∑

𝑗 𝑛
(
𝑌𝑗

)
∑

𝑗 𝑠
(
𝑌𝑗

) =

∑
𝑗

|||𝑌𝑗
|||− |||Ω𝑋

(
𝑌𝑗

)|||∑
𝑗

|||𝑌𝑗
|||− 1

(10)

F1-Score = 2𝑃 ⋅𝑅
𝑃 +𝑅

(11)

The calculation process of 𝑃 , 𝑅 and 𝐹1-𝑆𝑐𝑜𝑟𝑒 is as Algorithm 1. In Algorithm 1, we employ disjoint-set arrays as inputs. UNION and FIND are 
the standard functions defined over the disjoint-set arrays. UNION represents the operation to merge two clusters, while FIND operation is to find a 
specific element. In the pseudo-code we utilise the notation 𝑥∕𝑦 to denote that this algorithm first applied to 𝑥 and then on 𝑦 analogously.

In Fig. 4, we give a toy example of how to compute the value of 𝑃 , 𝑅 and 𝐹1-𝑆𝑐𝑜𝑟𝑒. The left column shows group clustering prediction results 
and the right one presents group ground truth labels. The circles stand for pedestrians and the number in the circle is the unique person ID belonging 
to different pedestrians. Besides, the line connected to different pedestrians indicates that they are in the same group. So, according to the top row in 
Fig. 4, we can obtain group clustering result sets 𝐶𝑅 = {{1, 2}, {3}, {4, 5}, {6}} and the ground truth group sets 𝐺𝑇 = {{1, 2}, {3, 4, 5}, {6}} respectively. 
Secondly, we can get disjoint-set arrays 𝑥 = [1, 1, 2, 3, 3, 4] and 𝑦 = [1, 1, 2, 2, 2, 3] from 𝐶𝑅 and 𝐺𝑇 which denote the index (i.e., the ID number of 
pedestrians) corresponding to the location of the same number belongs to the same group. And then, 𝑥 and 𝑦 will be calculated through line 3-7 in 
Algorithm 1 to add the person who is not belong to any groups to 𝑥 and 𝑦 written as 𝑥 = [1, 1, 2, 3, 3, 4, 0, 0, 2, 0, 0, 4] and 𝑦 = [1, 1, 2, 2, 2, 3, 0, 0, 0, 0, 0, 3]
respectively. Finally, 𝑃 , 𝑅 and 𝐹1-𝑆𝑐𝑜𝑟𝑒 can be obtained according to Eq. (12)-(14) and Algorithm 1, which is shown as follows:
6
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Fig. 4. A graphic example of calculating 𝑃 , 𝑅 and 𝐹1-𝑆𝑐𝑜𝑟𝑒 between group clustering results and group ground truth.

Fig. 5. The optimal matching process between group clustering results and group ground truth.

P = R𝑋 = 1 −
∑

𝑗 𝑛
(
𝑋𝑗

)
∑

𝑗 𝑠
(
𝑋𝑗

) =

∑
𝑗

|||𝑋𝑗
|||− |||Ω𝑌

(
𝑋𝑗

)|||∑
𝑗

|||𝑋𝑗
|||− 1

= (2 − 1) + (2 − 2) + (2 − 1) + (2 − 1)
(2 − 1) + (2 − 1) + (2 − 1) + (2 − 1)

= 3
4

(12)

R = R𝑌 = 1 −
∑

𝑗 𝑛
(
𝑌𝑗

)
∑

𝑗 𝑠
(
𝑌𝑗

) =

∑
𝑗

|||𝑌𝑗
|||−Ω𝑋

(
𝑌𝑗

)
∣

∑
𝑗

|||𝑌𝑗
|||− 1

= (2 − 1) + (3 − 2) + (2 − 1)
(2 − 1) + (2 − 1) + (2 − 1) + (2 − 1)

= 3
4

(13)

F1 − Score = 2P ⋅R
P+R

= 3
4

(14)

In order to evaluate the experimental results of group detection from different views, we also designed new metrics from the perspective of group 
recognition rate and average intersection union ratio, including Group Clustering Accuracy (𝐺𝐶-𝐴𝑐𝑐) and mean Group Clustering Intersection over 
Union (𝑚𝐺𝐶-𝐼𝑜𝑈 ). These two evaluation metrics need to be based on the optimal matching between the prediction results and the ground truth of 
group detection. Therefore, the optimal matching process between group clustering results and group ground truth are introduced in the following 
paragraphs, and the whole process is shown in Fig. 5.

The left column is a set of group ground truth labels in green box, and a set of numbers in red box beside group ground truth labels are group 
clustering results. The goal of the optimal matching process is to find the best match between the two sets of labels, which refers to allocation 
problem.

Allocation problem is a basic problem in the field of combinatorial optimization. It aims to determine the optimal allocation scheme in order 
to minimize the total cost or maximize the total efficiency. For example, assign 𝑛 tasks to 𝑛 objects, each task can only be assigned to one object, 
and each object can only be assigned to one task. There is a cost in the allocation of each task and we want to minimize the total cost. Therefore, 
we construct a 𝑛 × 𝑛 cost matrix 𝑪 , the element 𝑐𝑖𝑗 (𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑛) is the cost of assigning the 𝑖-th task to the 𝑗-th object. The problem is 
transformed into the need to select 𝑛 elements in different rows and columns from matrix 𝑪 to minimize the sum of elements, which needs to use 
Hungarian algorithm [43].

Therefore, in order to find the optimal match between group ground truth and group clustering results, firstly, the IoU matrix 𝐌IoU of them is 
constructed, and the order of 𝐌IoU is the larger value in the category of clustering results and ground truth. According to Eq. (15), IoU is the ratio 
of the intersection and union number of two sets. The IoU ∈ℝ between each clustering results sets CR ∈ℝ and real group sets GT ∈ℝ is calculated 
one by one as the element of 𝐌IoU. In addition, the elements in row 𝑖 and column 𝑗 indicate the IoU value of the 𝑖-th clustering results and the 𝑗-th 
ground truth. If the number of categories is not equal, we need to supplement 0 on the row or column according to the order to make 𝐌IoU a square 
matrix. For example, the clustering result sets is 𝐶𝑅 = {{1, 2}, {3}, {4, 5}, {6}} and the real group sets is 𝐺𝑇 = {{1, 2}, {3, 4, 5}, {6}}. The intersection 
set of the 3-rd clustering result sets 𝐶𝑅3 = {{4, 5}} and the 2-nd real group sets 𝐺𝑇2 = {{3, 4, 5}} is 𝐶𝑅 ∩ 𝐺𝑇 = {{3, 4}} and the union set of them is 
𝐶𝑅 ∪𝐺𝑇 = {{3, 4, 5}}. Therefore, the value of IoU is 2∕3 and the value of the third row and second column of 𝐌IoU is 2∕3 in Fig. 5 according to Eq.

(15). Then, by subtracting each element of 𝐌IoU from the maximum value of the elements in 𝐌IoU one by one, the cost matrix 𝑪 of the same order 
can be obtained. According to the cost matrix 𝑪 , the optimal matching between group clustering results and group ground truth can be derived 
through the Hungarian algorithm [43]. If the number of the two categories is not equal, there will be redundant group matching failures.

IoU(𝐶𝑅,𝐺𝑇 ) =
𝐶𝑅 ∩𝐺𝑇

(15)

𝐶𝑅 ∪𝐺𝑇

7



J. Su, J. Huang, L. Qing et al. Heliyon 8 (2022) e11038
Table 2. The parameter settings of the ex-

periments.

Parameters Value

interaction distance threshold 𝜏𝑖 1.5

ratio threshold 𝜏𝑝 55%

quantity threshold 𝜏1 75

quantity threshold 𝜏2 125

Based on the optimal matching between group clustering results and group ground truth, two evaluation metrics are presented in the following 
paragraphs:

Group Clustering Accuracy (𝐺𝐶-𝐴𝑐𝑐): In order to evaluate the performance of clustering, the accuracy of clustering is evaluated with reference 
to the idea of unsupervised clustering accuracy (𝑈𝐶-𝐴𝑐𝑐) [44]. 𝑈𝐶-𝐴𝑐𝑐 shows that under the condition of optimal matching between the cluster 
prediction results and the ground truth, the ratio of the correct number of individuals to the total number of individuals is predicted, as shown in 
Eq. (16)

UC−Acc = max
𝑚

∑𝑁𝐼

𝑖=1 𝟏
[
𝑙𝑖 = 𝑚

(
𝑐𝑝𝑖

)]
𝑁𝐼

(16)

where, 𝑙𝑖 is the individual ground truth, 𝑐𝑝𝑖 is the clustering prediction result of the algorithm, and 𝑚 is all possible one-to-one mapping matching 
between the clustering prediction result and the ground truth. 𝟏[⋅] is the indicator function, and 𝑁𝐼 is the total number of individual samples. Based 
on the above ideas, the optimal match between the clustering prediction result and the ground truth (as shown in Fig. 5) should be found first. This 
process allows the number of clustering result categories to be more or less than the number of ground truth categories. On this basis, 𝐺𝐶-𝐴𝑐𝑐 is 
equal to the ratio of the total number of intersections between each pair of matching groups to the total number of individual targets, presented as 
Eq. (17).

GC−Acc = max
𝑚

∑𝑁𝑔

𝑖=1
∑𝑁𝑠𝑔

𝑘=1 𝟏
[
𝑙𝑘 = 𝑚

(
𝑐𝑝𝑘

)]
𝑖

𝑁𝐼

(17)

where 𝑁𝑔 is the max number of small groups after clustering, and 𝑁𝑠𝑔 is the number of people in each subgroup. For example, after the optimal 
matching process between group ground truth and group clustering results, we can calculate 𝐺𝐶-𝐴𝑐𝑐 = (2 + 2 + 1)∕6 = 5∕6 according to Eq. (17).

Mean Group Clustering Intersection over Union (𝑚𝐺𝐶-𝐼𝑜𝑈 ): The key evaluation basis to measure the clustering effect is the coincidence degree 
between the number of categories of clustering prediction results and the number of ground truth categories, and the coincidence degree of each 
pair of matching group members. 𝐺𝐶-𝐴𝑐𝑐 can reflect the latter, but it cannot directly reflect the coincidence of the number of categories. Therefore, 
𝑚𝐺𝐶-𝐼𝑜𝑈 is designed to evaluate the above coincidence degree by calculating the mean value of group cluster IoU. Based on the clustering prediction 
results and optimal matching of ground truth, 𝑚𝐺𝐶-𝐼𝑜𝑈 calculates the mean value of intersection and union ratio of each pair of matching groups, 
as presented in Eq. (18)

mGC− IoU =

∑𝑁𝑔

𝑗=1 IoU𝑗

𝑁𝑔

(18)

where, IoU𝑗 is the intersection and union ratio of the 𝑗-th pair of matching groups, and 𝑁𝑔 is the number of categories of clustering results. If 𝑁𝑔

is greater than the number of ground truth categories, the group that fails to match is equivalent to matching an empty set. For example, after the 
best match process, we can obtain the value of 𝑚𝐺𝐶-𝐼𝑜𝑈 = (1 + 2∕3 + 0 + 1)∕4 = 2∕3 according to Eq. (18).

4. Experiments and discussions

4.1. Comparative experiments under two trajectory acquisition methods

In order to evaluate the tolerance of the proposed method to trajectory errors, two sets of comparative experiments were conducted on the SCU-

VSD-social dataset (Please refer to appendix for datasets and labelling work). The first set of experiments exploits the detector + tracking algorithms 
to obtain pedestrian trajectories, while the counterpart is based on the ground truth of pedestrians’ trajectories. The trajectories obtained from the 
former one may exist detection errors and the method based on the detector + tracking algorithms is closer to the real situations. On the basic of the 
spatio-temporal interpersonal distance measurement method, the proposed social grouping detection method is utilised to perform group clustering 
and detect social groups in the video sequences. The parameter settings of the experiments are listed in the Table 2. Although the parameters there 
have threshold, we also regard the proposed method as an unsupervised method because it does no need for data labelling and parameter training.

Due to the ID switch problem of the detector + tracking algorithms, some IDs that do not exist in the labels of social group detection may 
be generated. When performing testing, these redundant IDs need to be removed first. The performance results of the two sets of comparative 
experiments on the SCU-VSD-Social dataset are shown in Table 3.

According to Table 3, the histograms of the two sets of comparative experimental results are drawn in Fig. 6, to visually compare the performance 
of the proposed social group detection method under the two trajectory acquisition ways. As shown in Table 3 and Fig. 6, it can be seen that in 
Sequence 01, 03 and 05 of SCU-VSD-Social, the performance results based on ground truth are better than those based on the detector + tracking 
algorithms. In Sequence 02, 05 and 06, the three evaluation metrics (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝐹1-𝑆𝑐𝑜𝑟𝑒) based on the ground truth all reach 100%. In 
addition, 𝐺𝐶-𝐴𝑐𝑐 metric based on the ground truth reaches 100% in Sequence 05 and 06. However, although in most cases the performance based 
on ground truth labels is better than those based on detector + tracking method, the results based on detector + tracking method of sequence 04, 
07 and 08 indeed perform higher than those based on ground truth labels. The reason is that: for example, assuming that pedestrians whose ID is 1 
and 2 belong to the same group, due to the ID switch problem caused by tracking, the ID is changed from 1 to 3. Therefore, the result of clustering is 
that ID 1, 2, 3 is a group. However, when calculating the evaluation metrics, if the distance between the trajectory whose ID is 1 to 3 and trajectory 
2 is long (that is, it does not meet the clustering situation set in section 3.2), if there is no ID switch problem, 1 and 2 will not be clustered into one 
8
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Table 3. The performance results of the two sets of comparative experiments on the SCU-VSD-Social dataset when the frame rate is 25 fps. (①: YOLOv5 detector 
+ tracking method proposed in [17]; ②: The ground truth of pedestrians’ trajectories).

Video 
sequence

Trajectory 
acquisition

𝑃

(%)

𝑅

(%)

𝐹1-𝑆𝑐𝑜𝑟𝑒

(%)

𝐺𝐶-𝐴𝑐𝑐

(%)

𝑚𝐺𝐶-𝐼𝑜𝑈

(%)

Video 
sequence

Trajectory 
acquisition

𝑃

(%)

𝑅

(%)

𝐹1-𝑆𝑐𝑜𝑟𝑒

(%)

𝐺𝐶-𝐴𝑐𝑐

(%)

𝑚𝐺𝐶-𝐼𝑜𝑈

(%)

01
① 91.5 87.8 89.6 94.1 30.3

05
① 95.8 92.0 93.9 97.4 16.6

② 93.6 91.7 92.6 95.6 52.8 ② 100 100 100 100 60

02
① 95.5 95.5 95.5 96.8 21.3

06
① 100 100 100 100 28.6

② 100 100 100 93.5 45.9 ② 100 100 100 100 60

03
① 81.8 75.0 78.3 68.8 9.4

07
① 89.7 83.9 86.7 88.4 25.0

② 90.9 83.3 87.0 68.8 31.3 ② 82.8 80 81.4 83.7 38.7

04
① 84.6 81.5 83.0 86.1 17.3

08
① 88.9 85.7 87.3 92.3 33.1

② 80.8 75 77.78 86.1 42.3 ② 85.2 79.3 82.1 89.7 60.6

Fig. 6. The histograms of the two sets of comparative experimental results on SCU-VSD-Social. (a) reveals the performance on the five evaluation metrics based on 
the YOLOv5 detector + tracking method in [17], while (b) provides the performance on the same evaluation metrics based on the ground truth labels.

class; However, if we just delete the redundant track whose ID does not belong to the ground truth label (trajectory with ID 3), we can make ID 1 
and ID 2 come together, which leads to the improvement of accuracy.

From the perspective of average performance in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1-𝑆𝑐𝑜𝑟𝑒 and 𝑚𝐺𝐶-𝐼𝑜𝑈 , the performance results based on the ground truth 
(91.7%, 88.7%, 90.1% and 48.9%) exceed those based on detector + tracking algorithms respectively (91.0%, 87.7%, 89.3% and 22.7%). In 
𝐺𝐶-𝐴𝑐𝑐 metric, the results based on detector + tracking algorithms (90.5%) are slightly higher than those based on the ground truth (89.7%). This 
is because the pedestrian trajectory obtained by detector + tracking algorithms cannot completely avoid the trajectory fragment problem caused by 
ID switch. In the testing stage, the redundant ID is removed, which is equivalent to keeping the longest trajectory of the person for interpersonal 
distance measurement and social group detection. In addition, the ID confusion of pedestrians will also introduce errors. As for the perspective of 
the absolute value of the evaluation metrics, the reason why the average performance in 𝑚𝐺𝐶-𝐼𝑜𝑈 is pretty much lower than those in other metrics 
is that more social groups are detected, so the denominator is large, resulting in a lower final result.

However, in practical applications, the trajectories of pedestrians in the surveillance video are obtained by detection and tracking algorithms 
rather than by manual annotating. The four performance indicators in metrics (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1-𝑆𝑐𝑜𝑟𝑒 and 𝑚𝐺𝐶-𝐼𝑜𝑈 ) based on the detector 
+ tracking approaches are 0.7%, 1.0%, 0.8% and 26.2% lower than those based on the ground truth of trajectories. And the performance based on 
the detector + tracking approaches is 0.8% higher than those based on the ground truth of trajectories in 𝐺𝐶-𝐴𝑐𝑐 metrics. The reason for the great 
difference in the results of the experiment on 𝑚𝐺𝐶-𝐼𝑜𝑈 between the ground truth of trajectories and the detector + tracking algorithms is that the 
number of group clustering is closely related to the final performance. It also reflects the robustness ability and tolerance capacity of the proposed 
method for trajectory errors, which has good practical application value.

4.2. Parameter analysis

The proposed social group detection method involves several key threshold parameters, including interaction distance threshold 𝜏𝑖, ratio thresh-

old 𝜏𝑝 and quantity threshold 𝜏2. In order to verify the influence of the threshold parameters on the performance of the algorithm, based on the 
ground truth of trajectories, a set of experiments is conducted on SCU-VSD-Social to determine the optimal value settings of the threshold parame-

ters. Setting the value range of the 𝜏𝑖 from 1.3 to 1.7 with an interval of 0.1, 𝜏𝑝 is from 55% to 65% with an interval of 5%, and 𝜏2 is from 75 to 150 
with an interval of 25. Under different settings of the threshold parameters, on the 8 videos of the SCU-VSD-Social dataset, the average performance 
result of the proposed method is shown in Table 4.

It can be observed from Table 4(a) to Table 4(c) that when the threshold parameters 𝜏𝑖, 𝜏𝑝 and 𝜏2 are set to 1.5, 55% and 125, respectively, the 
proposed social group detection method has achieved the best average performance on the SCU-VSD-Social dataset, with evaluation results 91.7%, 
88.7%, 90.1%, 89.7% and 48.9% respectively. However, due to differences in scenes, angles, crowd density, calibration scaling factors and frame 
rate, when applying the proposed social group detection method on other datasets, it is necessary to properly adjust the settings of several threshold 
parameters.
9
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Table 4. Under different settings of the threshold parameters (𝜏𝑖 , 𝜏𝑝 , 𝜏2), the average performance results 
of the proposed method on the SCU-VSD-Social dataset.

(a) The range of 𝜏𝑖 from 1.3 to 1.6 with the interval of 0.1 (𝜏𝑝 and 𝜏2 is fixed to 55% and 125)

𝜏𝑖

evaluation metrics
𝑃 (%) 𝑅 (%) 𝐹1-𝑆𝑐𝑜𝑟𝑒 (%) 𝐺𝐶-𝐴𝑐𝑐 (%) 𝑚𝐺𝐶-𝐼𝑜𝑈 (%)

1.3 86.2 84.3 85.2 88.4 47.1

1.4 87.6 85.6 86.6 89.5 47.9

1.5 91.7 88.7 90.1 89.7 48.9

1.6 90.8 88.5 89.8 90.5 49.1

(b) The range of 𝜏𝑝 from 0.5 to 0.65 with the interval of 0.05 (𝜏𝑖 and 𝜏2 is fixed 1.5 and 125)

𝜏𝑝

evaluation metrics
𝑃 (%) 𝑅 (%) 𝐹1-𝑆𝑐𝑜𝑟𝑒 (%) 𝐺𝐶-𝐴𝑐𝑐 (%) 𝑚𝐺𝐶-𝐼𝑜𝑈 (%)

0.5 91.7 88.7 90.1 89.7 48.9

0.55 91.7 88.7 90.1 89.7 48.9

0.6 89.8 86.6 88.2 89.1 48.1

0.65 89.3 87.2 88.2 90.3 48.3

(c) The range of 𝜏2 from 75 to 150 with the interval of 25 (𝜏𝑖 and 𝜏𝑝 is fixed 1.5 and 55%)

𝜏2

evaluation metrics
𝑃 (%) 𝑅 (%) 𝐹1-𝑆𝑐𝑜𝑟𝑒 (%) 𝐺𝐶-𝐴𝑐𝑐 (%) 𝑚𝐺𝐶-𝐼𝑜𝑈 (%)

75 90.4 87.4 88.9 88.2 48.4

100 90.4 87.4 88.9 88.2 48.4

125 91.7 88.7 90.1 89.7 48.9

150 90.2 88.8 89.5 89.9 48.8

Table 5. The performance results of the two sets of comparative experiments on the SCU-VSD-Social 
dataset when the frame rate is 12 fps. (①: YOLOv5 detector + tracking method proposed in [17]; 
②: The ground truth of pedestrians’ trajectories. In “A/B”, A represents the results of removing even 
frames, and B represents the results of removing odd frames.)

Video 
sequence

Trajectory 
acquisition

𝑃 (%) 𝑅 (%) 𝐹1-𝑆𝑐𝑜𝑟𝑒 (%) 𝐺𝐶-𝐴𝑐𝑐 (%) 𝑚𝐺𝐶-𝐼𝑜𝑈 (%)

01
① 91.5/91.5 87.8/87.8 89.6/89.6 94.1/94.1 30.3/30.3

② 93.6/93.6 91.7/91.7 92.6/92.6 95.6/95.6 52.8/52.8

02
① 95.5/95.5 95.5/95.5 95.5/95.5 96.8/96.8 21.3/21.3

② 100/100 100/100 100/100 93.5/93.5 45.9/45.9

03
① 81.8/81.8 75.0/75.0 78.3/78.3 68.8/68.8 9.4/9.4

② 90.9/90.9 83.3/83.3 87.0/87.0 68.8/68.8 32.3/31.3

04
① 84.6/84.6 81.5/81.5 83.0/83.0 86.1/86.1 17.3/17.3

② 80.8/80.8 75.0/75.0 77.78/77.78 86.1/86.1 42.3/42.3

05
① 100/95.8 100/92.0 100/93.9 100/97.4 17.2/16.6

② 100/100 100/100 100/100 100/100 60/60

06
① 100/100 100/100 100/100 100/100 28.6/28.6

② 100/100 100/100 100/100 100/100 60/60

07
① 89.7/89.7 83.9/83.9 86.7/86.7 88.4/88.4 25.0/25.0

② 82.8/82.8 80.0/80.0 81.4/81.4 83.7/83.7 38.7/38.7

08
① 88.9/88.9 85.7/85.7 87.3/87.3 92.3/92.3 33.1/33.1

② 85.2/85.2 79.3/79.3 82.1/82.1 89.7/89.7 60.6/60.6

Avg
① 91.2 88.2 89.7 90.7 22.7

② 91.7 88.7 90.1 89.7 49.0

4.3. Comparative experiments under different frame rate

In order to verify the effect of lowering the frame rate on the experimental results and inference time, we conduct the supplementary experiments 
when the frame rate is 12fps and 8fps respectively. The performance results of the two sets of comparative experiments on the SCU-VSD-Social dataset 
are shown in Table 5 and Table 6. In Table 5, before “/” indicates the experimental results of retaining odd frames and removing even frames, while 
after “/” indicates the results of retaining even frames and removing odd frames. In Table 6, we take “A/B/C” as an example. “A” represents results 
of retaining the first frame in every three frames and removing the other two frames, “B” represents results of retaining the middle frame in every 
three frames and removing the other two frames, and “C” represents results of retaining the last frame in every three frames and removing the other 
two frames. In addition, we calculate the average value of different frame extraction methods in each sequence, and then calculate the average value 
of all sequences to the final average result, presented in Table 5 and Table 6.

We also present the histograms of the two sets of comparative experimental average results and the table of the inference time under different 
frame rate (25fps, 12fps and 8fps) to compare the results more clearly. In this case, we set the quantity threshold 𝜏1 and 𝜏2 to half and one third of 
the original when frame rate is 12fps and 8fps. According to Fig. 7 and Table 7, we can observe that the inference time decreases (1.65 s, 0.89 s and 
0.62 s, respectively) by reducing frame rate. In the view of experiments’ performance, based on the YOLOv5 detector + tracking method, the average 
performance under 12fps is little higher than others on four evaluation metrics (𝑃 = 91.2%, 𝑅 = 88.2%, 𝐹1-𝑆𝑐𝑜𝑟𝑒 = 89.7% and 𝐺𝐶-𝐴𝑐𝑐 = 90.7%), and 
the best result appears in 𝑚𝐺𝐶-𝐼𝑜𝑈 metrics (23.3%) when the frame rate is 8fps. This is because the time when the distance between pedestrians 
in the same group is greater than the threshold may be exactly deleted when the frame rate decreases, so they can easily be judged as the same 
group, leading to a better performance. But if we decrease frame rate too much, we will lose some crucial information of trajectory, which will make 
the results even worse. As for the ground truth based trajectory, the experimental results with frame rates of 25fps and 12fps are equally high in 
𝑃 , 𝑅, 𝐹1-𝑆𝑐𝑜𝑟𝑒 and 𝐺𝐶-𝐴𝑐𝑐 (91.7%, 88.7%, 90.1% and 89.7%, respectively), but the performance in 𝑚𝐺𝐶-𝐼𝑜𝑈 metrics (50.0%) is greatest among 
other experiments when the frame rate is 8fps. So, we can choose a frame rate of 12fps to reduce time complexity and ensure the accuracy of group 
10



Table 6. The performance results of the two sets of comparative experiments on the SCU-VSD-Social dataset when the 
frame rate is 8 fps. (①: YOLOv5 detector + tracking method proposed in [17]; ②: The ground truth of pedestrians’ 
trajectories. In “A/B/C”, A represents the result of retaining the first frame in every three frames, B represents the result 
of retaining the middle frame in every three frames, and C represents the result of retaining the last frame in every three 
frames.)

Video 
sequence

Trajectory 
acquisition

𝑃 (%) 𝑅 (%) 𝐹1-𝑆𝑐𝑜𝑟𝑒 (%) 𝐺𝐶-𝐴𝑐𝑐 (%) 𝑚𝐺𝐶-𝐼𝑜𝑈 (%)

01
① 91.5/91.5/91.5 87.8/87.8/87.8 89.6/89.6/89.6 94.1/94.1/94.1 31.3/30.8/31.0

② 93.6/93.6/93.6 91.7/91.7/91.7 92.6/92.6/92.6 95.6/95.6/95.6 54.2/54.2/54.2

02
① 95.5/95.5/95.5 95.5/95.5/95.5 95.5/95.5/95.5 96.8/96.8/96.8 21.6/21.9/22.5

② 100/100/95.5 100/100/95 100/100/95.2 93.5/93.5/90.3 45.9/47.2/45.0

03
① 81.8/81.8/81.8 75.0/75.0/75.0 78.3/78.3/78.3 68.8/68.8/68.8 10.1/9.5/9.8

② 90.9/90.9/90.9 83.3/83.3/83.3 87.0/87.0/87.0 68.8/68.8/68.8 34.1/32.3/33.8

04
① 84.6/84.6/84.6 81.5/81.5/81.5 83.0/83.0/83.0 86.1/86.1/86.1 17.7/17.9/18.1

② 80.8/80.8/80.8 75.0/75.0/75.0 77.78/77.78/77.78 86.1/86.1/86.1 43.3/42.3/43.3

05
① 100/95.8/95.8 100/92.0/92.0 100/93.9/93.9 100/97.4/97.4 17.8/17.0/16.9

② 100/100/100 100/100/100 100/100/100 100/100/100 61.8/63.6/61.8

06
① 100/100/100 100/100/100 100/100/100 100/100/100 28.6/29.3/29.3

② 100/100/100 100/100/100 100/100/100 100/100/100 60.0/60.0/63.2

07
① 89.7/89.7/89.7 83.9/83.9/83.9 86.7/86.7/86.7 88.4/88.4/88.4 25.3/25.6/26.0

② 79.3/82.8/82.8 76.7/80.0/80.0 78.0/81.4/81.4 81.4/83.7/83.7 38.0/38.7/40.4

08
① 88.9/88.9/88.9 85.7/85.7/85.7 87.3/87.3/87.3 92.3/92.3/92.3 33.6/34.2/33.1

② 85.2/85.2/85.2 79.3/79.3/79.3 82.1/82.1/82.1 89.7/89.7/89.7 60.6/60.6/60.6

Avg
① 91.2 88.0 89.5 90.6 23.3

② 91.3 88.3 89.8 89.4 50.0

Fig. 7. The histograms of the two sets of comparative experimental average results on SCU-VSD-Social under different frame rates. (a) shows the results on the 
evaluation metrics under different frame rates based on the YOLOv5 detector + tracking method in [17], while (b) presents the results on the same evaluation 
metrics based on the ground truth labels.

Table 7. The inference time in different frame rates on the SCU-

VSD-Social dataset.

video sequence

inference time(s) frame rate(fps)
25 12 8

01 5.20 2.93 1.77

02 1.54 0.78 0.51

03 0.68 0.31 0.23

04 1.18 0.59 0.47

05 1.57 0.83 0.67

06 0.50 0.28 0.19

07 1.60 0.91 0.68

08 0.95 0.49 0.41

Average 1.65 0.89 0.62

detection. In conclusion, lowering the frame rate can indeed increase the speed of inference, but it may affect the performance of experiments to a 
certain degree. For example, when the frame rate is reduced too much (e.g., 8fps), although the reasoning time is reduced, the experimental results 
will be affected to some extent.
J. Su, J. Huang, L. Qing et al. Heliyon 8 (2022) e11038
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Fig. 8. Visualization of social group detection based on interpersonal distance on SCU-VSD dataset.
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Fig. 9. Some cases of failing to identify groups. (a) provides group detection errors due to incorrect detections (Group 3 in the left column and Group 1 in the right 
column), while (b) presents error cases due to interaction inference errors (Group 1 in the left column and Group 4 in the right column).

Table 8. Comparison with other social group detection approaches on the GVEII dataset.

method

evaluation metrics
𝑃 (%) 𝑅 (%) 𝐹1-𝑆𝑐𝑜𝑟𝑒 (%) 𝐺𝐶-𝐴𝑐𝑐 (%) 𝑚𝐺𝐶-𝐼𝑜𝑈 (%)

Solera et al. [34] 84.1 84.1 84.1 - -

Fernando et al. [36] 83.1 79.5 81.3 - -

Akbari et al. [37] 80.9 81.5 81.2 - -

The proposed method 88.4 84.8 86.6 87.1 87.8

4.4. Illustration of the experimental results

On the SCU-VSD-Social dataset, the experimental results of the social group detection method based on interpersonal distance are displayed in 
Fig. 8.

As shown from Fig. 8(a) to Fig. 8(h), the social groups in the 8 scenarios of the SCU-VSD-Social dataset are effectively detected and marked. 
Specifically, different social groups are marked with different colour bounding boxes, and are assigned their group ID numbers. The group bounding 
box contains pedestrians who have social interactions with each other, and when an individual does not have a social interaction with everyone else 
in the scene, it is not belong to any social group.

Fig. 9 provides some cases of group detection errors caused by incorrect detections or by interaction inference errors. There are group detection 
mistakes caused by detection errors in Fig. 9(a): Group 3 has been wrongly detected because of the mistakes of incorrect recognition in person’s 
reflection (Person ID 5) in the mirror of the left picture, while Group 1 has been detected by mistake due to the wrong identification of models in 
the hall as pedestrians on the right side. In addition, Fig. 9(b) shows the cases of interaction inference errors: the pedestrians with ID 55, 66, and 
72 have been clustered erroneously to Group 1 on account of the close distances between them in the left image. Besides, the pedestrian with ID 
26 is detected not to belong to Group 4 on the right side due to the far distance between them. However, we can observe the pedestrian with ID 
26 is obviously part of Group 4 owing to the social relation among them may be “family”. So, it is considerable to merge the social relations and 
interpersonal distances into group detection task to enhance the performance of this task.

4.5. Comparison with other social group detection approaches on GVEII dataset

In order to further verify the effectiveness of the proposed social group detection method based on interpersonal distance, it is applied to a public 
dataset GVEII [34] for social group detection, and the performance is compared with other existing mainstream methods.

The pedestrian trajectory information provided by this dataset are given in the form of the world coordinate system, so there is no need to 
calibrate the video during the experimental process. The GVEII dataset is shown in Fig. 10, which is a densely crowded scene. On the GVEII dataset, 
the experimental results and the comparison with other social group detection approaches is shown in Table 8.

As shown in Table 8, on the GVEII dataset, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1-𝑆𝑐𝑜𝑟𝑒, 𝐺𝐶-𝐴𝑐𝑐 and 𝑚𝐺𝐶-𝐼𝑜𝑈 of the proposed social group detection method 
based on interpersonal distance are 88.4%, 84.8%, 86.6%, 87.1%, and 87.8% respectively. Besides, the three conservative metrics (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙

and 𝐹1-𝑆𝑐𝑜𝑟𝑒) results are better than those of compared methods. Among the algorithms for comparison, the method proposed by Solera et al. 
[34] is a machine learning method based on correlation clustering, while the methods proposed by Fernando et al. [36] and Akbari et al. [37] 
are GAN-based and DNN-based deep learning frameworks respectively. These methods are all supervised learning methods, while our unsupervised 
method avoids the need for labelling training data that is very time-consuming.
13
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Fig. 10. The scene of the GVEII dataset.

5. Conclusion

In this paper, a new unsupervised approach for social group detection based on spatio-temporal interpersonal distance measurement was pro-

posed, which can identify the social interaction between pedestrian pairs, construct the social interaction matrix and graph in the whole scene, and 
finally carry out group detection according to the constructed graph. The proposed method needs no training parameters and does not require to 
label the training data. In practical application scenarios, the source of the video data is not manually labelled. Therefore, the proposed method 
can be effectively applied to real-life applications without considering issues such as data labelling, parameter training and model generalization. In 
addition, considering we only use YOLOv5 detector + tracking method [17] in this paper, we will utilise other detection and tracking algorithms 
to analyse the influence on the performance of group detection method on future works.
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Appendix A. Datasets and labelling work

In the pedestrian dataset SCU-VSD [17], we collected 8 video sequences with different scenes and perspective views. For each video sequence, 
the resolution of each sequence is 1920 × 1080, the duration is 60 seconds, and the original frame rate is 25 fps. Based on the original frames, we 
extract one frame every two frames (extract odd frames or even frames respectively) and make the data with frame rate of 12fps. In addition, one 
frame is extracted every three frames (extract the first frame, the middle one or the last frame respectively) to produce data with a frame rate of 
8fps.

A rectangular reference area is selected in shooting, and the real length and width of the reference area is measured for calibration. Fig. A.11

gives an example of SCU-VSD, marking the selected rectangular areas with red boxes. The information of the selected rectangular reference areas 
and the perspective transformation matrix for SCU-VSD is listed in the literature [17].

In order to evaluate the proposed social group detection method, the multi-group labelling work and the pedestrians’ trajectories annotation 
work were further carried out on SCU-VSD to obtain a new dataset named SCU-VSD-Social. For each video, we first obtain the trajectory and ID 
14



J. Su, J. Huang, L. Qing et al. Heliyon 8 (2022) e11038
Fig. A.11. Examples of the SCU-VSD dataset. (The red rectangular areas are a reference for video calibration).

Table A.9. The detailed information of social groups of SCU-VSD-Social dataset.

Dataset

Group information
Total number of pedestrians The number of social groups 2 people 3 people 4 people More than 5 people

SCU-VSD-01 68 21 19 1 0 1

SCU-VSD-02 31 9 7 1 1 0

SCU-VSD-03 16 4 3 1 0 0

SCU-VSD-04 36 10 6 2 1 1

SCU-VSD-05 39 15 12 3 0 0

SCU-VSD-06 18 4 3 0 1 0

SCU-VSD-07 43 14 9 3 2 0

SCU-VSD-08 39 12 9 2 0 1

SCU-VSD Total 290 89 68 13 5 3

information of the pedestrians based on the YOLOv5 detector [45] and the online tracking approach proposed in [17] (hereinafter referred to as the 
detector + tracking algorithm). Due to the limitation of algorithm performance, it is impossible to completely avoid errors such as ID switch. Then, 
by manual labelling, the IDs of pedestrians with social interaction relationships in the video are labelled as the same social group, and the IDs of 
individual pedestrians that do not belong to any social group are recorded simultaneously. During the labelling process, each pedestrian can only 
have one unique ID. If the ID switch occurs in one person, the ID of the longest trajectory will be used as the standard for labelling.

In order to obtain the ground truth of pedestrians’ trajectories, based on the detector + tracking algorithm, we manually correct all the ID 
switch and ID confusion situations of pedestrians’ trajectories, and delete the false trajectories information due to misdetection by the detector. For 
occasional miss detection, the method of drawing a bounding box is used to manually add the position and ID information of the pedestrian in the 
frame.

In the process of trajectory correction, it needs to correspond with the labels of social group detection one by one to ensure that there will be no 
redundant IDs. After completing the annotation work, the total number of people, the number of social groups, and the number of group members 
in each video sequence of the SCU-VSD-social dataset are counted, with detailed information shown in Table A.9.
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