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Abstract: Breast cancer (BC) is the second leading cause of death among women, and it has become a
global health issue due to the increasing number of cases. Different treatment options, including ra-
diotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis
drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and
disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this
scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges
of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess
low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy.
Natural products showed anticancer activities against BC through the inhibition of angiogenesis,
cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell
death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR,
MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted
synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging
therapeutic option for BC therapy. This review focused on the emerging roles of novel natural
products and derived bioactive compounds as therapeutic agents against BC. The present review
also discussed the mechanism of action through signaling pathways and the synergistic approach of
natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies
for exploring the overexpression of oncogenes in the case of BC and the current status of newly
discovered natural products in clinical investigations.

Keywords: breast cancer; natural products; transcription factors; signaling pathways; treatment;
therapeutic agents; combination therapy
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1. Introduction

Cancer is considered as one of the most common causes of death worldwide, but no
permanent treatment is available yet. Among cancers, breast cancer (BC) is the second
leading cause of mortality among women, and it has become a global health challenge.
It is estimated that about 7.8 million women were diagnosed in 2021 [1]. The global
burden of BC is increasing every year in both developing and developed countries [2].
Many exogenous factors increased the risk and progression of BC associated with DNA
damage, poor lifestyle, excessive alcohol consumption, nulliparity, diabetes, and estrogen
replacement therapy [3–5]. About 5–10% of BC incidence occurs due to gene mutation
events. BC progression is accelerated by elevated estrogens; leptin; and inflammatory
mediators that promote BC cell proliferation, migration, and invasion [6].

Current treatment options for BC include radiotherapy, surgery, chemotherapy [7,8],
anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines.
However, long-term use of anti-estrogen therapy can cause serious health issues. Aromatase
inhibitors increase the risk of cardiotoxicity. Anti-angiogenesis drugs also increased the
risk of ischemic death. Anthracyclines can cause serious damage to the heart and nail
tissues [9–11]. Moreover, these therapies are expensive and could cause toxic health effects.
On the other hand, hormone therapy is another option at an early stage. However, patients
are unable to show a response to hormone therapy. The excessive use of chemical drugs
leads to increasing drug resistance and has become a major issue in the modern era.
Nevertheless, chemical drugs are also causing serious health complications, such as liver
cirrhosis, nausea, vomiting, and an increased risk of kidney failure (as toxic metabolites
of drugs can cause serious cellular toxicities) [12]. The major challenges for BC treatment
include chemoresistance, and there is a lack of effective therapeutic options for metastatic
BC. Limited therapeutic options are currently available for triple-negative breast cancer
(TNBC), such as chemotherapy. Due to poor responses to chemotherapy and aggressive
behavior, there is an urgent need for a therapeutic strategy to meet the current challenges
of TNBC. In order to overcome increasing drug resistance or side effects, natural products
should be considered as viable therapeutic options with fewer side effects against TNBC.
Therefore, there is a need for urgent BC treatment with no side effects [13,14].

Attention towards the safe use of natural products for BC treatment has increased
over the past few years because they are cost-effective, low in toxicity, high in efficacy, and
overcome drug resistance. Natural compounds are a rich source of bioactive compounds
targeting tumor growth and cell invasion during BC progression [15,16]. The majority of
therapeutic agents (>60%) for BC treatment are direct sources of natural products. In vitro
and in vivo studies showed that consumption of an adequate amount of natural products
obtained from plants, fruits, and vegetables is also helpful in the recurrence and reduction
rate of BC, significantly increasing the survival rate among high-risk populations [17,18].
Various experimental studies showed that natural products showed inhibitory potentials
for BC prevention through inhibiting angiogenesis, cell migrations, proliferations, and
arresting the cell cycle by inducing apoptosis and cell death [19,20].

Recently, various natural products have been discovered and tested as anti-BC agents.
These natural products are viridiflorol, verminoside, novel phloroglucinol derivatives,
genistein, vulpinic acid, calcitrinone A, kaempferol, protopanaxadiol, thymoquinone,
arctigenin, glycyrrhizin, 25-OCH3-PPD, oridonin, apigenin, wogonin, fisetin, curcumin,
berberine, cimigenoside, and resveratrol [21–30]. These natural products are alkaloids,
antioxidants, phenolic compounds, flavonoids, and polyphenols in nature, and are obtained
from herbal products and vegetables. Consumption of these natural products in adequate
amounts could target tumor cells, thus significantly reducing BC. Natural products also
work synergistically to improve their efficacy against BC. Therefore, natural products could
be used as a complementary therapy to improve the existing chemotherapy and reduce its
side effects [31,32].

Natural products and derived bioactive compounds showed anticancer activities
against BC by interacting with estrogen receptors, protein kinases, and the downstream
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regulation of signaling pathways (such as Notch, NF-κB- PI3K/Akt/mTOR, MAPK/ERK,
and MDM2 pathways) by inducing apoptosis and cell death [23,33–36]. These pathways
are misregulated following the invasion of BC and can be controlled through the action of
natural products. Therefore, natural products have been used as an alternative therapeutic
option for BC therapy. This review focuses on the emerging roles of novel natural products
and derived bioactive compounds as therapeutic agents for BC therapy. The present review
also discusses the mechanism of action through signaling pathways and the synergistic
approach of natural compounds to improve efficacy. We have discussed the recent in vivo
and in vitro studies for exploring the overexpression of oncogenes in the case of BC and
the current status of newly discovered natural products in clinical investigations.

2. Pathogenesis of BC

BC is the most common cause of malignant tumors worldwide. BC can occur from
any mutational defect in breast ducts [37]. Generally, BC is categorized on the basis of
estrogen receptors into ER-positive and ER-negative breast cancers [38]. Based on specific
biomarkers, BC is further categorized into subtypes, such as luminal A, B, and basal-like.
TNBC is the basal-like and most severe form (see Figure 1) [39].
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Figure 1. The initiation and progression of BC by obese breast adipose-derived factors. Factors
released by obese breast adipose tissue may operate as mutagens, for example by activating intra-
cellular reactive oxygen species (ROS), which can lead to DNA damage in normal breast epithelial
cells and other inflammatory mediators. DNA damage may occur as a result of estrogen’s mitogenic
actions, which can lead to replication stress and stress. Unresolved DNA damage, which is associated
with mutagenesis and the onset of cancer, may result from increased DNA damage and possible
estrogen-induced defective DNA repair. An obese breast adipose tissue microenvironment promotes
BC proliferation, migration, and invasion by releasing inflammatory mediators, increasing leptin,
decreasing adiponectin, and increasing estrogen levels. This figure is reproduced from Bhardwaj
et al. [40] (Creative Commons Attribution License (CC BY 4.0)).

Many environmental and genetic factors increase the risk of BC. These factors include
increased damage to DNA, unusual hereditary mutations, exposure to estrogen, and a
lifestyle that can increase the development of BC. Patients with a family history already
in the malignant phase can also increase the chances of developing BC [11]. Most of
the patients inherit their susceptible genes viz p53, BRCA1, and BRCA2 [41]. Unusual
mutation in CDH1 and overexpression of p53 can also increase the risk of developing
BC [42]. RAS/MEK/ERK, PI3K/AKT, and RAS/MEK/ERK are the main pathways that
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help the normal cells to defend against cell death. Sometimes, mutational gene events in
these pathways increase the chances of BC, as normal cells are incapable of committing cell
suicide. For example, mutations in the PTEN gene activate the PI3K/AKT pathway, and
cancerous cells are unable to go in commit suicide (see Figure 2) [43].
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Figure 2. The representation of aberrant signaling pathways involved in BC. The green arrow rep-
resents the upregulation/activation, while the red arrow represents downregulation/inhibition.
This figure is reproduced from Varghese et al. [44] (Creative Commons Attribution License
(CC BY 4.0)).

During BC development, epithelial cells change from neoplastic cells into cancerous
cells. Adipose tissues mainly contribute to the initiation and progression of BC [40]. The
main factors include the inflammatory mediators and mutagens in the form of estrogens
that stimulate the production of ROS that ultimately causes severe damage to DNA in
epithelial cells of the breast. Increased damage to DNA induced by estrogen causes severe
defects and might lead to dysfunctional DNA repair. These unusual changes in DNA
increased the risk of mutagenesis of BC. BC progression is accelerated by excess estrogens
leptin and inflammatory mediators which promote BC cell proliferation, migration, and
invasion [45].

In BC, chronic inflammation is mediated by tumor-infiltrating lymphocytes, cancer-
associated fibroblasts, tumor cells, and tumor-associated macrophages. Inflammatory
actions are triggered by either necrotic cells, such as damage-associated molecular patterns
(DAMPS), or products released by microorganisms, such as pathogen-associated molecular
patterns (PAMPS), in the case of breast cancer. As a result, innate and adaptive immune
cells secreted the chemokines and cytokines that mediate inflammatory responses [46].
Angiogenesis is initiated by the activation of angiogenesis regulators IL-6, TNF-α, NF-κB,
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VEGF, Jun/Fos, and LPO. Different pathways are linked with chronic inflammation in
BC, such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2 signaling
pathways, as well as the regulation of EMT processes [47]. NF-κB is the most critical
mediator during chronic inflammation in breast cancer. In NF-κB pathway, activation
of different genes such as IER3L, COX2, CXCL12, and CCND3 is a critical inflammatory
mediator in patients with BC [48]. Various signaling pathways are activated during the
inflammation of BC, which then leads to the activation of transcription factors, such as the
signal transducer and activator of transcription signaling (STAT) and the activator protein
1 (AP-1) transcription factor [49].

Chronic inflammation in BC represented the seventh hallmark of cancer as compared
to other malignancies. Various cellular events are major consequences of tumor progression,
proliferation, and survival. Chronic inflammation indicates different events of BC, such as
initiation and progression stages. Identifying different events would be helpful as an impor-
tant strategy for controlling the BC among high-risk populations and prevention [50,51].

3. Downstream Regulation of Signaling Pathways by Natural Products

Natural products and derived bioactive compounds showed anticancer activities
against BC by interacting with estrogen receptors through inhibiting tumor growth and
protein kinases. This then helps to induce apoptosis and cell death using Bcl-2, caspases,
p53, and p21; arrest the M/G2 phase of the cell cycle; increase the levels of CDK and cyclins,
and regulate EMT processes. The downstream regulation of signaling pathways involves
Notch, NF-κB, PI3K/Akt/mTOR, and MAPK/ERK pathways [24,52,53].

3.1. PI3K/Akt/mTOR Signaling Pathway

The PI3K/AKT/mTOR pathway is one of the most important signaling pathways
activated in BC and participates in cellular activities, such as cell proliferation, invasion, and
cell migration [52]. This pathway also suppresses apoptosis and thus increases the growth
of abnormal breast tissues. It is also essential to overcome the increasing resistance to drugs
used against BC. Suppressing the activation of different genes involved in this pathway is
helpful in developing a novel strategy for BC prevention [53]. Activation of PI3K promotes
the activation and phosphorylation of AKT, which is the main constituent in tumorigenesis.
On the other hand, mTOR regulates cell proliferation and induces apoptosis in BC cells
under exposure to chemotherapy. One of the potential strategies used to prevent BC is
suppressing or downregulating the PI3K/Akt/mTOR pathway through natural products
(see Figure 3) [54,55].
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Figure 3. The schematic representation of the PI3K/Akt/mTOR signaling pathway in BC. VEGF:
vascular endothelial growth factor; NF-κB: nuclear factor kappa-B; EGF(R): epidermal growth factor
(receptor); mTOR: mammalian target of rapamycin; PDK1/2: 3-phosphoinositide-dependent kinase-
1/2; PI3K: phosphatidylinositol 3-kinase; MMP: matrix metalloprotein; PIP-3: phosphatidylinositol
(3,4,5)-trisphosphate; Bcl-2: B-cell lymphoma 2; mTORC-2: mTOR complex 2; VRGF: vascular
endothelial growth factor; Bad: Bcl-2 antagonist of cell death. This figure is reproduced from Dong
et al. [56] (Creative Commons Attribution License (CC BY 4.0)).

Mutations in the PIK3CA gene lead to an increase in the risk of BC. The mutated
PIK3CA gene activates the PIK3, initiating the tumor growth in breast tissues that com-
prised p85 and p110 [57,58]. PIK3 interacts with the VEGFR and promotes angiogenesis.
PIK3 converts the phosphatidylinositol 3,4-bisphosphate (PIP2) into 3,4,5-triphosphate
(PIP3), interacts with phosphoinositide-dependent kinase-1 (PDK1), and catalyzes the
phosphorylation of AKT at Thr 308. AKT also helps in the phosphorylation of mTOR and
MPP which activates NF-κB, thus promoting metastasis [59,60]. Hong et al. [61] conducted
in vitro and in vivo studies for investigating the role of ginsenoside Rk1 against BC cells
(MDA-MB-231). They demonstrated that ginsenoside Rk1 inhibited the PI3K/Akt pathway,
stimulated ROS production, increased the expression of Bax, reduced Bcl-2 levels, and
activated the release of cytochrome-c from the mitochondrial membrane, and activated
caspase 3/8. These molecular events induced apoptosis in MDA-MB-231. Another recent
in vivo study conducted by Liu et al. [62] showed that the administration of ginsenoside
Rg5 (20 mg/kg) for 30 days significantly inhibited the PI3K/Akt pathway during BC treat-
ment in a BALB-c nude mice model. Therefore, these pathways can be regulated through
the action of natural products.

Voacamine (VOA) is a bis-indole alkaloid that is isolated from V. africana and showed
anticancer activities against BC [63]. Zuo et al. [34] conducted an in vitro study to inves-
tigate the role of VOA in BC treatment by downregulating the PI3K/Akt/mTOR. VOA
showed its usefulness against MCF-7 and 4T1 cells with an IC50 value of 1.48 µM. VOA
also significantly inhibited the phosphorylated AKT and mTOR in BC cells and also de-
creased the expression of CDK2 and cyclin A/E. It also induced apoptosis and cell death in
MCF-7 and 4T1 cells by arresting the S phase of the cell cycle. VOA induced mitochondrial
apoptosis by inhibiting the activity of MMP and increased the level of cytochrome-c in
the cytoplasm. Cytochrome-c interacts with protease-activating factors that cleave the
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assembly of caspase 8/9 and stimulate their activation. It also induced apoptosis which
underlies the mitochondrial apoptotic pathway in BC cells [64].

Fisetin is a flavonoid-based natural product that showed anticancer potential against
BC. It is found in cucumber, apple, strawberry, and onion. It induced apoptosis in BC
cells, inhibiting the cell migrations and suppressing the tumor growth. It also inhibited
the expression of Bcl-2 in BC cell lines (MDA-MB-231) [22,65]. Sun et al. [66] conducted
in vitro and in vivo (BALB/c mice) studies to investigate fisetin’s role in BC. They found
that fisetin induced apoptosis in MCF-7, 4T1, and MDA-MB-231 at 40 and 80 µM. They also
found that fisetin acted as an inhibitor of PI3K/Akt/mTOR signaling and inhibited the
proliferation and dysregulation of this signaling pathway. The low availability of fisetin
in vivo studies limits their use in clinical investigations [67].

Wogonin (WG) is a natural product with a flavonoid nature and is found in the
root of S. baicalensis. WG is also used for BC therapy, as it showed inhibitory potentials
against BC cell lines (MCF-7 and MDA-MB-231) [68]. It also plays an important role in the
downregulation of PI3K/Akt/mTOR pathway. Several studies showed that WG is also
used in BC to overcome drug resistance [69]. Zhao et al. [70] conducted in vitro and in vivo
studies and showed that WG can have inhibitory effects on MCF-7/MDA-MB-231 and the
chicken chorioallantoic membrane (CAM) model, respectively, at 20 and 40 µM. They also
found that WG acted as an inhibitor of PI3K/Akt/mTOR signaling and showed inhibition
of the proliferation and downregulation of this signaling. 1,3,4,9-tetrahydropyran [3,4-b]-
indoles showed anticancer activity against MDA-MB-231 cells with IC50 (2.29 µM). It also
induced apoptosis and cell death of MDA-MB-231 cells by arresting the G0/G1 phase of
the cell cycle. These recently discovered natural products are involved in downregulating
the PI3K/Akt/mTOR pathway, thus acting as promising candidates for BC treatment.

3.2. NF-κB Signaling Pathway

Nuclear factor-kappa B (NF-κB) is one of the most important transcription factors that
are activated during inflammation, tumor growth, and proliferation of BC cells. Activation
of NF-κB in BC is crucial, and its regulation can be a therapeutic strategy for BC therapy [71].
Natural compounds showed interaction with NF-κB and blocked their activities through
dephosphorylation that consecutively deactivates p50. IκB can be activated through the IκB
kinase which promotes its phosphorylation and is helpful for the activation of p50, initiating
transcription by entering into the nucleus via nuclear pores. This activation stimulates
NF-κB for the genetic expression of sacral genes that cause inflammatory responses [71,72].

Natural compounds showed anticancer and antitumor activities by downregulating
and suppressing the NF-κB pathway. These compounds, genistein and quercetin, can
inhibit the phosphorylation of IκBα in MCF-7 HER2 cell lines, thus playing a significant
role in the regulation of IκBα to the p50 (see Figure 4) [73]. These compounds also inhibited
the NF-κB pathway by blocking the phosphorylation of p65 in the nucleus, thus inhibiting
the nuclear translocation [74]. These events also inhibited the functions of NF-κB-targeted
genes. Another study found that the application of genistein could control the activation of
NF-κB and showed maximum potential at an IC50 value of 20 µM against MDA-MB-231
cells [74,75].
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Apigenin (AP) is another natural product with a flavone nature isolated from A. cepa
and C. sinensis. It exhibited anticancer activity against BC cell lines (MDA-MB-231) [21]. It
influenced the NF-κB pathway by suppressing the COX-2 and downregulating the gene
expression of NF-κB. It also inhibited cell proliferation and migration by arresting the cell
cycle at the G2/M phase. It also suppresses the cyclin A, B, and CDK1 which can control
the G2/M phase. Bauer et al. [77] investigated the anticancer activity of AP against BC cells
(MDA-MB-231) and found that it influenced the NF-κB pathway by suppressing the VEGF
through deactivating progesterone receptors in BC cells.

Ginsenosides and their derivatives are anticancer-based natural products extracted
from Panax ginseng with great potential against BC. Kim et al. [78] conducted in vitro
and in vivo studies to investigate the role of ginsenoside Rg3 against BC cells (MDA-MB-
231). They found that ginsenoside Rg3 inhibited the NF-κB pathway by inhibiting the
phosphorylated AKT and ERK, and induced apoptosis and cell death in MDA-MB-231.

Glycyrrhizin (GLA) is a terpenoid-based natural product isolated from G. glabra. It
showed anticancer activity against MDA-MB-231 by inhibiting invasion and cell prolifera-
tion, and also inhibited the E-cadherin [25]. These novel natural products are involved in
downregulating the NF-κB pathway, thus acting as promising candidates for BC treatment.

3.3. MAPK/ERK Signaling Pathway

The MAPK/ERK signaling pathway is another molecular cascade used for the activa-
tion of several genes in BC. These genes are ERK 1/2 and JNK 1/2, which play a significant
role in cell proliferation by activating transcription factors. The inactivation of genes
through natural products can inhibit tumor growth and invasion in carcinogenic mech-
anisms in this signaling pathway. Natural compounds showed their ability to interact
with MAPK/ERK transcription factors, thus downregulating the signaling pathway (see
Figure 5). Arctigenin (ATG) showed maximum potential at 200 µM and was directly in-
volved in suppressing the MAPK pathway by inhibiting the phosphorylation of JNK and
ERK in MCF-7 and MDA-MB-231 cells [24]. Other studies showed that delphinidin, a natu-
ral compound of anticancer activity, was also involved in suppressing the MAPK pathway
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by inhibiting the phosphorylation of JNK 1/2 and ERK in MDA468 and MCF-7 cells [79].
Thymoquinone also downregulated the MAPK pathway by inhibiting the activation of
p38 and JNK [80]. Protopanaxadiol (PPD) targeted BC cell lines by suppressing the MAPK
pathway through deactivation of ERK1/2, p38, and JNK, and showed maximum activity
against MDA-MB-231 below 20 µM [81].
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Figure 5. The schematic representation of the mechanism of action of natural compounds on
MAPK/ERK and PI3K/Akt/mTOR signaling pathways can inhibit migration, survival, cell prolif-
eration, and metastasis. PTEN: phosphatase and tensin homolog; MEK: mitogen-activated protein
kinase; JNK: c-Jun N-terminal kinase; Akt: protein kinase B; ERK: extracellular signal-regulated
kinase; mTOR: mammalian target of rapamycin; PIP-3: phosphatidylinositol (3,4,5)-trisphosphate.
This figure is reproduced from Ganesan et al. [76] after gaining permission from Elsevier (License No.
5310141484610).

Kaempferol exhibited anticancer activities against BC (MDA-MB-453) by arresting the
G2/M phase of the cell cycle [11]. It bound with CDK1 and blocked their activities. Zhu
et al. [82] conducted an in vitro (BT474 and MDA-MB-231) study to investigate the role of
kaempferol in treating BC and found that the number of cancerous cells decreased from
85.2% to 50.32% in the G1 phase of the cell cycle. These studies showed that kaempferol
can significantly inhibit the BC cells by blocking the critical phases of the cell cycle. It
induces apoptosis and ultimately leads to cell death [82]. The growth and proliferation of
BC cells can depend on glucose utilization. Inhibiting glucose decreased the survival rate
of cancerous cells, thus making it a promising therapy for early-stage BC treatments [83].
Azevedo et al. [84] conducted in vitro and in vivo studies to investigate the uptake of
glucose and the absorption of lactate with MCF-7 BC cells. They found that kaempferol
inhibited the proliferation of tumor cells, thus minimizing the utilization of glucose by
MCF-7 BC cells. On the other hand, kaempferol also decreased the absorption of lactate to
MCF-7 BC cells that cannot survive, thus leading to cell death.

Hung et al. [85] investigated the anticancer role of kaempferol and found that binding
with estradiol can degrade ERα and inhibit the proliferation of MCF-7 cells. Kim et al. [33]
also conducted an in vivo study in a mice model (BALB/c nu/nu) to discover the anticancer
potentials against MCF-7 BC cells. They also found that the binding of kaempferol with
triclosan causes the suppression of the ER signaling pathway. These events activate the
RAS protein that induces cell proliferation and causes cell death in BC cells. Thus, natural
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compounds showed inhibitory actions against different breast cell lines by inhibiting the
expression of genes involved in the MAPK/ERK pathway.

3.4. Notch Signaling Pathway

Various anti-apoptotic proteins (Bcl-2) are involved in regulating the Notch pathway
and thus play a significant role in maintaining mitochondrial permeability [86]. Gamma
secretase is the critical enzyme involved in the Notch intracellular domain (NICD) transcrip-
tion via the Notch pathway (see Figure 6). NICD moves from the cytoplasm to the nucleus
and binds with it to regulate transcriptional complexes containing DNA-binding protein
CBF1/RBPjk/Su(H)/Lag1 (CSL) which downregulate the Notch pathway [87]. Cimigeno-
side, a novel natural compound isolated from C. dahurica, also inhibited the release of
gamma–secretase from the transmembrane region by inhibiting their catalytic core PSEN-1,
ultimately inhibiting the binding of NICD to CSL, and thus marinating the regulation of the
Notch pathway. Cimigenoside showed its usefulness by inducing apoptosis and inhibiting
Bcl-2, which ultimately then inhibited the Notch pathway [23,88,89].
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Figure 6. Natural products regulate the modulation of the Notch signaling pathway in BC. The
Notch receptor is cleaved by Notch ligands, including Jagged-1. ADAM-10 initially cleaves the Notch
extracellular domain; the gamma–secretase complex then cleaves the Notch intracellular domain
(NICD). NICD moves into the nucleus and initiates transcription. MAML: mastermind-like protein;
EGCG: epigallocatechin-3-gallate; RBP-Jκ: recombinant signal binding protein for immunoglobulin
kappa J region; DATS: diallyl trisulfide; ADAM-10: a disintegrin and metalloproteinase domain-
containing protein 10; NICD: Notch receptor intracellular domain. This figure is reproduced from
Kiesel et al. [87] (Creative Commons Attribution License (CC BY 4.0)).
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Unusual abnormalities in the form of malignant tumors in the Notch signaling path-
way lead to a variety of cancers, such as BC. Cimigenoside inhibited the Notch signaling
pathway by interrupting various proteins. It tightly binds with the PSEN-1 and inhibits
their activity [90,91]. Cimigenoside also degraded NICD in the nuclear region. It does not
affect the expression of PSEN-1 in the cytoplasm. Thus, cimigenoside is directly involved
in the inactivation of PSEN-1 and decreases the level of NICD in the nuclear region. Bcl-2
inhibited apoptosis, thus regulating the Notch signaling pathway. Cimigenoside also inhib-
ited the activity, or interrupted the balance, of Bax and Bcl-2 and induced apoptosis in BC
cells [92].

Jia et al. [23] performed in vivo (Balb/C Nude Crlj mice) and in vitro (MDA-MB-
231 and MCF-7) studies on C. dahurica isolated to investigate the role of cimigenoside
as an anticancer agent in BC treatment. The isolated cimigenoside showed maximum
anticancer activity against BC cell lines (MDA-MB-231 and MCF-7) with IC50 (12.6 ± 1.47,
15.6 ± 2.47 µM). Cimigenoside induced apoptosis in BC cells by arresting the G2/M phase
of the cell cycle. Another in vitro study screened the isolated compound, β-d-allopyranosyl-
3-methoxyphenyl, from Cimicifuga dahurica. This isolated compound exhibited excellent
anticancer potentials against BC cell lines (MCF-7 cells) with an IC50 value of 30 µM. They
showed that this compound induced apoptosis by decreasing the expression of Bcl-2 and
Bcl-XL which acted as anti-apoptotic proteins with anti-proliferation effects by inhibiting
c-Myc and cyclin D1, and also arrested the cell cycle at G0/G1-S [90]. Oridonin is a
diterpenoid-based natural product that was isolated from R. rubescens. By blocking the
Notch signaling system and inhibiting angiogenesis and EMT linked to VEGF-A, this
drug may be effective in the fight against breast cancer development and spread [88]. Xia
et al. [89] conducted an in vivo experiment in BALB/C athymic nude mice and reported
that oridonin successfully induced apoptosis in human BC cells. They also found that
Notch 1−4 protein expression was also lowered by oridonin therapy, which hindered
cancer cell migration and invasion. Thus, natural compounds showed inhibitory properties
against different BC cell lines for regulating the Notch pathway.

3.5. MDM2 Signaling Pathway

MDM2 signaling pathway is another pathway activated during BC progression. p53
is a tumor suppressor protein that plays a significant role in the regulation of the cell
cycle. It is encoded by the TPp53 gene. It is important for various cellular events occurring
during the cell cycle, such as apoptosis. Overexpression of the p53 gene leads to an increase
in the risk of BC. Its expression can be controlled by murine double minute 2 (MDM2)
through a negative feedback mechanism in two ways [93,94]. In the case of non-stress
environments, MDM2 tightly binds to the p53 via the transactivation domain. After
binding with p53, it starts gradual degradation in the presence of ubiquitination. Without
ubiquitination, degradation of p53 becomes slow. Under stress environments, in case of
damage to DNA, a complex of MDM2-p53 has stabilized as stress facilities this process.
Any defect in MDM2 can decrease the binding and degradation activities, thus losing
negative feedback [36,95,96].

25-OCH3-PPD is one of the most active ginsenosides isolated from P. notoginseng
and acts as a therapeutic agent for treating BC. Wang et al. [36] conducted in vitro and
in vivo studies to demonstrate its anticancer activities against MDA-MB-231 and nu/nu
mice, respectively. They found that 25-OCH3-PPD acted as an inhibitor of MDM2 at the
transcriptional level. They observed that 25-OCH3-PPD was also involved in arresting the
G1 phase of the cell cycle and induced apoptosis in BC cells. 25-OCH3-PPD also plays an
essential role in inhibiting tumor growth, cell invasion, and the MDM2 pathway in BC.
25-OCH3-PPD could serve as a potential anticancer agent for BC therapy. Ginsenosides, a
natural product, targeted the tumor cells and induced apoptosis and cell differentiation in
BC. It also acts as an inhibitor of MDM2, which might be a potential target in BC therapy.
These novel natural products are involved in downregulating the MDM2 pathway, thus
acting as promising candidates for BC treatment [97].
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Lineariifolianoid A (Lin A) is another sesquiterpenoid-based natural product isolated
from I. lineariifolia which could be used against BC [98,99]. The nuclear factor of activated T-
cells (NFAT) and MDM2 are oncogenes that play an important role in BC cell proliferation,
invasion, and migration. Both oncogenes are overexpressed in the case of BC. Several
therapeutic agents have been used as an inhibitor of NFAT and MDM2. One of the
important targets of NFAT and MDM2 is Lin A [100]. Qin et al. [95] conducted in an vitro
study to investigate Lin A’s role in inhibiting the NFAT-MDM2 pathway. They found
that Lin A arrested the cell cycle at the G2/M phase and inhibited cell invasion and cell
proliferation in BC cells. They also observed that Lin A induced apoptosis at a higher
concentration of 50% in BC cells (MCF7 and MDA-MB-231 with an IC50 value of 4.5 ± 0.3
and 7.8 ± 0.6 µM, respectively. Therefore, Lin A acted as a novel inhibitor of NFAT-MDM2
pathways and can be used as a therapeutic agent for treating BC therapy (see Figure 7).
Detailed information about the individual and synergistic natural products with better
anti-cancer activities is presented in Table 1 with a proper mechanism of action.
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Figure 7. The schematic representation of the mechanism of action of natural compounds against
BC using the MDM2 signaling pathway. Natural compounds induce apoptosis by inhibiting the
NFAT1-MDM2 signaling pathway to reduce cancer. NFAT1: nuclear factor of activated T cells 1;
MDM2: mouse double minute 2 homolog; CDK: cyclin-dependent kinase; Chk: checkpoint kinase;
Bcl-2: B-cell lymphoma 2; Bax: BCL2-associated X protein; PARP: poly (ADP-ribose) polymerase.
This figure is reproduced from Qin et al. [95] (Creative Commons Attribution License (CC BY 4.0)).
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Table 1. The in vitro and in vivo studies on the role of natural products in downregulating the signaling pathways against various types of BC models.

Extracted
Compound Biochemical Structure Biochemical Nature Source Study Type BC Type Animal Model Key Finding Mechanism of Action Reference

VOA
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Fisetin 

 

Flavonol 
Cucumber, ap-

ple, straw-
berry 

In vitro and 
in vivo 

ER-positive, 
TNBC, and 
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In vitro and 
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Alkaloid V. africana In vitro
ER-positive, TNBC,
and HER2-positive

BC
—

Downregulating the
PI3K/Akt/mTOR. VOA

showed its usefulness
against MCF-7 and 4T1
cells with IC50 values

(0.99, 1.48 µM).

VOA significantly inhibits
the phosphorylated AKT

and mTOR in BC cells
and also decreases the
expression of CDK2,

cyclin A, E. It also induces
apoptosis and cell death

in MCF-7 and 4T1 cells by
arresting the S phase of

the cell cycle.

[34]
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Sesquiterpenoid I. lineariifolia In vitro TNBC, and
HER2-positive BC —

Lin A induced apoptosis
at a higher concentration
of 50% in BC cells (MCF7
and MDA-MB-231 with

IC50 (4.5 ± 0.3, 7.8 ± 0.6).

Lin A arrests the cell cycle
at the G2/M phase, and

inhibits cell invasion and
cell proliferation in BC

cells.

[95,100]
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phase of the cell cycle. 

[34] 

Lin A 

 

Sesquiterpenoid I. lineariifolia In vitro 
TNBC, and 
HER2-posi-

tive BC 
--- 

Lin A induced apopto-
sis at a higher concen-
tration of 50% in BC 

cells (MCF7 and MDA-
MB-231 with IC50 (4.5 ± 

0.3, 7.8 ± 0.6). 

Lin A arrests the cell cy-
cle at the G2/M phase, 
and inhibits cell inva-
sion and cell prolifera-

tion in BC cells. 

[100,95] 

Fisetin 

 

Flavonol 
Cucumber, ap-

ple, straw-
berry 

In vitro and 
in vivo 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

BALB/c mice 

Fisetin induced apopto-
sis in MCF-7, 4T1, and 

MDA-MB-231 at 40 and 
80 μM. 

Fisetin acts as an inhibi-
tor of PI3K/Akt/mTOR 
signaling and inhibits 
the proliferation and 

dysregulation of this sig-
naling pathway. 

[66] 

WG 

 

Flavone S. baicalensis 
In vitro and 

in vivo 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

Chicken chori-
oallantoic mem-

brane (CAM) 

WG showed inhibitory 
effects on MCF-7 and 

MDA-MB-231 at 20 and 
40 μM. 

WG acts as an inhibitor 
of PI3K/Akt/mTOR sig-

naling and shows inhibi-
tion in cell proliferation. 

[70] 

AP 

 

Flavone 
A. cepa, C. 

sinensis 
In vitro 

ER-positive, 
HER2-posi-

tive BC 
--- 

It influenced the NF-κB 
pathway by suppress-
ing the VEGF through 
deactivating progester-

one receptors in BC 
cells. 

It inhibits cell prolifera-
tion and migrations by 

arresting the cell cycle at 
the G2/M phase. It also 
suppresses the cyclin A, 
B, and CDK1 which con-

trols the G2/M phase. 

[77] 

Flavonol
Cucumber,

apple,
strawberry

In vitro and in vivo
ER-positive, TNBC,
and HER2-positive

BC
BALB/c mice

Fisetin induced apoptosis
in MCF-7, 4T1, and

MDA-MB-231 at 40 and
80 µM.

Fisetin acts as an inhibitor
of PI3K/Akt/mTOR

signaling and inhibits the
proliferation and

dysregulation of this
signaling pathway.

[66]

WG
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WG 

 

Flavone S. baicalensis 
In vitro and 

in vivo 

ER-positive, 
TNBC, and 
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tive BC 

Chicken chori-
oallantoic mem-

brane (CAM) 

WG showed inhibitory 
effects on MCF-7 and 

MDA-MB-231 at 20 and 
40 μM. 

WG acts as an inhibitor 
of PI3K/Akt/mTOR sig-

naling and shows inhibi-
tion in cell proliferation. 

[70] 

AP 

 

Flavone 
A. cepa, C. 

sinensis 
In vitro 

ER-positive, 
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tive BC 
--- 

It influenced the NF-κB 
pathway by suppress-
ing the VEGF through 
deactivating progester-

one receptors in BC 
cells. 
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tion and migrations by 

arresting the cell cycle at 
the G2/M phase. It also 
suppresses the cyclin A, 
B, and CDK1 which con-

trols the G2/M phase. 

[77] 

Flavone S. baicalensis In vitro and in vivo
ER-positive, TNBC,
and HER2-positive

BC

Chicken
chorioallantoic

membrane (CAM)

WG showed inhibitory
effects on MCF-7 and

MDA-MB-231 at 20 and
40 µM.

WG acts as an inhibitor of
PI3K/Akt/mTOR

signaling and shows
inhibition in cell

proliferation.

[70]

AP
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cells (MCF7 and MDA-
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[100,95] 
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ple, straw-
berry 
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TNBC, and 
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tive BC 

BALB/c mice 

Fisetin induced apopto-
sis in MCF-7, 4T1, and 

MDA-MB-231 at 40 and 
80 μM. 

Fisetin acts as an inhibi-
tor of PI3K/Akt/mTOR 
signaling and inhibits 
the proliferation and 

dysregulation of this sig-
naling pathway. 

[66] 

WG 

 

Flavone S. baicalensis 
In vitro and 

in vivo 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

Chicken chori-
oallantoic mem-

brane (CAM) 

WG showed inhibitory 
effects on MCF-7 and 

MDA-MB-231 at 20 and 
40 μM. 

WG acts as an inhibitor 
of PI3K/Akt/mTOR sig-

naling and shows inhibi-
tion in cell proliferation. 

[70] 

AP 

 

Flavone 
A. cepa, C. 

sinensis 
In vitro 

ER-positive, 
HER2-posi-

tive BC 
--- 

It influenced the NF-κB 
pathway by suppress-
ing the VEGF through 
deactivating progester-

one receptors in BC 
cells. 

It inhibits cell prolifera-
tion and migrations by 

arresting the cell cycle at 
the G2/M phase. It also 
suppresses the cyclin A, 
B, and CDK1 which con-

trols the G2/M phase. 

[77] Flavone A. cepa, C.
sinensis In vitro ER-positive,

HER2-positive BC —

It influenced the NF-κB
pathway by suppressing

the VEGF through
deactivating progesterone

receptors in BC cells.

It inhibits cell
proliferation and

migrations by arresting
the cell cycle at the G2/M
phase. It also suppresses

the cyclin A, B, and CDK1
which controls the G2/M

phase.

[77]
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Oridonin 

 

Diterpenoid R. rubescens In vivo --- 
BALB/C athymic 

nude mice 

It induced apoptosis 
and cell death in BC 

cells. 

Notch 1-4 protein ex-
pression is lowered by 

oridonin therapy, which 
hinders cancer cell mi-
gration and invasion. 

[89] 

Genistein 

 

Isoflavones 
Soy-based 

foods 
In vitro 

ER-positive, 
TNBC 

--- 

Activation of NF-κB 
showed potential 

against MCF-7 at an 
IC50 value of 20 μM. 

It inhibits the phosphor-
ylation of IκBα in MCF-
7/T47D/MDA-MB-231 

cell lines, thus playing a 
significant role in the 

regulation of IκBα to the 
p50. 

[73] 

GLA 

 

Terpenoid G. glabra In vitro 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

--- 
It showed anticancer 

activity against MDA-
MB-231/BT549. 

It inhibits invasion and 
cell proliferation, as well 
as promote the expres-

sion of E-cadherin. 

[25] 

ATG 

 

Isoflavones S. heteromalla 
In vitro and 

in vivo 
ER-positive, 

TNBC 
BALB/cA-nu 

It showed anticancer 
potentials in MDA-MB-

231 cells at 200 μM. 

Inhibiting the phosphor-
ylation of MAPK/ERK in 

MDA-MB-231 cells. 
[24] 

PPD 

 

Glycoside P. notoginseng 
In vitro and 

in vivo 

TNBC, and 
HER2-posi-

tive BC 

BALB/C nude 
mice 

It showed maximum 
activity below 20 μM 

against MDA-MB-231. 

PPD targets BC cell lines 
by suppressing the 

MAPK pathway through 
the deactivation of 

ERK1/2, p38, and JNK. 

[81] 

Kaempferol 

 

Flavonols 
Onions, let-

tuce 
In vitro 

ER-positive, 
TNBC 

--- 

The number of cancer-
ous cells decreased 

from 85.2% to 50.32% in 
the G1 phase of the cell 
cycle. Kaempferol sig-
nificantly inhibited the 

BC cells (BT474 and 

Inhibitory actions 
against different breast 
cell lines can inhibit the 
expression of genes in-
volved in MAPK/ERK. 

This shows that binding 

[82] 

Diterpenoid R. rubescens In vivo — BALB/C athymic
nude mice

It induced apoptosis and
cell death in BC cells.

Notch 1-4 protein
expression is lowered by
oridonin therapy, which

hinders cancer cell
migration and invasion.

[89]

Genistein
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Kaempferol 

 

Flavonols 
Onions, let-

tuce In vitro 
ER-positive, 

TNBC --- 

The number of cancer-
ous cells decreased 

from 85.2% to 50.32% in 
the G1 phase of the cell 
cycle. Kaempferol sig-
nificantly inhibited the 

BC cells (BT474 and 
MDA-MB-231) by 

Inhibitory actions 
against different breast 
cell lines can inhibit the 
expression of genes in-
volved in MAPK/ERK. 

This shows that binding 
with estradiol causes 
degradation of Erα. 

[82] 

Isoflavones Soy-based foods In vitro ER-positive, TNBC —

Activation of NF-κB
showed potential against
MCF-7 at an IC50 value of

20 µM.

It inhibits the
phosphorylation of IκBα
in MCF-7/T47D/MDA-
MB-231 cell lines, thus

playing a significant role
in the regulation of IκBα

to the p50.

[73]
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Inhibiting the phosphor-

ylation of MAPK/ERK in 

MDA-MB-231 cells. 

[24] 
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It showed anticancer
activity against
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It inhibits invasion and
cell proliferation, as well

as promote the expression
of E-cadherin.
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It showed anticancer 

potentials in MDA-MB-

231 cells at 200 μM. 

Inhibiting the phosphor-

ylation of MAPK/ERK in 

MDA-MB-231 cells. 
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TNBC, and 
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activity below 20 μM 
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Kaempferol Flavonols 
Onions, let-

tuce 
In vitro 

ER-positive, 

TNBC 
--- 

The number of cancer-

ous cells decreased 

from 85.2% to 50.32% in 

the G1 phase of the cell 

cycle. Kaempferol sig-

nificantly inhibited the 

Inhibitory actions 

against different breast 

cell lines can inhibit the 

expression of genes in-

volved in MAPK/ERK. 

This shows that binding 

[82] 

Isoflavones S. heteromalla In vitro and in vivo ER-positive, TNBC BALB/cA-nu

It showed anticancer
potentials in

MDA-MB-231 cells at 200
µM.

Inhibiting the
phosphorylation of

MAPK/ERK in
MDA-MB-231 cells.

[24]
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activity against MDA-
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cell proliferation, as well 
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sion of E-cadherin. 

[25] 
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In vitro and 

in vivo 
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TNBC 
BALB/cA-nu 

It showed anticancer 
potentials in MDA-MB-

231 cells at 200 μM. 

Inhibiting the phosphor-
ylation of MAPK/ERK in 

MDA-MB-231 cells. 
[24] 

PPD

 

Glycoside P. notoginseng
In vitro and 

in vivo 

TNBC, and 
HER2-posi-

tive BC 

BALB/C nude 
mice 

It showed maximum 
activity below 20 μM 

against MDA-MB-231. 

PPD targets BC cell lines 
by suppressing the 

MAPK pathway through 
the deactivation of 

ERK1/2, p38, and JNK. 

[81] 

Kaempferol Flavonols 
Onions, let-

tuce In vitro 
ER-positive, 

TNBC --- 

The number of cancer-
ous cells decreased 

from 85.2% to 50.32% in 
the G1 phase of the cell 
cycle. Kaempferol sig-
nificantly inhibited the 

BC cells (BT474 and 
MDA-MB-231) by 

Inhibitory actions 
against different breast 
cell lines can inhibit the 
expression of genes in-
volved in MAPK/ERK. 

This shows that binding 
with estradiol causes 
degradation of Erα. 

[82]Glycoside P. notoginseng In vitro and in vivo TNBC, and
HER2-positive BC BALB/C nude mice

It showed maximum
activity below 20 µM
against MDA-MB-231.

PPD targets BC cell lines
by suppressing the

MAPK pathway through
the deactivation of

ERK1/2, p38, and JNK.

[81]
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Oridonin 

 

Diterpenoid R. rubescens In vivo --- 
BALB/C athymic 

nude mice 

It induced apoptosis 
and cell death in BC 

cells. 

Notch 1-4 protein ex-
pression is lowered by 

oridonin therapy, which 
hinders cancer cell mi-
gration and invasion. 

[89] 

Genistein 

 

Isoflavones 
Soy-based 

foods 
In vitro 

ER-positive, 
TNBC 

--- 

Activation of NF-κB 
showed potential 

against MCF-7 at an 
IC50 value of 20 μM. 

It inhibits the phosphor-
ylation of IκBα in MCF-
7/T47D/MDA-MB-231 

cell lines, thus playing a 
significant role in the 

regulation of IκBα to the 
p50. 

[73] 

GLA Terpenoid G. glabra In vitro 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

--- 
It showed anticancer 

activity against MDA-
MB-231/BT549. 

It inhibits invasion and 
cell proliferation, as well 
as promote the expres-

sion of E-cadherin. 

[25] 

ATG 

 

Isoflavones S. heteromalla 
In vitro and 

in vivo 
ER-positive, 

TNBC 
BALB/cA-nu 

It showed anticancer 
potentials in MDA-MB-

231 cells at 200 μM. 

Inhibiting the phosphor-
ylation of MAPK/ERK in 

MDA-MB-231 cells. 
[24] 

PPD 

 

Glycoside P. notoginseng 
In vitro and 

in vivo 

TNBC, and 
HER2-posi-

tive BC 

BALB/C nude 
mice 

It showed maximum 
activity below 20 μM 

against MDA-MB-231. 

PPD targets BC cell lines 
by suppressing the 

MAPK pathway through 
the deactivation of 

ERK1/2, p38, and JNK. 

[81] 

Kaempferol 

 

Flavonols 
Onions, let-

tuce In vitro 
ER-positive, 

TNBC --- 

The number of cancer-
ous cells decreased 

from 85.2% to 50.32% in 
the G1 phase of the cell 
cycle. Kaempferol sig-
nificantly inhibited the 

BC cells (BT474 and 
MDA-MB-231) by 

Inhibitory actions 
against different breast 
cell lines can inhibit the 
expression of genes in-
volved in MAPK/ERK. 

This shows that binding 
with estradiol causes 
degradation of Erα. 

[82] Flavonols Onions, lettuce In vitro ER-positive, TNBC —

The number of cancerous
cells decreased from

85.2% to 50.32% in the G1
phase of the cell cycle.

Kaempferol significantly
inhibited the BC cells

(BT474 and
MDA-MB-231) by

blocking the critical
phases of cell cycles.

Inhibitory actions against
different breast cell lines

can inhibit the expression
of genes involved in

MAPK/ERK. This shows
that binding with
estradiol causes

degradation of Erα.

[82]
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volved in arresting the 
G1 phase of the cell cy-
cle and induces apopto-
sis in BC cells by down-

regulating MDM2. 

[36] 

BA 

 

Flavonoid 
Scutellaria bai-

calensis 
In vitro and 

in vivo 

ER-positive, 
HER2-posi-

tive BC 
BALB/c mice 

It showed suppression 
of the NF-κB pathway 
in the development of 

human breast epithelial 
cells (MCF10A). 

Suppress the NF-κB sig-
naling pathway, as well 

as IL-1β, Bcl-2, and 
VEGF. 

[26,96] 

VMS 

 

Monoterpenoids P. rotundum 
In vitro and 

in vivo 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

PyMT/FP635 
mouse 

It showed maximum 
activity against MDA-

MB-231 and MCF7 cells 
with IC50 value (10 μM). 

VMS suppresses the 
growth of epithelial lin-
ing and the transition of 

mesenchymal breast 
cells. 

[101] 

Glycoside C. dahurica In vitro and in vivo ER-positive, TNBC BALB/C nude Crlj
mice

Cimigenoside showed
maximum anticancer

activity against BC cell
lines (MDA-MB-231,

MCF-7) with IC50 (12.6 ±
1.47, 15.6 ± 2.47 µM).

Cimigenoside induces
apoptosis in BC cells by

arresting the G2/M phase
of the cell cycle. An

in vitro study of
cimigenoside also

inhibits/attenuates BC
cell proliferation and
invasion. An in vivo
study inhibited the

growth of tumor growth
in mice models.

[23,90]
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Scutellaria bai-

calensis 

In vitro and 

in vivo 

ER-positive, 

HER2-posi-

tive BC 

BALB/c mice 

It showed suppression 

of the NF-κB pathway 

in the development of 

human breast epithelial 

cells (MCF10A). 

Suppress the NF-κB sig-

naling pathway, as well 

as IL-1β, Bcl-2, and 

VEGF. 

[26,96] 

VMS Monoterpenoids P. rotundum
In vitro and 

in vivo 

ER-positive, 

TNBC, and 

HER2-posi-

tive BC 

PyMT/FP635 

mouse 

It showed maximum 

activity against MDA-

MB-231 and MCF7 cells 

with IC50 value (10 µM). 

VMS suppresses the 

growth of epithelial lin-

ing and the transition of 

mesenchymal breast 

cells. 

[101] 

Glycosides P. notoginseng In vitro and in vivo ER-positive, TNBC Nu/nu mice

It showed maximum
anticancer activity against

BC cell lines
(MDA-MB-231).

25-OCH3-PPD is
involved in arresting the
G1 phase of the cell cycle
and induces apoptosis in

BC cells by
downregulating MDM2.

[36]
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MB-231 and MCF7 cells 
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[101] 

Flavonoid Scutellaria
baicalensis In vitro and in vivo ER-positive,

HER2-positive BC BALB/c mice

It showed suppression of
the NF-κB pathway in the

development of human
breast epithelial cells

(MCF10A).

Suppress the NF-κB
signaling pathway, as

well as IL-1β, Bcl-2, and
VEGF.
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maximum anticancer 
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1.47, 15.6 ± 2.47 μM). 

Cimigenoside induces 
apoptosis in BC cells by 

arresting the G2/M 
phase of the cell cycle. 

An in vitro study of cim-
igenoside also inhib-
its/attenuates BC cell 

proliferation and inva-
sion. An in vivo study 
inhibited the growth of 
tumor growth in mice 

models. 

[23,90] 

Ginsenosides 

 

Glycosides P. notoginseng 
In vitro and 

in vivo 
ER-positive, 

TNBC 
Nu/nu mice 

It showed maximum 
anticancer activity 

against BC cell lines 
(MDA-MB-231). 

25-OCH3-PPD is in-
volved in arresting the 
G1 phase of the cell cy-
cle and induces apopto-
sis in BC cells by down-

regulating MDM2. 

[36] 

BA 

 

Flavonoid 
Scutellaria bai-

calensis 
In vitro and 

in vivo 

ER-positive, 
HER2-posi-

tive BC 
BALB/c mice 

It showed suppression 
of the NF-κB pathway 
in the development of 

human breast epithelial 
cells (MCF10A). 

Suppress the NF-κB sig-
naling pathway, as well 

as IL-1β, Bcl-2, and 
VEGF. 

[26,96] 

VMS 

 

Monoterpenoids P. rotundum 
In vitro and 

in vivo 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

PyMT/FP635 
mouse 

It showed maximum 
activity against MDA-

MB-231 and MCF7 cells 
with IC50 value (10 μM). 

VMS suppresses the 
growth of epithelial lin-
ing and the transition of 

mesenchymal breast 
cells. 

[101] Monoterpenoids P. rotundum In vitro and in vivo
ER-positive, TNBC,
and HER2-positive

BC
PyMT/FP635 mouse

It showed maximum
activity against

MDA-MB-231 and MCF7
cells with IC50 value

(10 µM).

VMS suppresses the
growth of epithelial lining

and the transition of
mesenchymal breast cells.

[101]

Calcitrinone
A
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Calcitrinone A 

 

Phloroglucinol C. citrinus 
In vivo and 

in vitro 
ER-positive 

Chick chori-
oallantoic mem-

brane (CAM) 

Calcitrinone A induced 
apoptosis and cell 

death in MDA-MB-231 
cells. 

Calcitrinone A interferes 
with mitochondrial 

function by blocking 
succinate coenzyme Q 

reductase and ultimately 
inhibits the complex II 
that increases the pro-

duction of ROS. 

[29] 

Vulpinic acid 

 

Butenolide Lichens In vitro 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

--- Vulpinic acid induced 
apoptosis in MCF-7. 

Elevate the levels of 
FOXO-3 and Bax, and 
suppress the expression 
of Bcl-2 and procaspase-
3/9 to enhance the activ-
ity of tumor suppressor 
miRNAs. 

[28] 

Genistein 

 

Isoflavone 
Fabaceae fam-

ily 
In vitro 

TNBC, and 
HER2-posi-

tive BC 
--- 

It induced apoptosis 
and cell death in MCF-7 
and MDA-MB-231 cells. 

It also inhibited cell 
proliferation and pro-

gression in BC. 

Arresting the cell cycle 
at G2/M phase, down-
regulating CDK-1, and 

inhibiting the expression 
of Bcl-2 and the function 
of DNA polymerase II. 

[102,103] 

CUR + BBR 

 

Diarylheptanoid, 
isoquinoline alka-

loid 

Curcuma longa, 
berberine from 

Rhizoma cop-
tidis 

In vitro 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

--- 

It showed effects 
against BC cell lines 
(MDA-MB-231 and 

MDA-MB-468) at p ≤ 
0.010. 

The EMT process in the 
case of BC is impaired. 

[104,105] 

BA + 5-FU 

 

Flavonoid (BA) 
Scutellaria bai-

calensis 
In vivo --- Swiss albino mice 

It showed inflammation 
by inhibiting the VEGF, 

IL-1β, and NF-κB. 

Inflammation is inhib-
ited by the VEGF, IL-1β, 
and NF-κB, which play 
significant roles in pre-

venting BC. 

[106] 

MG + 5-FU 

 

Polyphenolic 
(MG) 

Coffee, wine 
In vivo and 

in vitro 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

BALB/c mice and 
Swiss albino mice 

It showed anticancer 
activity against the BC 

cell line (MCF-7). 

Arresting the cell cycle 
at MG G0/G1 phase in-

duces apoptosis and cell 
death by increasing Bac-

2 and caspase 9. 

[30] 

Phloroglucinol C. citrinus In vivo and in vitro ER-positive Chick chorioallantoic
membrane (CAM)

Calcitrinone A induced
apoptosis and cell death
in MDA-MB-231 cells.

Calcitrinone A interferes
with mitochondrial

function by blocking
succinate coenzyme Q

reductase and ultimately
inhibits the complex II

that increases the
production of ROS.

[29]

Vulpinic acid
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venting BC. 

[106] 

MG + 5-FU 
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(MG) 

Coffee, wine 
In vivo and 

in vitro 

ER-positive, 
TNBC, and 
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BALB/c mice and 
Swiss albino mice 

It showed anticancer 
activity against the BC 

cell line (MCF-7). 

Arresting the cell cycle 
at MG G0/G1 phase in-

duces apoptosis and cell 
death by increasing Bac-

2 and caspase 9. 

[30] 

Butenolide Lichens In vitro
ER-positive, TNBC,
and HER2-positive

BC
— Vulpinic acid induced

apoptosis in MCF-7.

Elevate the levels of
FOXO-3 and Bax, and

suppress the expression
of Bcl-2 and

procaspase-3/9 to
enhance the activity of

tumor suppressor
miRNAs.

[28]
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Flavonoid (BA) 
Scutellaria bai-
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It showed anticancer 
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cell line (MCF-7). 

Arresting the cell cycle 
at MG G0/G1 phase in-

duces apoptosis and cell 
death by increasing Bac-

2 and caspase 9. 

[30] 

Isoflavone Fabaceae family In vitro TNBC, and
HER2-positive BC —

It induced apoptosis and
cell death in MCF-7 and
MDA-MB-231 cells. It

also inhibited cell
proliferation and

progression in BC.

Arresting the cell cycle at
G2/M phase,

downregulating CDK-1,
and inhibiting the

expression of Bcl-2 and
the function of DNA

polymerase II.

[102,103]
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Arresting the cell cycle 
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duces apoptosis and cell 
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[30] 

Diarylheptanoid,
isoquinoline alkaloid

Curcuma longa,
berberine from
Rhizoma coptidis

In vitro
ER-positive, TNBC,
and HER2-positive

BC
—

It showed effects against
BC cell lines

(MDA-MB-231 and
MDA-MB-468) at

p ≤ 0.010.

The EMT process in the
case of BC is impaired. [104,105]
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The EMT process in the 
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Flavonoid (BA) 
Scutellaria bai-

calensis 
In vivo --- Swiss albino mice 

It showed inflammation 
by inhibiting the VEGF, 

IL-1β, and NF-κB. 

Inflammation is inhib-
ited by the VEGF, IL-1β, 
and NF-κB, which play 
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venting BC. 
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in vitro 

ER-positive, 
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BALB/c mice and 
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It showed anticancer 
activity against the BC 

cell line (MCF-7). 

Arresting the cell cycle 
at MG G0/G1 phase in-

duces apoptosis and cell 
death by increasing Bac-

2 and caspase 9. 

[30] 

Flavonoid (BA) Scutellaria
baicalensis In vivo — Swiss albino mice

It showed inflammation
by inhibiting the VEGF,

IL-1β, and NF-κB.

Inflammation is inhibited
by the VEGF, IL-1β, and

NF-κB, which play
significant roles in

preventing BC.

[106]

MG + 5-FU
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HER2-posi-

tive BC 

--- 

It showed effects 
against BC cell lines 
(MDA-MB-231 and 

MDA-MB-468) at p ≤ 
0.010. 

The EMT process in the 
case of BC is impaired. 

[104,105] 

BA + 5-FU 

 

Flavonoid (BA) 
Scutellaria bai-

calensis 
In vivo --- Swiss albino mice 

It showed inflammation 
by inhibiting the VEGF, 

IL-1β, and NF-κB. 

Inflammation is inhib-
ited by the VEGF, IL-1β, 
and NF-κB, which play 
significant roles in pre-

venting BC. 

[106] 

MG + 5-FU 

 

Polyphenolic 
(MG) 

Coffee, wine 
In vivo and 

in vitro 

ER-positive, 
TNBC, and 
HER2-posi-

tive BC 

BALB/c mice and 
Swiss albino mice 

It showed anticancer 
activity against the BC 

cell line (MCF-7). 

Arresting the cell cycle 
at MG G0/G1 phase in-

duces apoptosis and cell 
death by increasing Bac-

2 and caspase 9. 

[30] Polyphenolic (MG) Coffee, wine In vivo and in vitro
ER-positive, TNBC,
and HER2-positive

BC

BALB/c mice and
Swiss albino mice

It showed anticancer
activity against the BC

cell line (MCF-7).

Arresting the cell cycle at
MG G0/G1 phase

induces apoptosis and
cell death by increasing

Bac-2 and caspase 9.

[30]
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4. Synergistic Approach of Natural Products against BC

Several chemotherapeutic drugs have been used to treat BC. The development of
chemotherapeutic drugs has increased the resistance rate in BC cells and remained a
challenge for breast therapy [109,110]. Drug resistance and tumor growth are critical factors
for increased mortality risk among women. The prolonged use of a single drug is not
effective for the treatment of BC [111]. Therefore, the clinical use of these drugs has become
critical for BC. Therefore, urgent therapy with a safe mode on breast tissues can overcome
this issue.

For the complete eradication of BC, combinations of natural products with drugs are
an effective strategy to overcome the side effects and minimize the risk of recurrence of BC
cases [112]. Therefore, combining the effects of natural products is an important therapeutic
strategy for overcoming drug resistance and controlling the BC in high-risk populations.

4.1. Synergistic Effects of Curcumin and Berberine

Some natural products have been used as combinations with synergistic effects to
improve their efficacy against BC. For example, curcumin (CUR) and berberine (BBR) have
been used as potential sources of natural products to treat BC. CUR and BBR were isolated
from the root of Curcuma longa and Rhizoma coptidis respectively in the search for secondary
metabolites with anticancer, antitumor, and anti-inflammatory properties [113,114]. CUR
and BBR are of great interest in clinical investigations because of their low toxicity. Recently,
the synergistic effects of CUR and BBR have shown excellent anticancer properties against
BC (see Figure 8) [115,116].

Molecules 2022, 27, x FOR PEER REVIEW 18 of 34 
 

 

4. Synergistic Approach of Natural Products against BC 
Several chemotherapeutic drugs have been used to treat BC. The development of 

chemotherapeutic drugs has increased the resistance rate in BC cells and remained a chal-
lenge for breast therapy [109,110]. Drug resistance and tumor growth are critical factors 
for increased mortality risk among women. The prolonged use of a single drug is not ef-
fective for the treatment of BC [111]. Therefore, the clinical use of these drugs has become 
critical for BC. Therefore, urgent therapy with a safe mode on breast tissues can overcome 
this issue. 

For the complete eradication of BC, combinations of natural products with drugs are 
an effective strategy to overcome the side effects and minimize the risk of recurrence of 
BC cases [112]. Therefore, combining the effects of natural products is an important ther-
apeutic strategy for overcoming drug resistance and controlling the BC in high-risk pop-
ulations. 

4.1. Synergistic Effects of Curcumin and Berberine 
Some natural products have been used as combinations with synergistic effects to 

improve their efficacy against BC. For example, curcumin (CUR) and berberine (BBR) 
have been used as potential sources of natural products to treat BC. CUR and BBR were 
isolated from the root of Curcuma longa and Rhizoma coptidis respectively in the search for 
secondary metabolites with anticancer, antitumor, and anti-inflammatory properties 
[113,114]. CUR and BBR are of great interest in clinical investigations because of their low 
toxicity. Recently, the synergistic effects of CUR and BBR have shown excellent anticancer 
properties against BC (see Figure 8) [115,116]. 

 
Figure 8. The synergistic effect of CUR and BBR against BC cells by inducing apoptosis. Apoptosis in 
BC cells is induced by a combination of CUR and BBR, mediated through the activation of the ERK 
signaling pathway. These two compounds work together to enhance JNK activation, phosphorylation 
of Bcl-2, and dissociation of the Beclin1/Bcl-2 complex in BC cells, eventually resulting in autophagic 
cell death. Bcl-2: B-cell lymphoma 2; Bax: BCL2-associated X protein; PARP: poly (ADP-ribose) 

Figure 8. The synergistic effect of CUR and BBR against BC cells by inducing apoptosis. Apoptosis in
BC cells is induced by a combination of CUR and BBR, mediated through the activation of the ERK
signaling pathway. These two compounds work together to enhance JNK activation, phosphorylation
of Bcl-2, and dissociation of the Beclin1/Bcl-2 complex in BC cells, eventually resulting in autophagic
cell death. Bcl-2: B-cell lymphoma 2; Bax: BCL2-associated X protein; PARP: poly (ADP-ribose)
polymerase; JNK: c-Jun N-terminal kinase; ERK: extracellular signal-regulated kinase. This figure is
reproduced from Wang et al. [104] (Creative Commons Attribution License (CC BY 4.0)).
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CUR is a diarylheptanoid-based natural compound, and its chemical structure reveals
the presence of carbonyl and phenolic groups. CUR is mainly composed of turmeric
compounds (2–8%) and is an excellent source of yellow turmeric [117]. It is also used
in TNBC as it interferes with the EMT process and inhibits BC cell migration [118]. Its
anticancer activities induced apoptosis and cell death in BC cells in order to prolong the
survival of cells [119]. BBR is an isoquinoline alkaloid that exhibits anticancer activities
and induced apoptosis and cell death in BC cells. Its anticancer activities are reflected by
its binding ability with DNA topoisomerase, as well as the ability to induce apoptosis in
BC cells [120]. Genus Berberis is an excellent source of BBR [121]. It is widely used for the
treatment of TNBC due to inhibition and migration of BC cell MDA-MB-231. BBR is also
used as a potential agent for breast therapy due to its ability to reverse MDR. Therefore,
combinations of natural products showed robust effects in reducing invasion, migration,
and the EMT process [122,123].

Wang et al. [104] conducted an in vitro study to investigate the combined effects of
CUR and BBR on the MCF-7 and MDA-MB-231 BC cells. The synergistic effects of both
natural compounds induced apoptosis and cell death via the activation of the ERK and
JNK signaling pathways which regulated the phosphorylation of JNK and decreased the
phosphorylation of Bcl-2. The combined effects of CUR and BBR played a significant role
in preventing BCs; thus, they can be used for BC therapy.

CUR and BBR are widely used for the treatment of BC. They exhibit a polyphenol
nature, and affect various cellular processes, including EMT, as in the case of BC. Thus, the
synergistic effects of these natural compounds are helpful in combating BC as compared to
traditional chemotherapies [122,124]. Another recent in vitro study conducted by Kashyap
et al. [105] demonstrated that combinations of CUR + BBR impaired the EMT process, thus
showing effects against BC cell lines (MDA-MB-231 and MDA-MB-468) with p ≤ 0.010.
Thus, synergistic combinations of CUR and BBR could be used as potential therapeutic
agents for BC therapy.

4.2. Synergistic Effects of Baicalin and Methylglyoxal with 5-Fluorouracil

Baicalin (BA) is a flavonoid-based natural compound isolated from Scutellaria baicalen-
sis that exhibited excellent anticancer, anti-proliferative, and antioxidant properties [125].
BA is non-toxic for humans. It regulates the normal development of the breast by inhibiting
the proliferation and invasion of cancer cells, thus triggering apoptosis which ultimately
leads to cell death (see Figure 9). Chung et al. [26] have demonstrated that BA can suppress
the NF-κB pathway in the development of human breast epithelial cells. Other studies
showed that BA significantly prevents BC, including inhibited tumor growth, angiogenesis,
fibrosis, invasion, and apoptosis [126]. Methylglyoxal (MG) showed anticancer activity
against BC by inhibiting ATP depletion, and by suppressing glycolysis and mitochondrial
respiration [127,128]. 5-fluorouracil (5-FU) has also been used as a chemotherapeutic drug
to treat BC. It binds with DNA by blocking the activity of thymidylate synthase. It is also
involved in targeting invasion cells and in inhibiting their proliferation. Other roles include
the activation of p53 by inducing apoptosis [129,130]. It is known that toxic metabolites
released from 5-FU metabolism also block DNA synthesis [131]. The side effects of 5-FU
have been reduced through combinations with natural products. For example, 5-FU itself
is a toxic agent, but combinations positively impacted BC prevention [106]. 5-FU is widely
used for the treatment of BC. It inhibited the invasion and progression of cancer cells by
inducing apoptosis, ultimately leading to cell death. Clinical trials in combination therapy
with other natural products are needed to overcome chemoresistance in BC [131].
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Figure 9. The synergistic effect of (a) BA and 5-FU, and (b) MG and 5-FU in BC therapy. BCL2:
B-cell lymphoma two protein; NF-κB: nuclear factor kappa B; Bax: Bcl-2-associated X protein; p53:
inducible gene 3; IL-1β: interleukin 1 beta; VEGF: vascular endothelial growth factor. This figure is
reproduced from Shehatta et al. [106] (Attribution Non-Commercial No. Derivatives 4.0 International
(CC BY-NC-ND 4.0)).

Shehatta et al. [106] demonstrated the combined effect of 5-FU and BA on in vivo
animal models (Swiss albino mice) and revealed that they significantly suppress the NF-
κB signaling pathway. The surviving (IL-1β, Bcl-2, and VEGF) and upregulating (p53,
caspase-3, and Bax) genes were involved in this suppression. Another study conducted by
Miao et al. [132] demonstrated that the combined effect of 5-FU and BA reduced inflam-
mation by inhibiting VEGF, IL-1β, and NF-κB. They found that it induced apoptosis by
caspase-3 and Bax. In view of the above, BA acts as a promising candidate for improving
BC therapy.

4.3. Synergistic Effects of Resveratrol and Salinomycin

Resveratrol (RSVL) is a polyphenolic compound and showed anticancer activity
against BC cells (MDAMB-231 and MCF-7). It is obtained from dietary sources, such as
peanuts, grapes, and berries. RSVL activities include arresting the S1 phase of the cell cycle
and inducing apoptosis in BC cells [133]. It acts as an antioxidant by preventing DNA
damage and suppressing tumor growth (see Figure 10) [108]. RSVL also inhibited ATP in
MCF-7. Thus, RSVL, as a natural product, decreases MDAMB-231 and MCF-7 cells [134].
Salinomycin (SAL) is a potent antibiotic used for the treatment of BC. It is derived from
Streptomyces albus and was useful for inhibition, cell proliferation, and the suppression of
tumor growth [135]. SAL also induced apoptosis and cell death in metastatic BC cells by
promoting DNA damage and elevating ROS production. Some in vivo studies showed that
SAL significantly suppressed tumor growth [136].
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RSVL and SAL acted synergistically to improve the efficacy of BC therapy. Rai
et al. [107] investigated the role of RSVL and SAL in vitro and in vivo studies against
MDA-MB-231 BC cells and Swiss albino mice, respectively. They found that synergistic
combinations of RSVL and SAL inhibited the epithelial–mesenchymal transition and sup-
pressed p53, COX-2, and Beclin. They also found that RSVL and SAL induced apoptosis
in TNBC. Dewangan et al. [137] investigated the role of SAL and RSVL against BC. They
found that this combination induced apoptosis and cell death in MCF-7 cells by promoting
ROS production, leading to mitochondrial dysfunction. This combination also cleaved the
PARP network and activated the caspases. SAL and RSVL synergistically decreased Bcl-2
and downregulated the MAPK pathway by activating p38, increasing the oxidative stress
and apoptosis in MCF-7 cells [35]. The combination of RSVL with SAL is also helpful as a
novel therapy for TNBC to overcome drug resistance.

5. Recent Discoveries and Developments of Natural Products against BC
5.1. Novel Verminoside and Their Derivatives

Various adjuvant therapies have been used, including combinations of natural prod-
ucts, in order to improve their susceptibility to BC. These novel products have replaced
or limited the use of conventional therapies due to increasing drug resistance. Different
natural products have been reported influenced positive effects and could be used as
adjuvant therapy by targeting tumors or affecting the EMT process [138]. For example,
verminoside (VMS) from Pseudolysimachion rotundum interferes with the EMT process by
suppressing the invasion and tumor growth; thus, it is widely used for BC treatment [101].

VMS has been used as an anticancer agent and exhibited inflammatory properties. Its
anticancer activities have been evaluated in in vivo and in vitro models. Lee et al. [101]
carried out an in vivo study in animal models (PyMT/FP635 mouse model) to investigate
the anticancer potentials of VMS and showed maximum activity against MDA-MB-231
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and MCF7 cells with an IC50 value of 10 µM. They found that VMS suppresses epithelial
lining growth and the transition of mesenchymal breast cells without activating the ERK
signaling pathway (see Table 1). Therefore, VMS can be used as a chemo-adjuvant for the
treatment of BC.

VMS is a monoterpenoid that also has been isolated from K. pinanta. The biochemical
nature of VMS is greatly reflected due to the presence of two hydroxyl groups that are
responsible for anticancer and inflammatory properties. It is widely used for inhibiting the
EMT process in BC [139]. BC cells under the EMT process have increased mesenchymal
characteristics and decreased the formation of epithelial cells and cell linings [109]. These
events promoted invasion and migration among BC cells. In the previous studies, it was
shown that the excessive use of chemotherapeutic drugs promoted the EMT process. As a
result, chemoresistance is one of the major issues tackled through the safe use of natural
products as they can inhibit invasion, migration, and EMT in BC development [101].

5.2. Novel Phloroglucinol and Derivatives

Phloroglucinols are phenolic compounds that exhibit anticancer and anti-inflammatory
activity. Phloroglucinol is the most important novel natural product, and its chemical
structure reveals that it has an aromatic ring surrounded by hydroxyl groups. It is composed
of two phloroglucinol units linked by a methylene bridge. Calcitrinone A is a type of natural
product, novel phloroglucinol, isolated from C. citrinus. Calcitrinone A showed potential
against MDA-MB-231 BC cells [140].

Calcitrinone A inhibited cell proliferation, invasion, and tumor growth, and stimu-
lated apoptosis in MDA-MB-231 cells. Calcitrinone A is less toxic as compared to other
drugs used for the treatment of BC. Calcitrinone A bound with the succinate-coenzyme Q
reductase located at complex II of the mitochondrial membrane and blocks their activity. It
resulted in the depletion of ATP levels. Calcitrinone A is the most promising anticancer
agent used for BC therapy as it interferes with complex II of the mitochondria [141].

An in vivo and in vitro study was conducted by Gaafary et al. [29] to investigate the
role of calcitrinone A in the chick chorioallantoic membrane (CAM) and MDA-MB-231
cells, respectively. They found that calcitrinone A interferes with mitochondrial func-
tion by blocking succinate coenzyme Q reductase and inhibiting complex II, which can
untimely increase ROS production. These events induced apoptosis and cell death in
MDA-MB-231 cells (see Table 1). Kim et al. [142] found that phloroglucinol inhibited the
epithelial–mesenchymal transition in BC; they also found that phloroglucinol increases
ROS production. They found that phloroglucinol also induced apoptosis and cell death in
metastatic BC cells.

5.3. Role of Viridiflorol against BC

Viridiflorol is a natural organic compound, and its chemical structure contains a
cyclopropazulen in its carbon skeleton, responsible for anticancer activity against BC. Virid-
iflorol, which was isolated from S. algeriensis. Furthermore, the Lamiaceae family, including
the Senecio rowleyanus Jacob, Mentha aquatica L, and Ballota undulata, are excellent sources
of viridiflorol derivatives [143,144]. Previous studies showed that oil secretions from S.
rowleyanus contained viridiflorol (11%) that possesses anticancer and anti-inflammatory
activities [145]. The oil secretions from Salvia leriifolia showed anticancer activity against
BC (MCF-7 and MBA-MD-231) [146]. Viridiflorol is a class of sesquiterpenoid that isolated
various aromatic plants, such as M. quinquenervia and A. edulis. Extracts of viridiflorol
from these plants exhibited anticancer activities against different BC cell lines (MCF-7 and
MDA-MB-231) [147]. Essential oil from Blepharocalyx salicifolius and Cyperus longus is an
excellent source of viridiflorol [148,149].

Akiel et al. [27] performed an in vitro study in searching for anticancer activities of
viridiflorol against BC MCF-7 cells. The tested viridiflorol showed maximum anticancer
activity against MCF-7 with IC50 value of 0.1 µM. Memariani et al. [148] conducted in vitro
study to investigate the anticancer potentials and apoptosis of viridiflorol. The tested
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derivatives of viridiflorol showed maximum anticancer activity against MCF7 with IC50
value of 31.60% and induced apoptosis at concentrations of 78.23%. Furtado et al. [149]
also conducted in vitro study and successfully isolated viridiflorol from Blepharocalyx
salicifolius that showed anticancer potentials against MDA-MB-231 at concentrations of 46.60
µg/mL. The isolated viridiflorol is also involved in suppressing the cellular metabolism
and biological activities of BC cells.

5.4. Effect of Vulpinic Acid against BC

Vulpinic acid is a natural product that was isolated from lichens and exhibited an-
ticancer potentials against BC. Lichens secreted a large variety of secondary metabolites
effective for the treatment of BC. For example, vulpinic acid is secreted by lichenized fungi
which demonstrates anticancer and anti-proliferative activities [150]. Vulpinic acid is a
safe and easily assessable metabolite in nature. Vulpinic acid inhibits cell proliferation
and invasion, inhibits tumor growth, and stimulates apoptosis in MC-231 cells. Vulpinic
acid interacts with the FOXO-3 gene and suppresses their activity, leading to decreased
expression of miRNAs [151].

In the previous studies, vulpinic acid has been used for breast treatment as it induces
apoptosis and suppresses Bcl-2 [152]. Cansaran-Duman et al. [28] conducted an in vitro
study and investigated the role of vulpinic acid on BC by regulating the expression of
miRNA levels. They found that vulpinic acid induced apoptosis in MCF-7 by elevating
the level of FOXO-3 and Bax, and suppressing Bcl-2 and pro-caspase-3,9, thus altering
the tumor suppressor miRNAs (see Table 1). Kilic et al. [153] investigated the anticancer
potentials of vulpinic acid against MCF-7, BT-474, MDA-MB-231, and SK-BR-3. They found
that vulpinic acid showed anti-proliferative and significant inhibitory effects on the MCF-7.
They also found that vulpinic acid induced apoptosis and cell death in MCF-7.

5.5. Action of Genistein against BC

Genistein is a naturally occurring compound and possesses anticancer, anti-proliferative,
and anti-tumor activities. Fabaceae families are rich in genistein and its derivatives. It
is also found in soybeans. It is used to overcome the drug resistance caused by BC and
control the reoccurrence of metastatic invasion. It also suppresses the activities of DNA
polymerase II [154]. It also arrested the cell cycle at the G2/M phase and induced apoptosis
and cell death in MCF-7 and MDA-MB-231 cells. It also inhibited the cell proliferation
and progression of BC. Genistein has been used for clinical uses for the prevention of BC
because it increases survival rates [102].

Other studies investigated the role of genistein against BC and found that it down-
regulated CDK-1 and inhibited the expression of Bcl-2, as well as the function of DNA
polymerase II. They also found that genistein also increased the expression of p21 and
p51 [103,155]. Genistein also showed inhibitory effects on tyrosine kinases and inhibited
the cancer progression. Xie et al. [156] investigated that genistein is an effective therapeutic
agent that inhibits DNA methylation in MCF-7 and MDA-MB-231 cells by blocking DNA
methyltransferase activity. Liu et al. [102] studied that genistein showed inhibitory poten-
tials in the deactivation of IGF-1R and p-Akt. They also found that it decreases the level of
Bcl-2 by promoting apoptosis.

6. Clinical Trials

Clinical trials focus on the biochemical, pathological, and molecular events for con-
trolling the cancers among the high-risk population. The studies showed that there is a
very small number of clinical trials on natural compounds because most of the studies
are still investigating in vivo and in vitro studies to check the proper mechanism of action
of the natural compounds. However, some clinical trials of natural compounds used for
the treatment of BC are under clinical investigation. The details of each clinical trial, i.e.,
the length of the clinical trial, the clinical phase, the number of participants, and the trial
number, are shown in Table 2 [157,158].
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Table 2. The representation of clinical trial studies of some natural compounds against BC.

Natural
Compound Nature NCT No. Number of

Participants Disease Type Dose/Concentration Duration of Trial Trial Phase Study Location Reference

Curcumin Polyphenol NCT01740323 30 BC 8 g 8 weeks Phase II USA
www.clinicaltrials.gov

(accessed on
27 April 2022)

Resveratrol Stilbenoid — 39 Metastatic BC 5 or 50 mg 3 months Phase I USA [157,158]

Berberine Alkaloids NCT03281096 1000 Invasive BC,
colorectal 300 mg 4 weeks Phase II and

III China
www.clinicaltrials.gov

(accessed on
27 April 2022)

Curcumin
(iv) +

Paclitaxel
Polyphenol NCT03072992 75 Metastatic BC 300 mg 12 weeks Phase II Armenia

www.clinicaltrials.gov
(accessed on

27 April 2022)

Quercetin Carotenoids — 42 Advanced BC 200 mg 2 weeks
Randomized

crossover
clinical trial

UK [159,160]

Resveratrol Stilbenoid NCT04266353 50 TNBC 150 mg 2–4 weeks
Suspended

(due to
COVID-19)

California
www.clinicaltrials.gov

(accessed on
27 April 2022)

Curcumin Polyphenol NCT01975363 30 BC (obese
women) 100 mg 3 months Pilot trial USA

www.clinicaltrials.gov
(accessed on

27 April 2022)

Genistein Isoflavon NCT00099008 30 BC 10 or 20 mg 84 Days Completed US
www.clinicaltrials.gov

(accessed on
27 April 2022)

7. Current Challenges and Future Perspectives

Poor stability and low bioavailability of natural products decrease their therapeutic po-
tential against BC treatment. These challenges could be tackled through a nanotechnology
approach by employing the dendrimers to easily and more efficiently improve their deliv-
ery for BC therapy. For example, CUR is an excellent source of natural products, whereby
nanosuspensions of centrosomes are made for targeting BCs. Further research is needed to
improve the functionality of nano-formulated natural products for TNBC [15,161].

Recent challenges for BC treatment in the modern area mainly include drug resistance
and high chances of recurrence. For example, it is evident that patients with early BC have
a 30% risk of developing metastasis. There is an urgent need to develop novel therapeutics
to control the high risk among women [162]. Traditional treatments for the treatment
of BC are causing adverse health effects due to increasing drug resistance. For example,
there is a high risk of skin cancer in those patients taking BC chemotherapy, which is
inevitable. In order to overcome the adverse effects or drug resistance, natural products
are reliable sources, as compared to traditional therapies that showed anticancer potentials
against BCs [163]. Currently, the synergistic effects of natural compounds have significantly
controlled the BC risk. These natural compounds are alternatives to traditional therapies
for overcoming drug resistance for BC treatment (see Table 3). However, natural products
are also successfully studied in tumor cells of other cancers [164–166].

Table 3. The natural compounds that overcome drug resistance in BC.

Natural
Compound Nature Dose/Concentration Target Cell Mode Chemo Drug IDS (x-Fold) Reference

Ginsenosides Glycosides 40 µM MCF ADM Doxorubicin 29.2 [167,168]

Baicalin Flavonoid 150 µg/mL MDR1 and
MRP1 MCF7/ADR Doxorubicin 6.5 [169,170]

Quercetin Carotenoids 50 µM MDR1 and
MRP1 MCF7/ADM Cisplatin 3.5 [171–173]

Berberine Alkaloids 20 µM MDR1 MDR1 Vincristine 3.2 [174,175]

Ginsenoside
Rb1 Glycosides 80 µM MDR1 MCF-7/ADR Vincristine 2.5 [176,177]

Apigenin Flavone 13 µM MDR1 HCT 5-FU 4.9 [169,173]

Curcumin Alkaloids 25 µM MDR1 Various Various 4.5 [178,179]

Oridonin Diterpenoid 3 µM MDR1 MCF7/ADM Various 8.5 [180,181]

Ginsenoside
Rg3 Glycosides 30 µg/mL MDR1 and

MRP1 MCF7/ADR Various 8.5 [182]

Note: HCT: hematocrit; ADR: adverse drug reactions; MCF-7: Michigan Cancer Foundation 7; IDS: increase in
drug sensitivity; MDR1: multidrug resistance 1; MRP1: multidrug resistance protein 1.

www.clinicaltrials.gov
www.clinicaltrials.gov
www.clinicaltrials.gov
www.clinicaltrials.gov
www.clinicaltrials.gov
www.clinicaltrials.gov
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Patients under chemotherapy develop a high risk of chemoresistance caused by ATP-
binding cassettes that delay the activity of anticancer drugs [183]. Several natural com-
pounds have been isolated which helped in overcoming the multidrug resistance. For
example, β-elemene showed its usefulness against MCF-7 cells [184]. 3,3′-diindolylmethane
is also used as an anticancer agent against multidrug resistance. Scientists are also working
on the mechanism of action of newly discovered natural compounds that can be used
against multi-drug resistance [185].

TNBC has become a global health concern as a limited number of treatments are
available. There is a need to isolate novel natural compounds as alternatives for TNBC [186].
For example, CUR and RSVL have been used as effective therapeutic agents for TNBC.
These compounds inhibited the proliferation of tumors and induced apoptosis for cell
survival [187]. Another prosing natural compound, carnosol, showed the anticancer
activity against MDA-MB-231 by arresting the G2 phase of the cell cycle [188].

Several studies showed inconsistencies in the natural products for in vitro and in vivo
experimental studies that lower the bioavailability in the experimental models. However,
some epidemiological studies on the use of natural compounds for BC have surprising
and contradictory effects. For example, soy products can cause serious cellular toxicities
and hormonal imbalances [189]. It is necessary to authenticate their anticancer activities,
toxicities, and effectiveness prior to using them for BC treatment [76]. Another challenge
of using natural compounds is the lack of target specificity, as these compounds have
multi-targeted potentials in triggering several signaling pathways rather than specific
ones [190].

Oral delivery of natural products remained a major challenge in cancer therapy, and
recent attempts have been made in order to improve the oral delivery of ginsengs through
nanotechnology. Combining polylactic co-glycolic acid (PLGA) nanoparticles with ginsengs
has improved its oral absorption and maximized its potential against MCF-7 cell lines. The
nanotechnology approach has been applied to improve the oral absorption of 25-OCH3-PPD
via polylactic co-glycolic acid (PLGA). Diameter less than 43 nm showed stability at a pH
range of 6.5–7.4, which the FDA has approved for use in therapeutic devices. This approach
is helpful for the efficient delivery of poorly soluble natural products that ultimately
enhance their use in BC therapy [191]. Another nano-emulsion system coated/fabricated
with phospholipids was designed to improve the bioavailability of 25-OCH3-PPD [192].
Cancer stem cells are a major cause of tumor growth initiation and the recurrence of BC
due to developing drug resistance. Therefore, targeting the cancer stem cells is crucial for
overcoming drug resistance. Natural products, such as therapeutic agents, have become an
essential strategy for BC.

Most efficient and reliable therapies are urgently needed for future research of TNBC
subtypes for discovering novel biomarkers in order to identify malignant tumor subtypes
among high-risk populations. Many natural products from crude extracts have been
discovered every year, paving the screening of novel drugs. Many of the plants found in
the deep sea are a great source of unknown natural products. This isolation could be a hot
spot for the discovery of anticancer-based compounds. Most research carried out for TNBC
in vitro studies still lacks in vivo experiments that could explore the mechanism of newly
discovered natural compounds [193].

8. Conclusions

Recently, attention toward natural products for BC treatment has increased. Natural
products have been tested in vivo and in vitro studies for their safe use against BC. Bioac-
tive compounds derived from natural products are the main source of targeting tumor
invasion, inhibiting cell-proliferation and cyclins by arresting the cell cycle at M2/S phase,
activating caspases, and inducing apoptosis in BC cells. Natural products also showed
anticancer and antitumor activities against BC by suppressing NF-κB, PI3K/Akt/mTOR,
and MAPK/ERK. Natural products and their respective bioactive compounds act syn-
ergistically to overcome drug resistance. Natural products possess low toxicity and are
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efficiently delivered to the targeted cells; thus, they are helpful for reducing the high risk of
BC. The bioavailability issues of natural products can be solved through nanocarriers that
are effective for delivering the natural products to the targeted tissues or site. However,
several marine plants exhibit a variety of natural products. In the future, screening of
more bioactive compounds from marine plants will be helpful to treat and prevent BC. In
addition, the efficacy of natural products needs to explore at a clinical level.

Author Contributions: Conceptualization, M.N. and A.H.; methodology, M.N. and A.H.; software,
A.H. and M.M.A. (Muhammad Masood Ahmed); validation, M.O.I., M.F., and H.K.; formal analysis,
M.N. and M.M.A. (Muhammad Moeen Aadil); investigation, A.H.; resources, A.H.; data curation,
M.N. and A.H.; writing—original draft preparation, M.I.J., H.K., M.M.A. (Muhammad Masood
Ahmed), M.M.A. (Muhammad Moeen Aadil), and M.N.; writing—review and editing, A.H., M.F.,
M.O.I., and W.-C.T.; visualization, W.-C.T. and M.I.J.; supervision, A.H. and W.-C.T.; project admin-
istration, W.-C.T.; funding acquisition, W.-C.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the NSYSU-KMU Joint Research Project (grant number:
NSYSUKMU 111-I06) and the Kaohsiung Medical University Research Foundation (grant number:
KMU-M111009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the Research Center for Environmental Medicine, Kaohsiung Medical
University, Kaohsiung, Taiwan from The Featured Areas Research Center Program within the frame-
work of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan and the
Kaohsiung Medical University Research Center Grant (KMU-TC109A01-1).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Explanation
ADAM-10 A disintegrin and metalloproteinase domain-containing protein 10
ADR Adverse drug reactions
Akt Protein kinase B
AP Apigenin
BA Baicalin
Bad Bcl-2 antagonist of cell death
Bax Bcl-2-associated X protein
BBR Berberine; BC: breast cancer
Bcl-2 B-cell lymphoma 2
CDK Cyclin-dependent kinase
Chk Checkpoint kinase
CUR Curcumin
DATS Diallyl trisulfide
EGCG Epigallocatechin-3-gallate
EGF(R) Epidermal growth factor (receptor)
ER Estrogen receptor
ERK Extracellular signal-regulated kinase
5-FU 5-Fluorouracil
HCT Hematocrit
IKK IκB kinase
IL-1β Interleukin 1 beta
IDS Increase in drug sensitivity
JNK C-Jun N-terminal kinase
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Lin A Lineariifolianoid A
MAML Mastermind-like protein
MDM2 Mouse double minute 2 homolog
MEK Mitogen-activated protein kinase kinase
MCF-7 Michigan Cancer Foundation 7
MDR1 Multidrug resistance 1
MG Methylglyoxal
MMP Matrix metalloprotein
mTOR Mammalian target of rapamycin
mTORC-2 mTOR Complex 2
MRP1 Multidrug resistance protein 1
NFAT1 Nuclear factor of activated T cells 1
NF-κB Nuclear factor kappa B
NICD Notch receptor intracellular domain
p53 Inducible gene 3
PARP Poly (ADP-ribose) polymerase
PDK1/2 3-phosphoinositide dependent kinase-1/2
PI3K Phosphatidylinositol 3-kinase
PIP-3 Phosphatidylinositol (3,4,5)-trisphosphate
PPD Protopanaxadiol
PTEN Phosphatase and tensin homolog
RBP-Jκ Recombinant signal binding protein for Immunoglobulin kappa J region
RSVL Resveratrol
SAL Salinomycin
TNBC Triple-negative breast cancer
VEGF Vascular endothelial growth factor
VOA Voacamine
VS Verminoside
WG Wogonin
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