

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Tris(2,6-dibenzoyl-4-methylphenolato- $\kappa^2 O^1 O^2$ )cobalt(III)

#### Abhishek K. Gupta,<sup>a</sup> Sanjay Srivastava<sup>a</sup> and Ray J. Butcher<sup>b</sup>\*

<sup>a</sup>Department of Material Science and Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 051, India, and <sup>b</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 22 January 2014; accepted 23 January 2014

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.154; data-to-parameter ratio = 15.3.

In the title compound,  $[Co(C_{21}H_{15}O_3)_3]$ , the Co<sup>III</sup> ion is coordinated in a slightly distorted octahedral environment by three phenolate O and three benzovl O atoms from three monoanionic bidentate 2,6-dibenzoyl-4-methylphenolate ligands. The dihedral angles between the mean planes of the central phenolate rings and the peripheral phenyl rings are 46.62 (10)/87.06 (9), 60.44 (8)/23.13 (8) and 46.49 (6)/ 65.29 (6)°. The crystal packing is stabilized by weak intermolecular C-H···O interactions. Molecules are further linked by two  $\pi - \pi$  [centroid–centroid distances = 3.8612 (14) and 3.9479 (14) Å] and four C–H··· $\pi$  interactions, forming a three-dimensional network.

#### **Related literature**

For phenol-based diketones, see: Gupta et al. (2002, 2012a). For material and biological applications, see: Church & Halvorson (1959); Olsson et al. (2005); Burschka et al. (2013); Erkkila et al. (1999); Metcalfe & Thomas (2003); Generex & Barton (2010). For related structures, see: Gupta et al. (2012b); Huang et al. (2013).



#### **Experimental**

Crystal data

 $[Co(C_{21}H_{15}O_3)_3]$  $M_r = 1004.92$ Monoclinic,  $P2_1/c$ a = 11.2858 (3) Å b = 17.5442 (4) Å c = 24.7745 (5) Å  $\beta = 92.8922 (19)^{\circ}$ 

#### Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Absorption correction: analytical

[CrysAlis PRO (Agilent, 2012), based on expressions derived by

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.055$ | 661 parameters                                            |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.154$               | H-atom parameters constrained                             |
| S = 1.06                        | $\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 10145 reflections               | $\Delta \rho_{\rm min} = -0.62 \text{ e} \text{ Å}^{-3}$  |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg7, Cg9, Cg11 and Cg12 are the centroids of the C9A-C14A, C9C-C14C, C16B-C21B and C16C-C21C rings, respectively.

| $D - H \cdots A$                          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------|------|-------------------------|-------------------------|---------------------------|
| $C12A - H12A \cdots O2B^{i}$              | 0.95 | 2.60                    | 3.442 (3)               | 147                       |
| $C13A - H13A \cdots O3C^{i}$              | 0.95 | 2.48                    | 3.278 (3)               | 141                       |
| $C13B - H13B \cdots O3B^{ii}$             | 0.95 | 2.39                    | 3.311 (3)               | 162                       |
| $C11C - H11C \cdot \cdot \cdot O3C^{iii}$ | 0.95 | 2.40                    | 3.313 (3)               | 161                       |
| $C10B-H10B\cdots Cg12$                    | 0.95 | 2.70                    | 3.634 (3)               | 166                       |
| $C11B - H11B \cdots Cg7^{iv}$             | 0.95 | 2.72                    | 3.479 (3)               | 137                       |
| $C18C - H18C \cdots Cg9^{iv}$             | 0.95 | 2.99                    | 3.720 (4)               | 135                       |
| $C20C - H20C \cdot \cdot \cdot Cg11^{v}$  | 0.95 | 2.88                    | 3.332 (3)               | 110                       |
|                                           |      |                         | (**)                    | 3 . 1 (***)               |

Symmetry codes: (i) -x + 1, -v + 1, -z + 1:  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iv) x + 1, y, z; (v)  $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

 $V = 4899.12 (19) \text{ Å}^3$ 

 $0.46 \times 0.18 \times 0.15 \text{ mm}$ 

Clark & Reid (1995)]

21885 measured reflections

 $T_{\min} = 0.477, T_{\max} = 0.705$ 

10145 independent reflections

9001 reflections with  $I > 2\sigma(I)$ 

Cu Ka radiation

 $\mu = 3.25 \text{ mm}^{-1}$ 

T = 123 K

 $R_{\rm int} = 0.045$ 

Z = 4

# metal-organic compounds

SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

AKG thanks the MHRD for the award of a GATE Fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffract-ometer as well as the Howard University Nanoscience Facility for access to liquid nitrogen.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5379).

#### References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Burschka, J., Kessler, F., Nazeeruddin, M. K. & Grätzel, M. (2013). Chem. Mater. 25, 2986–2990.
- Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.

Erkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777–2795.

- Generex, J. C. & Barton, J. K. (2010). *Chem. Rev.* **110**, 1642–1662.
- Gupta, S. K., Anjana, C., Sen, N., Butcher, R. J. & Jasinski, J. P. (2012b). Polyhedron, **43**, 8–14.
- Gupta, S. K., Anjana, C., Sen, N., Jasinski, J. P. & Golen, J. A. (2012a). J. Chem. Crystallogr. 42, 960–967.
- Gupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787– 1793.
- Huang, Q.-P., Zhang, C.-L., Zhao, R.-X., Yang, L. & Jiang, X.-F. (2013). Acta Cryst. E69, m601.
- Metcalfe, C. & Thomas, J. A. (2003). Chem. Soc. Rev. 32, 215-224.
- Olsson, R. T., Salazar-Alvarez, G., Hedenqvist, M. S., Gedde, U. W., Lindberg, F. & Savage, S. J. (2005). *Chem. Mater.* **17**, 5109–5118.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supplementary materials

Acta Cryst. (2014). E70, m67-m68 [doi:10.1107/S1600536814001664]

# Tris(2,6-dibenzoyl-4-methylphenolato- $\kappa^2 O^1, O^2$ )cobalt(III)

## Abhishek K. Gupta, Sanjay Srivastava and Ray J. Butcher

#### 1. Comment

In recent years phenol-based diketones have been widely used as ligands forming complexes with interesting properties that are useful in material science (Church & Halvorson, 1959; Olsson *et al.*, 2005; Burschka *et al.*, 2013) and in biological systems (Erkkila *et al.*, 1999; Metcalfe & Thomas, 2003; Generex & Barton, 2010). The crystal structure of 4-methyl-2,6-dibenzoylphenol (mdbpH)), 4-*tert*-butyl-2,6-dibenzoylphenol (bdbpH) and their chromium(III) complexes have been reported earlier (Gupta *et al.*, 2002, 2012*a*, 2012*b*). We herein report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound,  $[Co(C_{21}H_{15}O_3)_3]$ , is shown in (Fig.1). The three monoanionic ligands  $(2,6-PhCO)_2(4-Me)C_6H_2O$  are bidentate, coordinating through phenolic O and benzoyl O atoms to give a mer-CoO<sub>3</sub>O<sub>3</sub> octahedral configuration. The coordination geometry around the Co(III) ion deviates slightly from an ideal octahedral coordination as evidenced by the trans angles, O1C/Co/O1A (178.32 (7)°), O2B/Co/O2C (176.88 (7)°) and O1B/Co/O2A (178.76 (7)°). The remaining angles vary between 87.01 (7)° and 93.25 (7)°, whereby the smallest values correspond to the O-Co-O bond angles in the three chelate rings, O1A/Co/O2A 88.47 (7)°, O1B/Co/O2B 90.02 (7)° and O1C/Co/O2C 87.01 (7)°. The Co-O (phenolic) distances [mean 1.932 Å] are similar and comparable to those reported for other mononuclear complexes,  $[Cr(mdbp)_3, mean 1.931 Å]$  (Gupta et al., 2012b) and  $[CoL_3]$  (L = 4- bromo-2-(methyliminomethyl)phenolate) [mean 1.890 Å] (Huang et al., 2013) but significantly shorter than the Co–O (benzoyl) distance [mean 1.974 Å]. The dihedral angles between the mean planes of the central phenolato rings (C1A–C6A; C1B–C6B; C1C–C6C) and the peripheral phenyl rings (C9A-C14A & C16A-C21A; C9B-C14B & C16B-C21B; C9C-C14C & C16C-C21C) are 46.62 (10)° & 87.06 (9)°; 60.44 (8)° & 23.13 (8)° and 46.49 (6)° & 65.29 (6)°, respectively, indicating that there is no conjugation between the phenolato and phenyl rings in the mdbp ligands. Further, there are significant differences in the O-C-C-C torsion angles, O1A/C1A/C2A/C8A (-9.9 (4)°), O1B/C1B/C2B/C8B (-2.1 (4)°) and O1C/C1C/C2C/C8C  $(3.8 (4)^\circ)$  than that observed in the ligand, O1/C1/C2/C8  $(0.0 (3)^\circ)$  (Gupta et al., 2002) which suggest that distortions are driven by steric interactions. The crystal packing is stabilized by weak C-H...O intermolecular interactions (Fig.2, Table 1). Molecules are further linked by two  $\pi - \pi [Cg2 - Cg10 = 3.9479 (14) \text{ Å}, Cg7 - Cg7i = 3.8612 (14) \text{ Å}, symmetry code$ (i): 1 - x, -y, -z, where Cg2, Cg7 and Cg10 are the centroids of the phenolate (Co/O1B/C1B/C2B/C8B/O2B), and phenyl (C9A–C14A, C16A–C21A) rings, respectively and four C–H··· $\pi$  (C10B–H10B–Cg12 = 3.634 (3) Å, C11B–H11B–Cg7i = 3.479(3) Å, C18C–H18C–Cg9i = 3.720(4) Å, C20C–H20C–Cg11ii = 3.332(3) Å, symmetry code (i): 1 + x, y, z; ii: 2 x, -1/2 + y, +1/2 - z where Cg9, Cg11 and cg12 are the centroids of phenyl (C9C–C14C, C16B–C21B, C16C–C21C rings)) interactions to form a three-dimensional network.

#### 2. Experimental

An ethanolic solution of  $Co(ClO_4)_2.6H_2O$  (0.366 g, 1.00 mmol) was added dropwise to the stirred hot solution of 2,6-dibenzoyl-4-methylphenol (0.948 g, 3.00 mmol) in ethanol under argon. The resulting wine-red solution was heated to reflux at 70–80 °C. The clear solution thus obtained was filtered and allowed to cool at ambient temperature. Slow evaporation of the solvent resulted in dark-brown prism-shaped crystals within a few days (yield: 0.80 g, 80%; m.p. 260–262 °C). Analysis calculated for  $C_{63}H_{45}O_9Co$  (%): C 75.29, H 4.51; found: C 75.40, H 4.60.

### 3. Refinement

H atoms were positioned geometrically and refined using the riding model, with C–H distance of 0.95–0.98 Å, with  $U_{iso}$  (H) = 1.20  $U_{eq}$  (C) or 1.50  $U_{eq}$  (C) for methyl H atoms.

## **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



## Figure 1

Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.



### Figure 2

Packing diagram of  $[Co(C_{21}H_{15}O_3)_3]$  viewed along *a* axis. Dashes lines indicate a weak C–H···O intermolecular interactions.

#### Tris(2,6-dibenzoyl-4-methylphenolato- $\kappa^2 O^1, O^2$ )cobalt(III)

Crystal data

[Co(C<sub>21</sub>H<sub>15</sub>O<sub>3</sub>)<sub>3</sub>]  $M_r = 1004.92$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 11.2858 (3) Å b = 17.5442 (4) Å c = 24.7745 (5) Å  $\beta = 92.8922$  (19)° V = 4899.12 (19) Å<sup>3</sup> Z = 4

#### Data collection

Agilent Xcalibur (Ruby, Gemini) $T_1$ diffractometer2Radiation source: Enhance (Cu) X-ray Source10Graphite monochromator90Detector resolution: 10.5081 pixels mm<sup>-1</sup>R $\omega$  scans $\theta_1$ Absorption correction: analyticalh[CrysAlis PRO (Agilent, 2012), based onkexpressions derived by Clark & Reid (1995)] $l^{\frac{1}{2}}$ 

F(000) = 2088  $D_x = 1.362 \text{ Mg m}^{-3}$ Cu *Ka* radiation,  $\lambda = 1.54184 \text{ Å}$ Cell parameters from 9359 reflections  $\theta = 3.1-77.4^{\circ}$   $\mu = 3.25 \text{ mm}^{-1}$  T = 123 KPrism, dark brown  $0.46 \times 0.18 \times 0.15 \text{ mm}$ 

 $T_{\min} = 0.477, T_{\max} = 0.705$ 21885 measured reflections
10145 independent reflections
9001 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.045$   $\theta_{\max} = 77.6^{\circ}, \theta_{\min} = 3.6^{\circ}$   $h = -13 \rightarrow 14$   $k = -21 \rightarrow 15$   $l = -31 \rightarrow 24$ 

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.055$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.154$                               | neighbouring sites                                         |
| S = 1.06                                        | H-atom parameters constrained                              |
| 10145 reflections                               | $w = 1/[\sigma^2(F_o^2) + (0.0765P)^2 + 3.7684P]$          |
| 661 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.51 \ { m e} \ { m \AA}^{-3}$    |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Experimental**. CrysAlisPro (Agilent Technologies, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|---------------|-----------------------------|
| Со   | 0.38732 (3)  | 0.70424 (2)  | 0.356917 (14) | 0.01928 (11)                |
| O1A  | 0.45006 (16) | 0.79710 (9)  | 0.39056 (7)   | 0.0241 (4)                  |
| O2A  | 0.49775 (14) | 0.64526 (9)  | 0.40544 (6)   | 0.0219 (3)                  |
| O3A  | 0.5460 (2)   | 1.00708 (13) | 0.40380 (12)  | 0.0520 (6)                  |
| C1A  | 0.5392 (2)   | 0.80635 (14) | 0.42384 (10)  | 0.0226 (5)                  |
| C2A  | 0.6100 (2)   | 0.74622 (14) | 0.44765 (9)   | 0.0227 (5)                  |
| C3A  | 0.7176 (2)   | 0.76390 (15) | 0.47654 (10)  | 0.0246 (5)                  |
| H3AA | 0.7663       | 0.7233       | 0.4901        | 0.030*                      |
| C4A  | 0.7548 (2)   | 0.83833 (15) | 0.48580 (10)  | 0.0265 (5)                  |
| C5A  | 0.6786 (2)   | 0.89697 (15) | 0.46756 (10)  | 0.0282 (5)                  |
| H5AA | 0.7003       | 0.9483       | 0.4753        | 0.034*                      |
| C6A  | 0.5727 (2)   | 0.88278 (14) | 0.43856 (10)  | 0.0261 (5)                  |
| C7A  | 0.8731 (2)   | 0.85516 (16) | 0.51452 (11)  | 0.0316 (5)                  |
| H7AA | 0.9184       | 0.8078       | 0.5192        | 0.047*                      |
| H7AB | 0.8603       | 0.8775       | 0.5500        | 0.047*                      |
| H7AC | 0.9175       | 0.8912       | 0.4930        | 0.047*                      |
| C8A  | 0.5713 (2)   | 0.66727 (14) | 0.44132 (9)   | 0.0218 (4)                  |
| C9A  | 0.6168 (2)   | 0.60673 (14) | 0.47901 (9)   | 0.0223 (5)                  |
| C10A | 0.6254 (2)   | 0.53247 (14) | 0.45905 (10)  | 0.0253 (5)                  |
| H10A | 0.6044       | 0.5222       | 0.4222        | 0.030*                      |
| C11A | 0.6646 (2)   | 0.47389 (14) | 0.49288 (11)  | 0.0291 (5)                  |
| H11A | 0.6729       | 0.4239       | 0.4788        | 0.035*                      |
| C12A | 0.6918 (2)   | 0.48798 (16) | 0.54746 (11)  | 0.0306 (5)                  |

| H12A | 0.7191       | 0.4477       | 0.5706       | 0.037*     |
|------|--------------|--------------|--------------|------------|
| C13A | 0.6790 (2)   | 0.56087 (16) | 0.56794 (10) | 0.0277 (5) |
| H13A | 0.6955       | 0.5702       | 0.6053       | 0.033*     |
| C14A | 0.6423 (2)   | 0.62031 (15) | 0.53404 (10) | 0.0244 (5) |
| H14A | 0.6344       | 0.6703       | 0.5482       | 0.029*     |
| C15A | 0.4986 (2)   | 0.94882 (15) | 0.41900 (12) | 0.0317 (5) |
| C16A | 0.3663 (2)   | 0.94498 (14) | 0.42014 (11) | 0.0282 (5) |
| C17A | 0.2985 (3)   | 0.98635 (16) | 0.38188 (12) | 0.0340 (6) |
| H17A | 0.3370       | 1.0149       | 0.3553       | 0.041*     |
| C18A | 0.1754 (3)   | 0.98642 (17) | 0.38207 (12) | 0.0373 (6) |
| H18A | 0.1298       | 1.0135       | 0.3551       | 0.045*     |
| C19A | 0.1197 (2)   | 0.94677 (17) | 0.42181 (12) | 0.0348 (6) |
| H19A | 0.0357       | 0.9474       | 0.4226       | 0.042*     |
| C20A | 0.1863 (3)   | 0.90615 (16) | 0.46045 (11) | 0.0329 (6) |
| H20A | 0.1476       | 0.8794       | 0.4878       | 0.040*     |
| C21A | 0.3092 (2)   | 0.90421 (15) | 0.45952 (11) | 0.0303 (5) |
| H21A | 0.3541       | 0.8752       | 0.4856       | 0.036*     |
| O1B  | 0.27825 (14) | 0.76059 (10) | 0.31121 (6)  | 0.0218 (3) |
| O2B  | 0.26886 (15) | 0.69853 (9)  | 0.41242 (7)  | 0.0222 (3) |
| O3B  | 0.09769 (18) | 0.80141 (14) | 0.18133 (8)  | 0.0405 (5) |
| C1B  | 0.1695 (2)   | 0.77906 (13) | 0.31834 (9)  | 0.0197 (4) |
| C2B  | 0.1057 (2)   | 0.76091 (13) | 0.36543 (9)  | 0.0212 (4) |
| C3B  | -0.0114 (2)  | 0.78836 (14) | 0.36943 (10) | 0.0235 (5) |
| H3BA | -0.0516      | 0.7780       | 0.4014       | 0.028*     |
| C4B  | -0.0695 (2)  | 0.82958 (14) | 0.32878 (10) | 0.0257 (5) |
| C5B  | -0.0102 (2)  | 0.84059 (14) | 0.28079 (10) | 0.0256 (5) |
| H5BA | -0.0511      | 0.8652       | 0.2512       | 0.031*     |
| C6B  | 0.1049 (2)   | 0.81700 (14) | 0.27515 (9)  | 0.0230 (5) |
| C7B  | -0.1936 (2)  | 0.85986 (18) | 0.33490 (12) | 0.0339 (6) |
| H7BA | -0.2464      | 0.8177       | 0.3435       | 0.051*     |
| H7BB | -0.2224      | 0.8839       | 0.3010       | 0.051*     |
| H7BC | -0.1925      | 0.8975       | 0.3641       | 0.051*     |
| C8B  | 0.1611 (2)   | 0.71668 (13) | 0.40888 (9)  | 0.0202 (4) |
| C9B  | 0.0913 (2)   | 0.68677 (14) | 0.45423 (9)  | 0.0221 (4) |
| C10B | -0.0060(2)   | 0.63968 (15) | 0.44322 (10) | 0.0272 (5) |
| H10B | -0.0347      | 0.6318       | 0.4069       | 0.033*     |
| C11B | -0.0611 (2)  | 0.60415 (17) | 0.48537 (12) | 0.0330 (6) |
| H11B | -0.1253      | 0.5701       | 0.4779       | 0.040*     |
| C12B | -0.0223(2)   | 0.61863 (19) | 0.53844 (11) | 0.0379 (7) |
| H12B | -0.0614      | 0.5955       | 0.5673       | 0.045*     |
| C13B | 0.0732 (2)   | 0.6666 (2)   | 0.54952 (11) | 0.0366 (6) |
| H13B | 0.0984       | 0.6771       | 0.5859       | 0.044*     |
| C14B | 0.1321 (2)   | 0.69935 (15) | 0.50742 (10) | 0.0279 (5) |
| H14B | 0.2000       | 0.7303       | 0.5149       | 0.034*     |
| C15B | 0.1576 (2)   | 0.82364 (15) | 0.22050 (10) | 0.0264 (5) |
| C16B | 0.2749 (2)   | 0.86002 (15) | 0.21381 (10) | 0.0267 (5) |
| C17B | 0.3289 (2)   | 0.90612 (16) | 0.25359 (11) | 0.0321 (6) |
| H17B | 0.2956       | 0.9099       | 0.2879       | 0.039*     |
| C18B | 0.4309 (3)   | 0.94661 (17) | 0.24345 (13) | 0.0387 (6) |

| H18B | 0.4663       | 0.9787       | 0.2706       | 0.046*     |  |
|------|--------------|--------------|--------------|------------|--|
| C19B | 0.4817 (3)   | 0.94033 (17) | 0.19372 (13) | 0.0372 (6) |  |
| H19B | 0.5509       | 0.9687       | 0.1866       | 0.045*     |  |
| C20B | 0.4305 (2)   | 0.89232 (17) | 0.15445 (12) | 0.0345 (6) |  |
| H20B | 0.4663       | 0.8867       | 0.1208       | 0.041*     |  |
| C21B | 0.3280 (2)   | 0.85279 (16) | 0.16411 (11) | 0.0296 (5) |  |
| H21B | 0.2932       | 0.8205       | 0.1369       | 0.035*     |  |
| O1C  | 0.32753 (15) | 0.60991 (10) | 0.32491 (6)  | 0.0229 (3) |  |
| O2C  | 0.49974 (15) | 0.70749 (10) | 0.29840 (7)  | 0.0230 (3) |  |
| O3C  | 0.16902 (17) | 0.46986 (11) | 0.31788 (8)  | 0.0331 (4) |  |
| C1C  | 0.3010 (2)   | 0.60812 (13) | 0.27299 (9)  | 0.0214 (4) |  |
| C2C  | 0.3681 (2)   | 0.64691 (14) | 0.23363 (10) | 0.0241 (5) |  |
| C3C  | 0.3266 (2)   | 0.64560 (15) | 0.17862 (10) | 0.0278 (5) |  |
| H3CA | 0.3704       | 0.6725       | 0.1529       | 0.033*     |  |
| C4C  | 0.2259 (3)   | 0.60711 (17) | 0.16093 (10) | 0.0317 (6) |  |
| C5C  | 0.1635 (2)   | 0.56738 (16) | 0.19942 (10) | 0.0293 (5) |  |
| H5CA | 0.0942       | 0.5399       | 0.1879       | 0.035*     |  |
| C6C  | 0.1993 (2)   | 0.56678 (14) | 0.25364 (10) | 0.0238 (5) |  |
| C7C  | 0.1833 (3)   | 0.6079 (2)   | 0.10236 (11) | 0.0433 (7) |  |
| H7CA | 0.2346       | 0.6411       | 0.0820       | 0.065*     |  |
| H7CB | 0.1016       | 0.6270       | 0.0992       | 0.065*     |  |
| H7CC | 0.1858       | 0.5560       | 0.0878       | 0.065*     |  |
| C8C  | 0.4756 (2)   | 0.68717 (14) | 0.25044 (10) | 0.0232 (5) |  |
| C9C  | 0.5663 (2)   | 0.70757 (14) | 0.21124 (10) | 0.0254 (5) |  |
| C10C | 0.6301 (2)   | 0.77469 (15) | 0.22062 (10) | 0.0277 (5) |  |
| H10C | 0.6129       | 0.8063       | 0.2504       | 0.033*     |  |
| C11C | 0.7187 (3)   | 0.79563 (16) | 0.18670 (12) | 0.0338 (6) |  |
| H11C | 0.7617       | 0.8416       | 0.1931       | 0.041*     |  |
| C12C | 0.7444 (3)   | 0.74934 (19) | 0.14349 (13) | 0.0413 (7) |  |
| H12C | 0.8059       | 0.7632       | 0.1206       | 0.050*     |  |
| C13C | 0.6805 (3)   | 0.68285 (19) | 0.13359 (13) | 0.0422 (7) |  |
| H13C | 0.6976       | 0.6516       | 0.1036       | 0.051*     |  |
| C14C | 0.5913 (3)   | 0.66184 (16) | 0.16748 (12) | 0.0343 (6) |  |
| H14C | 0.5476       | 0.6163       | 0.1607       | 0.041*     |  |
| C15C | 0.1273 (2)   | 0.52477 (14) | 0.29308 (10) | 0.0244 (5) |  |
| C16C | 0.0036 (2)   | 0.55076 (14) | 0.30089 (10) | 0.0250 (5) |  |
| C17C | -0.0408 (2)  | 0.61907 (15) | 0.27878 (11) | 0.0305 (5) |  |
| H17C | 0.0077       | 0.6498       | 0.2573       | 0.037*     |  |
| C18C | -0.1556 (3)  | 0.64190 (18) | 0.28816 (14) | 0.0397 (7) |  |
| H18C | -0.1855      | 0.6882       | 0.2730       | 0.048*     |  |
| C19C | -0.2271 (3)  | 0.59739 (19) | 0.31970 (14) | 0.0417 (7) |  |
| H19C | -0.3056      | 0.6133       | 0.3262       | 0.050*     |  |
| C20C | -0.1829 (3)  | 0.52935 (18) | 0.34171 (13) | 0.0390 (7) |  |
| H20C | -0.2314      | 0.4988       | 0.3633       | 0.047*     |  |
| C21C | -0.0688 (2)  | 0.50623 (15) | 0.33220 (11) | 0.0301 (5) |  |
| H21C | -0.0394      | 0.4596       | 0.3471       | 0.036*     |  |
|      |              |              |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | U <sup>22</sup> | $U^{33}$     | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|------|-------------|-----------------|--------------|--------------|--------------|------------------------|
| Со   | 0.0200 (2)  | 0.0188 (2)      | 0.01894 (19) | 0.00065 (14) | 0.00017 (13) | 0.00137 (14)           |
| O1A  | 0.0307 (9)  | 0.0180 (8)      | 0.0235 (8)   | 0.0033 (6)   | -0.0002(7)   | 0.0001 (6)             |
| O2A  | 0.0243 (8)  | 0.0183 (8)      | 0.0228 (8)   | -0.0010 (6)  | -0.0029 (6)  | 0.0006 (6)             |
| O3A  | 0.0395 (12) | 0.0282 (11)     | 0.0885 (18)  | -0.0021 (9)  | 0.0051 (11)  | 0.0192 (11)            |
| C1A  | 0.0228 (11) | 0.0203 (11)     | 0.0254 (11)  | 0.0004 (9)   | 0.0065 (9)   | 0.0006 (9)             |
| C2A  | 0.0256 (11) | 0.0199 (11)     | 0.0227 (11)  | 0.0001 (9)   | 0.0032 (8)   | -0.0004 (9)            |
| C3A  | 0.0237 (11) | 0.0248 (12)     | 0.0255 (11)  | 0.0019 (9)   | 0.0028 (9)   | -0.0005 (9)            |
| C4A  | 0.0236 (11) | 0.0279 (13)     | 0.0283 (12)  | -0.0022 (10) | 0.0057 (9)   | -0.0039 (10)           |
| C5A  | 0.0308 (13) | 0.0221 (12)     | 0.0324 (13)  | -0.0045 (10) | 0.0080 (10)  | -0.0049 (10)           |
| C6A  | 0.0267 (12) | 0.0216 (12)     | 0.0306 (12)  | 0.0018 (9)   | 0.0073 (9)   | -0.0006 (9)            |
| C7A  | 0.0289 (13) | 0.0310 (13)     | 0.0351 (13)  | -0.0049 (10) | 0.0021 (10)  | -0.0078 (11)           |
| C8A  | 0.0196 (10) | 0.0236 (12)     | 0.0225 (11)  | 0.0009 (9)   | 0.0041 (8)   | 0.0005 (9)             |
| C9A  | 0.0197 (10) | 0.0220 (11)     | 0.0254 (11)  | -0.0006 (9)  | 0.0017 (8)   | 0.0022 (9)             |
| C10A | 0.0229 (11) | 0.0230 (12)     | 0.0302 (12)  | -0.0002 (9)  | 0.0022 (9)   | -0.0001 (9)            |
| C11A | 0.0271 (12) | 0.0179 (11)     | 0.0424 (14)  | 0.0010 (9)   | 0.0033 (10)  | 0.0030 (10)            |
| C12A | 0.0261 (12) | 0.0279 (13)     | 0.0378 (14)  | -0.0006 (10) | 0.0014 (10)  | 0.0142 (11)            |
| C13A | 0.0227 (11) | 0.0354 (14)     | 0.0250 (11)  | -0.0021 (10) | 0.0001 (9)   | 0.0057 (10)            |
| C14A | 0.0234 (11) | 0.0251 (12)     | 0.0248 (11)  | 0.0000 (9)   | 0.0022 (9)   | 0.0012 (9)             |
| C15A | 0.0345 (14) | 0.0186 (12)     | 0.0422 (14)  | 0.0000 (10)  | 0.0052 (11)  | 0.0010 (10)            |
| C16A | 0.0329 (13) | 0.0174 (11)     | 0.0345 (13)  | 0.0002 (10)  | 0.0025 (10)  | -0.0046 (10)           |
| C17A | 0.0398 (15) | 0.0253 (13)     | 0.0369 (14)  | 0.0027 (11)  | 0.0029 (11)  | 0.0014 (11)            |
| C18A | 0.0386 (15) | 0.0316 (14)     | 0.0412 (15)  | 0.0050 (12)  | -0.0039 (12) | 0.0014 (12)            |
| C19A | 0.0276 (13) | 0.0315 (14)     | 0.0453 (15)  | 0.0009 (11)  | 0.0014 (11)  | -0.0084 (12)           |
| C20A | 0.0353 (14) | 0.0304 (14)     | 0.0336 (13)  | -0.0008 (11) | 0.0064 (11)  | -0.0043 (11)           |
| C21A | 0.0338 (13) | 0.0237 (12)     | 0.0336 (13)  | 0.0011 (10)  | 0.0027 (10)  | -0.0031 (10)           |
| O1B  | 0.0217 (8)  | 0.0233 (8)      | 0.0205 (7)   | 0.0031 (6)   | 0.0024 (6)   | 0.0048 (6)             |
| O2B  | 0.0236 (8)  | 0.0235 (8)      | 0.0194 (8)   | 0.0016 (6)   | 0.0011 (6)   | 0.0034 (6)             |
| O3B  | 0.0351 (11) | 0.0653 (15)     | 0.0208 (9)   | -0.0087 (10) | -0.0006 (7)  | 0.0042 (9)             |
| C1B  | 0.0215 (11) | 0.0163 (10)     | 0.0211 (10)  | 0.0000 (8)   | -0.0002 (8)  | 0.0008 (8)             |
| C2B  | 0.0240 (11) | 0.0191 (11)     | 0.0206 (10)  | -0.0010 (9)  | 0.0013 (8)   | -0.0007 (8)            |
| C3B  | 0.0256 (12) | 0.0245 (12)     | 0.0208 (11)  | 0.0003 (9)   | 0.0039 (9)   | -0.0008 (9)            |
| C4B  | 0.0241 (12) | 0.0230 (12)     | 0.0299 (12)  | 0.0014 (9)   | 0.0004 (9)   | 0.0020 (9)             |
| C5B  | 0.0243 (11) | 0.0246 (12)     | 0.0274 (12)  | 0.0028 (9)   | -0.0030 (9)  | 0.0054 (9)             |
| C6B  | 0.0257 (12) | 0.0207 (11)     | 0.0226 (11)  | -0.0010 (9)  | 0.0002 (9)   | 0.0027 (9)             |
| C7B  | 0.0259 (12) | 0.0411 (15)     | 0.0349 (14)  | 0.0081 (11)  | 0.0034 (10)  | 0.0052 (12)            |
| C8B  | 0.0237 (11) | 0.0179 (10)     | 0.0192 (10)  | -0.0016 (8)  | 0.0024 (8)   | -0.0017 (8)            |
| C9B  | 0.0241 (11) | 0.0212 (11)     | 0.0212 (11)  | 0.0020 (9)   | 0.0029 (8)   | 0.0030 (9)             |
| C10B | 0.0276 (12) | 0.0283 (12)     | 0.0256 (12)  | -0.0003 (10) | 0.0005 (9)   | 0.0026 (10)            |
| C11B | 0.0239 (12) | 0.0346 (14)     | 0.0407 (14)  | -0.0033 (10) | 0.0034 (10)  | 0.0106 (12)            |
| C12B | 0.0274 (13) | 0.0556 (19)     | 0.0313 (13)  | 0.0029 (12)  | 0.0067 (10)  | 0.0189 (13)            |
| C13B | 0.0306 (13) | 0.0591 (19)     | 0.0201 (11)  | 0.0046 (13)  | 0.0016 (10)  | 0.0069 (12)            |
| C14B | 0.0268 (12) | 0.0340 (14)     | 0.0230 (12)  | -0.0009 (10) | 0.0005 (9)   | 0.0009 (10)            |
| C15B | 0.0282 (12) | 0.0268 (12)     | 0.0241 (12)  | 0.0036 (10)  | -0.0001 (9)  | 0.0071 (9)             |
| C16B | 0.0299 (12) | 0.0249 (12)     | 0.0252 (11)  | 0.0036 (10)  | 0.0018 (9)   | 0.0101 (9)             |
| C17B | 0.0340 (14) | 0.0298 (13)     | 0.0330 (13)  | -0.0019 (11) | 0.0060 (10)  | 0.0049 (11)            |
| C18B | 0.0396 (15) | 0.0323 (15)     | 0.0445 (16)  | -0.0046 (12) | 0.0044 (12)  | 0.0008 (12)            |
| C19B | 0.0308 (14) | 0.0308 (14)     | 0.0507 (17)  | -0.0026 (11) | 0.0099 (12)  | 0.0103 (12)            |

| C20B | 0.0326 (13) | 0.0368 (15) | 0.0350 (14) | 0.0075 (11)  | 0.0103 (11)  | 0.0121 (11)  |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C21B | 0.0294 (12) | 0.0317 (13) | 0.0277 (12) | 0.0062 (10)  | 0.0029 (10)  | 0.0087 (10)  |
| 01C  | 0.0256 (8)  | 0.0210 (8)  | 0.0219 (8)  | -0.0029 (6)  | -0.0016 (6)  | -0.0004 (6)  |
| O2C  | 0.0221 (8)  | 0.0244 (9)  | 0.0226 (8)  | 0.0004 (6)   | 0.0018 (6)   | 0.0005 (6)   |
| O3C  | 0.0320 (10) | 0.0247 (9)  | 0.0420 (10) | 0.0010 (8)   | -0.0037 (8)  | 0.0058 (8)   |
| C1C  | 0.0210 (11) | 0.0205 (11) | 0.0226 (11) | 0.0006 (9)   | -0.0004 (8)  | -0.0011 (9)  |
| C2C  | 0.0262 (11) | 0.0213 (11) | 0.0249 (11) | 0.0021 (9)   | 0.0018 (9)   | -0.0013 (9)  |
| C3C  | 0.0324 (13) | 0.0288 (13) | 0.0226 (11) | 0.0015 (10)  | 0.0036 (9)   | -0.0001 (9)  |
| C4C  | 0.0374 (14) | 0.0350 (14) | 0.0223 (11) | 0.0018 (11)  | -0.0033 (10) | -0.0015 (10) |
| C5C  | 0.0285 (12) | 0.0302 (13) | 0.0289 (12) | -0.0031 (10) | -0.0032 (9)  | -0.0053 (10) |
| C6C  | 0.0226 (11) | 0.0216 (11) | 0.0269 (11) | 0.0002 (9)   | 0.0002 (9)   | -0.0013 (9)  |
| C7C  | 0.0485 (17) | 0.0557 (19) | 0.0249 (13) | -0.0068 (15) | -0.0050 (12) | 0.0002 (13)  |
| C8C  | 0.0251 (12) | 0.0187 (11) | 0.0259 (11) | 0.0047 (9)   | 0.0035 (9)   | 0.0015 (9)   |
| C9C  | 0.0252 (12) | 0.0239 (12) | 0.0273 (12) | 0.0025 (9)   | 0.0040 (9)   | 0.0028 (9)   |
| C10C | 0.0298 (12) | 0.0249 (12) | 0.0282 (12) | -0.0001 (10) | -0.0019 (9)  | 0.0037 (10)  |
| C11C | 0.0311 (14) | 0.0313 (14) | 0.0389 (15) | -0.0044 (11) | -0.0007 (11) | 0.0088 (11)  |
| C12C | 0.0408 (16) | 0.0409 (16) | 0.0437 (16) | -0.0028 (13) | 0.0172 (12)  | 0.0117 (13)  |
| C13C | 0.0497 (18) | 0.0371 (16) | 0.0420 (16) | 0.0002 (14)  | 0.0234 (14)  | -0.0006 (13) |
| C14C | 0.0384 (15) | 0.0276 (13) | 0.0380 (14) | -0.0024 (11) | 0.0135 (11)  | -0.0014 (11) |
| C15C | 0.0253 (11) | 0.0204 (11) | 0.0271 (11) | -0.0028 (9)  | -0.0032 (9)  | -0.0031 (9)  |
| C16C | 0.0240 (11) | 0.0220 (11) | 0.0287 (12) | -0.0027 (9)  | -0.0025 (9)  | -0.0031 (9)  |
| C17C | 0.0284 (12) | 0.0244 (12) | 0.0380 (14) | 0.0003 (10)  | -0.0032 (10) | -0.0006 (10) |
| C18C | 0.0306 (14) | 0.0328 (15) | 0.0550 (18) | 0.0074 (11)  | -0.0058 (12) | -0.0044 (13) |
| C19C | 0.0243 (13) | 0.0443 (17) | 0.0567 (18) | -0.0012 (12) | 0.0039 (12)  | -0.0182 (14) |
| C20C | 0.0339 (14) | 0.0375 (16) | 0.0462 (16) | -0.0108 (12) | 0.0096 (12)  | -0.0122 (13) |
| C21C | 0.0304 (13) | 0.0256 (12) | 0.0343 (13) | -0.0076 (10) | 0.0032 (10)  | -0.0033 (10) |
|      |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Co-O1B   | 1.9063 (16) | C9B—C10B  | 1.390 (4) |
|----------|-------------|-----------|-----------|
| Co—O1C   | 1.9414 (17) | C9B—C14B  | 1.391 (3) |
| Co—O1A   | 1.9470 (17) | C10B—C11B | 1.390 (4) |
| Co—O2B   | 1.9682 (17) | C10B—H10B | 0.9500    |
| Co—O2C   | 1.9749 (17) | C11B—C12B | 1.388 (4) |
| Co—O2A   | 1.9793 (16) | C11B—H11B | 0.9500    |
| O1A—C1A  | 1.279 (3)   | C12B—C13B | 1.383 (4) |
| O2A—C8A  | 1.247 (3)   | C12B—H12B | 0.9500    |
| O3A—C15A | 1.222 (3)   | C13B—C14B | 1.389 (4) |
| C1A—C2A  | 1.432 (3)   | C13B—H13B | 0.9500    |
| C1A—C6A  | 1.435 (3)   | C14B—H14B | 0.9500    |
| C2A—C3A  | 1.413 (3)   | C15B—C16B | 1.487 (4) |
| C2A—C8A  | 1.459 (3)   | C16B—C17B | 1.391 (4) |
| C3A—C4A  | 1.387 (4)   | C16B—C21B | 1.402 (4) |
| СЗА—НЗАА | 0.9500      | C17B—C18B | 1.387 (4) |
| C4A—C5A  | 1.401 (4)   | C17B—H17B | 0.9500    |
| C4A—C7A  | 1.510 (3)   | C18B—C19B | 1.389 (4) |
| C5A—C6A  | 1.386 (4)   | C18B—H18B | 0.9500    |
| C5A—H5AA | 0.9500      | C19B—C20B | 1.390 (4) |
| C6A—C15A | 1.495 (4)   | C19B—H19B | 0.9500    |
| C7A—H7AA | 0.9800      | C20B—C21B | 1.380 (4) |
|          |             |           |           |

| С7А—Н7АВ   | 0.9800     | C20B—H20B     | 0.9500    |
|------------|------------|---------------|-----------|
| C7A—H7AC   | 0.9800     | C21B—H21B     | 0.9500    |
| C8A—C9A    | 1.488 (3)  | 01C—C1C       | 1.306 (3) |
| C9A—C10A   | 1.399 (3)  | O2C—C8C       | 1.257 (3) |
| C9A—C14A   | 1.399 (3)  | O3C—C15C      | 1.224 (3) |
| C10A—C11A  | 1.384 (4)  | C1C—C6C       | 1.421 (3) |
| C10A—H10A  | 0.9500     | C1C—C2C       | 1.436 (3) |
| C11A—C12A  | 1.394 (4)  | C2C—C3C       | 1.418 (3) |
| C11A—H11A  | 0.9500     | C2C—C8C       | 1.447 (3) |
| C12A—C13A  | 1.386 (4)  | C3C—C4C       | 1.375 (4) |
| C12A—H12A  | 0.9500     | СЗС—НЗСА      | 0.9500    |
| C13A—C14A  | 1.389 (4)  | C4C—C5C       | 1.400 (4) |
| C13A—H13A  | 0.9500     | C4C—C7C       | 1.506 (4) |
| C14A—H14A  | 0.9500     | C5C—C6C       | 1.383 (3) |
| C15A—C16A  | 1.497 (4)  | C5C—H5CA      | 0.9500    |
| C16A—C17A  | 1.392 (4)  | C6C—C15C      | 1.496 (3) |
| C16A—C21A  | 1.394 (4)  | C7C—H7CA      | 0.9800    |
| C17A—C18A  | 1.390 (4)  | С7С—Н7СВ      | 0.9800    |
| C17A—H17A  | 0.9500     | C7C—H7CC      | 0.9800    |
| C18A—C19A  | 1.382 (4)  | C8C—C9C       | 1.490 (3) |
| C18A—H18A  | 0.9500     | C9C—C14C      | 1.389 (4) |
| C19A—C20A  | 1.384 (4)  | C9C—C10C      | 1.394 (4) |
| C19A—H19A  | 0.9500     | C10C—C11C     | 1.388 (4) |
| C20A—C21A  | 1.388 (4)  | C10C—H10C     | 0.9500    |
| C20A—H20A  | 0.9500     | C11C—C12C     | 1.386 (5) |
| C21A—H21A  | 0.9500     | C11C—H11C     | 0.9500    |
| O1B—C1B    | 1.290 (3)  | C12C—C13C     | 1.387 (5) |
| O2B—C8B    | 1.256 (3)  | C12C—H12C     | 0.9500    |
| O3B—C15B   | 1.219 (3)  | C13C—C14C     | 1.392 (4) |
| C1B—C6B    | 1.429 (3)  | C13C—H13C     | 0.9500    |
| C1B—C2B    | 1.437 (3)  | C14C—H14C     | 0.9500    |
| C2B—C3B    | 1.415 (3)  | C15C—C16C     | 1.491 (3) |
| C2B—C8B    | 1.443 (3)  | C16C—C21C     | 1.394 (4) |
| C3B—C4B    | 1.379 (3)  | C16C—C17C     | 1.400 (4) |
| СЗВ—НЗВА   | 0.9500     | C17C—C18C     | 1.387 (4) |
| C4B—C5B    | 1.407 (3)  | C17C—H17C     | 0.9500    |
| C4B—C7B    | 1.513 (3)  | C18C—C19C     | 1.391 (5) |
| C5B—C6B    | 1.377 (3)  | C18C—H18C     | 0.9500    |
| C5B—H5BA   | 0.9500     | C19C—C20C     | 1.394 (5) |
| C6B—C15B   | 1.511 (3)  | С19С—Н19С     | 0.9500    |
| С7В—Н7ВА   | 0.9800     | C20C—C21C     | 1.382 (4) |
| C7B—H7BB   | 0.9800     | C20C—H20C     | 0.9500    |
| C7B—H7BC   | 0.9800     | C21C—H21C     | 0.9500    |
| C8B—C9B    | 1.499 (3)  |               |           |
| 01B—Co—01C | 89.93 (7)  | O2B—C8B—C9B   | 113.7 (2) |
| O1B—Co—O1A | 91.73 (7)  | C2B—C8B—C9B   | 121.5 (2) |
| O1C—Co—O1A | 178.32 (7) | C10B—C9B—C14B | 120.0 (2) |
| O1B—Co—O2B | 90.02 (7)  | C10B—C9B—C8B  | 120.0 (2) |

| O1C—Co—O2B     | 90.44 (7)   | C14B—C9B—C8B   | 119.5 (2)   |
|----------------|-------------|----------------|-------------|
| O1A—Co—O2B     | 89.35 (7)   | C11B—C10B—C9B  | 119.9 (2)   |
| O1B—Co—O2C     | 88.19 (7)   | C11B—C10B—H10B | 120.1       |
| O1C—Co—O2C     | 87.01 (7)   | C9B-C10B-H10B  | 120.1       |
| O1A—Co—O2C     | 93.25 (7)   | C12B—C11B—C10B | 119.8 (3)   |
| O2B—Co—O2C     | 176.88 (7)  | C12B—C11B—H11B | 120.1       |
| O1B—Co—O2A     | 178.76 (7)  | C10B—C11B—H11B | 120.1       |
| O1C—Co—O2A     | 89.87 (7)   | C13B—C12B—C11B | 120.3 (2)   |
| O1A—Co—O2A     | 88.47 (7)   | C13B—C12B—H12B | 119.8       |
| O2B—Co—O2A     | 88.75 (7)   | C11B—C12B—H12B | 119.8       |
| O2C—Co—O2A     | 93.02 (7)   | C12B—C13B—C14B | 120.0 (3)   |
| C1A—O1A—Co     | 129.76 (16) | C12B—C13B—H13B | 120.0       |
| C8A—O2A—Co     | 130.35 (16) | C14B—C13B—H13B | 120.0       |
| O1A—C1A—C2A    | 125.2 (2)   | C13B—C14B—C9B  | 119.8 (2)   |
| O1A—C1A—C6A    | 118.1 (2)   | C13B—C14B—H14B | 120.1       |
| C2A—C1A—C6A    | 116.7 (2)   | C9B—C14B—H14B  | 120.1       |
| C3A—C2A—C1A    | 119.6 (2)   | O3B-C15B-C16B  | 120.7 (2)   |
| C3A—C2A—C8A    | 120.6 (2)   | O3B-C15B-C6B   | 117.5 (2)   |
| C1A—C2A—C8A    | 119.8 (2)   | C16B—C15B—C6B  | 121.8 (2)   |
| C4A—C3A—C2A    | 122.4 (2)   | C17B—C16B—C21B | 118.9 (2)   |
| С4А—С3А—НЗАА   | 118.8       | C17B—C16B—C15B | 122.1 (2)   |
| С2А—С3А—НЗАА   | 118.8       | C21B—C16B—C15B | 118.8 (2)   |
| C3A—C4A—C5A    | 117.5 (2)   | C18B—C17B—C16B | 120.5 (3)   |
| C3A—C4A—C7A    | 121.0 (2)   | C18B—C17B—H17B | 119.8       |
| C5A—C4A—C7A    | 121.5 (2)   | C16B—C17B—H17B | 119.8       |
| C6A—C5A—C4A    | 122.3 (2)   | C17B—C18B—C19B | 120.2 (3)   |
| С6А—С5А—Н5АА   | 118.8       | C17B—C18B—H18B | 119.9       |
| С4А—С5А—Н5АА   | 118.8       | C19B—C18B—H18B | 119.9       |
| C5A—C6A—C1A    | 120.5 (2)   | C18B—C19B—C20B | 119.6 (3)   |
| C5A—C6A—C15A   | 118.8 (2)   | C18B—C19B—H19B | 120.2       |
| C1A—C6A—C15A   | 120.4 (2)   | C20B—C19B—H19B | 120.2       |
| С4А—С7А—Н7АА   | 109.5       | C21B—C20B—C19B | 120.3 (3)   |
| C4A—C7A—H7AB   | 109.5       | C21B-C20B-H20B | 119.8       |
| Н7АА—С7А—Н7АВ  | 109.5       | C19B-C20B-H20B | 119.8       |
| C4A—C7A—H7AC   | 109.5       | C20B—C21B—C16B | 120.4 (3)   |
| Н7АА—С7А—Н7АС  | 109.5       | C20B—C21B—H21B | 119.8       |
| Н7АВ—С7А—Н7АС  | 109.5       | C16B—C21B—H21B | 119.8       |
| O2A—C8A—C2A    | 123.8 (2)   | C1C—O1C—Co     | 118.70 (15) |
| O2A—C8A—C9A    | 115.0 (2)   | C8C—O2C—Co     | 124.66 (16) |
| C2A—C8A—C9A    | 121.2 (2)   | O1C—C1C—C6C    | 119.0 (2)   |
| C10A—C9A—C14A  | 119.2 (2)   | O1C—C1C—C2C    | 123.7 (2)   |
| C10A—C9A—C8A   | 118.1 (2)   | C6C—C1C—C2C    | 117.2 (2)   |
| C14A—C9A—C8A   | 122.5 (2)   | C3C—C2C—C1C    | 119.0 (2)   |
| C11A—C10A—C9A  | 120.2 (2)   | C3C—C2C—C8C    | 121.0 (2)   |
| C11A—C10A—H10A | 119.9       | C1C—C2C—C8C    | 119.9 (2)   |
| C9A—C10A—H10A  | 119.9       | C4C—C3C—C2C    | 122.8 (2)   |
| C10A—C11A—C12A | 120.3 (2)   | С4С—С3С—Н3СА   | 118.6       |
| C10A—C11A—H11A | 119.9       | С2С—С3С—Н3СА   | 118.6       |
| C12A—C11A—H11A | 119.9       | C3C—C4C—C5C    | 117.6 (2)   |

| C13A—C12A—C11A | 119.8 (2)   | C3C—C4C—C7C    | 121.5 (3) |
|----------------|-------------|----------------|-----------|
| C13A—C12A—H12A | 120.1       | C5C—C4C—C7C    | 120.9 (3) |
| C11A—C12A—H12A | 120.1       | C6C—C5C—C4C    | 122.2 (2) |
| C12A—C13A—C14A | 120.3 (2)   | C6C—C5C—H5CA   | 118.9     |
| C12A—C13A—H13A | 119.8       | C4C—C5C—H5CA   | 118.9     |
| C14A—C13A—H13A | 119.8       | C5C—C6C—C1C    | 121.0 (2) |
| C13A—C14A—C9A  | 120.1 (2)   | C5C—C6C—C15C   | 119.8 (2) |
| C13A—C14A—H14A | 119.9       | C1C—C6C—C15C   | 119.2 (2) |
| C9A—C14A—H14A  | 119.9       | C4C—C7C—H7CA   | 109.5     |
| O3A—C15A—C6A   | 120.2 (3)   | C4C—C7C—H7CB   | 109.5     |
| O3A—C15A—C16A  | 119.7 (3)   | H7CA—C7C—H7CB  | 109.5     |
| C6A—C15A—C16A  | 120.1 (2)   | C4C—C7C—H7CC   | 109.5     |
| C17A—C16A—C21A | 119.1 (3)   | H7CA—C7C—H7CC  | 109.5     |
| C17A—C16A—C15A | 118.6 (2)   | H7CB—C7C—H7CC  | 109.5     |
| C21A—C16A—C15A | 122.3 (2)   | O2C—C8C—C2C    | 123.3 (2) |
| C18A—C17A—C16A | 120.9 (3)   | O2C—C8C—C9C    | 115.1 (2) |
| C18A—C17A—H17A | 119.6       | C2C—C8C—C9C    | 121.6 (2) |
| C16A—C17A—H17A | 119.6       | C14C—C9C—C10C  | 119.6 (2) |
| C19A—C18A—C17A | 119.5 (3)   | C14C—C9C—C8C   | 122.9 (2) |
| C19A—C18A—H18A | 120.3       | C10C—C9C—C8C   | 117.4 (2) |
| C17A—C18A—H18A | 120.3       | C11C—C10C—C9C  | 120.3 (3) |
| C18A—C19A—C20A | 120.1 (3)   | C11C—C10C—H10C | 119.8     |
| C18A—C19A—H19A | 120.0       | C9C—C10C—H10C  | 119.8     |
| C20A—C19A—H19A | 120.0       | C12C—C11C—C10C | 119.8 (3) |
| C19A—C20A—C21A | 120.6 (3)   | C12C—C11C—H11C | 120.1     |
| C19A—C20A—H20A | 119.7       | C10C—C11C—H11C | 120.1     |
| C21A—C20A—H20A | 119.7       | C11C—C12C—C13C | 120.2 (3) |
| C20A—C21A—C16A | 119.8 (3)   | C11C—C12C—H12C | 119.9     |
| C20A—C21A—H21A | 120.1       | C13C—C12C—H12C | 119.9     |
| C16A—C21A—H21A | 120.1       | C12C—C13C—C14C | 120.1 (3) |
| C1B—O1B—Co     | 129.72 (14) | C12C—C13C—H13C | 120.0     |
| C8B—O2B—Co     | 128.88 (15) | C14C—C13C—H13C | 120.0     |
| O1B—C1B—C6B    | 117.9 (2)   | C9C—C14C—C13C  | 120.0 (3) |
| O1B—C1B—C2B    | 125.1 (2)   | C9C—C14C—H14C  | 120.0     |
| C6B—C1B—C2B    | 117.0 (2)   | C13C—C14C—H14C | 120.0     |
| C3B—C2B—C1B    | 119.3 (2)   | O3C—C15C—C16C  | 121.0 (2) |
| C3B—C2B—C8B    | 120.1 (2)   | O3C—C15C—C6C   | 120.5 (2) |
| C1B—C2B—C8B    | 120.6 (2)   | C16C—C15C—C6C  | 118.5 (2) |
| C4B—C3B—C2B    | 122.6 (2)   | C21C—C16C—C17C | 119.3 (2) |
| С4В—С3В—Н3ВА   | 118.7       | C21C—C16C—C15C | 118.7 (2) |
| С2В—С3В—Н3ВА   | 118.7       | C17C—C16C—C15C | 122.0 (2) |
| C3B—C4B—C5B    | 117.4 (2)   | C18C—C17C—C16C | 120.1 (3) |
| C3B—C4B—C7B    | 121.3 (2)   | C18C—C17C—H17C | 120.0     |
| C5B—C4B—C7B    | 121.3 (2)   | C16C—C17C—H17C | 120.0     |
| C6B—C5B—C4B    | 122.4 (2)   | C17C—C18C—C19C | 120.3 (3) |
| C6B—C5B—H5BA   | 118.8       | C17C—C18C—H18C | 119.8     |
| C4B—C5B—H5BA   | 118.8       | C19C—C18C—H18C | 119.8     |
| C5B—C6B—C1B    | 120.8 (2)   | C18C—C19C—C20C | 119.6 (3) |
| C5B—C6B—C15B   | 118.9 (2)   | C18C—C19C—H19C | 120.2     |

| CIR CAR CISP                             | 110.0(2)          | C20C C10C H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.2             |
|------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| CAP C7P H7PA                             | 119.9 (2)         | $C_{20}C = C_{19}C = 119C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.2<br>120.2(3) |
| C4B = C7B = H7BR                         | 109.5             | $C_{21}C_{-}C_{20}C_{-}C_{19}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}C_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{-}H_{20}C_{$ | 120.2(3)          |
| $C_{4}D_{-}C_{7}D_{-}\Pi_{7}DD$          | 109.5             | $C_{21}C_{-}C_{20}C_{-}H_{20}C_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.9             |
| $\Pi/DA - C/D - \Pi/DD$                  | 109.5             | $C_{19} = C_{20} = C_{12} = C$ | 119.9<br>120.5(2) |
| U7DA C7D U7DC                            | 109.5             | $C_{20}C_{-}C_{21}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{-}C_{10}C_{$ | 120.3(3)          |
| $\Pi/BA - C/B - \Pi/BC$                  | 109.5             | $C_{20}C_{-}C_{21}C_{-}H_{21}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.7             |
| n/bb - C/b - n/bC                        | 109.3<br>124.7(2) | C10C—C21C—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.7             |
| 02B                                      | 124.7 (2)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| $O_{1}D_{1}C_{2}$ $O_{1}A_{1}C_{1}A_{2}$ | 1722(2)           | C2D C2D C2D C0D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 1 (2)          |
| $OIB = C_0 = OIA = CIA$                  | -1/2.3(2)         | $C_{3B} = C_{2B} = C_{8B} = C_{9B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.1(3)           |
| 02B - Co - 01A - C1A                     | 97.7(2)           | CIB - C2B - C8B - C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1/0.4(2)         |
| 02C - Co - OIA - CIA                     | -84.0(2)          | 02B-C8B-C9B-C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -121.5 (2)        |
| 02A—Co—OIA—CIA                           | 9.0 (2)           | C2B—C8B—C9B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.5 (3)          |
| OIC—Co—O2A—C8A                           | -179.2(2)         | 02B—C8B—C9B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.4 (3)          |
| OIA—Co—O2A—C8A                           | 0.7 (2)           | C2B—C8B—C9B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -129.7 (3)        |
| O2B—Co—O2A—C8A                           | -88.7 (2)         | C14B—C9B—C10B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.1 (4)          |
| O2C—Co—O2A—C8A                           | 93.8 (2)          | C8B—C9B—C10B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 171.7 (2)         |
| Co-OIA-CIA-C2A                           | -5.2 (3)          | C9B—C10B—C11B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0 (4)           |
| Co—O1A—C1A—C6A                           | 174.29 (16)       | C10B—C11B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.8 (5)          |
| O1A—C1A—C2A—C3A                          | 169.3 (2)         | C11B—C12B—C13B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.3 (5)          |
| C6A—C1A—C2A—C3A                          | -10.1 (3)         | C12B—C13B—C14B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.1 (4)           |
| O1A—C1A—C2A—C8A                          | -9.9 (4)          | C10B—C9B—C14B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.9 (4)          |
| C6A—C1A—C2A—C8A                          | 170.6 (2)         | C8B—C9B—C14B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -174.8 (2)        |
| C1A—C2A—C3A—C4A                          | 4.1 (4)           | C5B—C6B—C15B—O3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -46.5 (4)         |
| C8A—C2A—C3A—C4A                          | -176.7 (2)        | C1B—C6B—C15B—O3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 126.7 (3)         |
| C2A—C3A—C4A—C5A                          | 3.0 (4)           | C5B—C6B—C15B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129.9 (3)         |
| C2A—C3A—C4A—C7A                          | -177.0 (2)        | C1B—C6B—C15B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -56.9 (3)         |
| C3A—C4A—C5A—C6A                          | -3.6 (4)          | O3B-C15B-C16B-C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160.0 (3)         |
| C7A—C4A—C5A—C6A                          | 176.4 (2)         | C6B-C15B-C16B-C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -16.3 (4)         |
| C4A—C5A—C6A—C1A                          | -2.9 (4)          | O3B-C15B-C16B-C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -14.6 (4)         |
| C4A—C5A—C6A—C15A                         | -177.9 (2)        | C6B-C15B-C16B-C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 169.1 (2)         |
| O1A—C1A—C6A—C5A                          | -169.9 (2)        | C21B—C16B—C17B—C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5 (4)           |
| C2A—C1A—C6A—C5A                          | 9.6 (3)           | C15B—C16B—C17B—C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -172.0 (3)        |
| O1A—C1A—C6A—C15A                         | 5.1 (3)           | C16B—C17B—C18B—C19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.3 (4)          |
| C2A—C1A—C6A—C15A                         | -175.4 (2)        | C17B—C18B—C19B—C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.0(5)           |
| Co—O2A—C8A—C2A                           | -13.9 (3)         | C18B—C19B—C20B—C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9 (4)           |
| Co—O2A—C8A—C9A                           | 165.00 (15)       | C19B—C20B—C21B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.6 (4)          |
| C3A—C2A—C8A—O2A                          | -159.7 (2)        | C17B—C16B—C21B—C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6(4)           |
| C1A—C2A—C8A—O2A                          | 19.6 (3)          | C15B—C16B—C21B—C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173.2 (2)         |
| C3A—C2A—C8A—C9A                          | 21.5 (3)          | O1B—Co—O1C—C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.09 (17)        |
| C1A—C2A—C8A—C9A                          | -159.2 (2)        | O2B—Co—O1C—C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129.11 (17)       |
| O2A—C8A—C9A—C10A                         | 31.2 (3)          | O2C—Co—O1C—C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -49.11 (17)       |
| C2A—C8A—C9A—C10A                         | -149.9(2)         | O2A—Co—O1C—C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -142.14 (17)      |
| O2A—C8A—C9A—C14A                         | -143.8(2)         | O1B—Co—O2C—C8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -52.61 (19)       |
| C2A—C8A—C9A—C14A                         | 35.1 (3)          | $01C - C_0 - 02C - C_8C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.41 (19)        |
| C14A - C9A - C10A - C11A                 | -3.3 (4)          | O1A— $Co$ — $O2C$ — $C8C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -144.25 (19)      |
| C8A - C9A - C10A - C11A                  | -178.5 (2)        | $02A - C_0 - 02C - C_8C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.12 (19)       |
| C9A-C10A-C11A-C12A                       | 2.2 (4)           | $C_0 - 01C - C1C - C6C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -141.27(18)       |
| C10A - C11A - C12A - C13A                | 0.4(4)            | $C_0 - 01C - C1C - C2C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.7 (3)          |
|                                          | ··· ( · /         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)               |

| C11A—C12A—C13A—C14A       | -1.8 (4)    | 01C—C1C—C2C—C3C          | -175.6 (2)  |
|---------------------------|-------------|--------------------------|-------------|
| C12A—C13A—C14A—C9A        | 0.6 (4)     | C6C—C1C—C2C—C3C          | 3.4 (3)     |
| C10A—C9A—C14A—C13A        | 1.9 (4)     | 01C—C1C—C2C—C8C          | 3.8 (4)     |
| C8A—C9A—C14A—C13A         | 176.8 (2)   | C6C—C1C—C2C—C8C          | -177.2 (2)  |
| C5A—C6A—C15A—O3A          | 36.1 (4)    | C1C—C2C—C3C—C4C          | -1.6 (4)    |
| C1A—C6A—C15A—O3A          | -139.0 (3)  | C8C—C2C—C3C—C4C          | 179.0 (2)   |
| C5A—C6A—C15A—C16A         | -141.4 (3)  | C2C—C3C—C4C—C5C          | -0.5 (4)    |
| C1A—C6A—C15A—C16A         | 43.6 (4)    | C2C—C3C—C4C—C7C          | 179.0 (3)   |
| O3A—C15A—C16A—C17A        | 31.6 (4)    | C3C—C4C—C5C—C6C          | 0.8 (4)     |
| C6A—C15A—C16A—C17A        | -150.9 (3)  | C7C—C4C—C5C—C6C          | -178.8(3)   |
| O3A—C15A—C16A—C21A        | -145.5 (3)  | C4C—C5C—C6C—C1C          | 1.2 (4)     |
| C6A—C15A—C16A—C21A        | 31.9 (4)    | C4C—C5C—C6C—C15C         | 178.6 (2)   |
| C21A—C16A—C17A—C18A       | -1.0 (4)    | 01C—C1C—C6C—C5C          | 175.8 (2)   |
| C15A—C16A—C17A—C18A       | -178.2 (3)  | C2C—C1C—C6C—C5C          | -3.2 (4)    |
| C16A—C17A—C18A—C19A       | 2.0 (4)     | 01C—C1C—C6C—C15C         | -1.6(3)     |
| C17A—C18A—C19A—C20A       | -1.3 (4)    | C2C—C1C—C6C—C15C         | 179.4 (2)   |
| C18A—C19A—C20A—C21A       | -0.5 (4)    | Co-02C-C8C-C2C           | -10.6(3)    |
| C19A—C20A—C21A—C16A       | 1.6 (4)     | Co-O2C-C8C-C9C           | 169.42 (15) |
| C17A—C16A—C21A—C20A       | -0.8 (4)    | C3C—C2C—C8C—O2C          | 160.4 (2)   |
| C15A—C16A—C21A—C20A       | 176.3 (2)   | C1C—C2C—C8C—O2C          | -18.9(4)    |
| 01C—Co—O1B—C1B            | 86.8 (2)    | C3C—C2C—C8C—C9C          | -19.5 (4)   |
| O1A—Co—O1B—C1B            | -93.0 (2)   | C1C—C2C—C8C—C9C          | 161.1 (2)   |
| O2B—Co—O1B—C1B            | -3.6(2)     | O2C—C8C—C9C—C14C         | 145.7 (3)   |
| O2C—Co—O1B—C1B            | 173.8 (2)   | C2C—C8C—C9C—C14C         | -34.3 (4)   |
| O1B—Co—O2B—C8B            | 9.7 (2)     | O2C—C8C—C9C—C10C         | -32.4(3)    |
| O1C—Co—O2B—C8B            | -80.2(2)    | C2C—C8C—C9C—C10C         | 147.5 (2)   |
| O1A—Co—O2B—C8B            | 101.5 (2)   | C14C—C9C—C10C—C11C       | -0.4(4)     |
| O2A— $Co$ — $O2B$ — $C8B$ | -170.1(2)   | C8C—C9C—C10C—C11C        | 177.8 (2)   |
| Co-01B-C1B-C6B            | -175.28(16) | C9C—C10C—C11C—C12C       | -0.4(4)     |
| Co-01B-C1B-C2B            | 1.2 (3)     | C10C—C11C—C12C—C13C      | 1.1 (5)     |
| 01B-C1B-C2B-C3B           | 176.5 (2)   | C11C—C12C—C13C—C14C      | -0.9(5)     |
| C6B-C1B-C2B-C3B           | -7.0(3)     | C10C - C9C - C14C - C13C | 0.6 (4)     |
| 01B-C1B-C2B-C8B           | -2.1(4)     | C8C—C9C—C14C—C13C        | -177.5(3)   |
| C6B-C1B-C2B-C8B           | 174.5 (2)   | C12C-C13C-C14C-C9C       | 0.0(5)      |
| C1B-C2B-C3B-C4B           | 2.8 (4)     | C5C - C6C - C15C - O3C   | 116.0(3)    |
| C8B-C2B-C3B-C4B           | -178.7(2)   | C1C—C6C—C15C—O3C         | -66.6(3)    |
| C2B-C3B-C4B-C5B           | 3.3 (4)     | C5C—C6C—C15C—C16C        | -63.3(3)    |
| C2B-C3B-C4B-C7B           | -178.4(2)   | C1C—C6C—C15C—C16C        | 114.1 (3)   |
| C3B—C4B—C5B—C6B           | -5.1(4)     | 03C-C15C-C16C-C21C       | -7.4(4)     |
| C7B-C4B-C5B-C6B           | 176.6 (3)   | C6C - C15C - C16C - C21C | 171.9 (2)   |
| C4B-C5B-C6B-C1B           | 0.6 (4)     | O3C-C15C-C16C-C17C       | 171.2 (2)   |
| C4B—C5B—C6B—C15B          | 173.7 (2)   | C6C—C15C—C16C—C17C       | -9.5(3)     |
| 01B—C1B—C6B—C5B           | -177.8(2)   | C21C—C16C—C17C—C18C      | 0.1 (4)     |
| C2B-C1B-C6B-C5B           | 5.4 (3)     | C15C—C16C—C17C—C18C      | -178.5(2)   |
| O1B—C1B—C6B—C15B          | 9.2 (3)     | C16C—C17C—C18C—C19C      | 0.3 (4)     |
| C2B-C1B-C6B-C15B          | -167.6(2)   | C17C-C18C-C19C-C20C      | -0.3(5)     |
| Co-O2B-C8B-C2B            | -13.4 (3)   | C18C—C19C—C20C—C21C      | -0.1(5)     |
| Co-O2B-C8B-C9B            | 165.51 (15) | C19C—C20C—C21C—C16C      | 0.4 (4)     |
| C3B—C2B—C8B—O2B           | -170.1 (2)  | C17C—C16C—C21C—C20C      | -0.4 (4)    |
|                           | × /         |                          | \ /         |

| C1B—C2B—C8B—O2B 8.4 (4) | C15C—C16C—C21C—C20C 178.2 (2) |
|-------------------------|-------------------------------|
|-------------------------|-------------------------------|

### Hydrogen-bond geometry (Å, °)

Cg7, Cg9, Cg11 and Cg12 are the centroids of the C9A–C14A, C9C–C14C, C16B–C21B and C16C–C21C rings, respectively.

| <i>D</i> —H··· <i>A</i>                                   | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |  |
|-----------------------------------------------------------|-------------|-------|--------------|---------|--|
| $C12A$ —H12 $A$ ···O2 $B^{i}$                             | 0.95        | 2.60  | 3.442 (3)    | 147     |  |
| C13 <i>A</i> —H13 <i>A</i> ···O3 <i>C</i> <sup>i</sup>    | 0.95        | 2.48  | 3.278 (3)    | 141     |  |
| C13 <i>B</i> —H13 <i>B</i> ···O3 <i>B</i> <sup>ii</sup>   | 0.95        | 2.39  | 3.311 (3)    | 162     |  |
| C11 <i>C</i> —H11 <i>C</i> ···O3 <i>C</i> <sup>iii</sup>  | 0.95        | 2.40  | 3.313 (3)    | 161     |  |
| C10B—H10B…Cg12                                            | 0.95        | 2.70  | 3.634 (3)    | 166     |  |
| C11 <i>B</i> —H11 <i>B</i> ···· <i>Cg</i> 7 <sup>iv</sup> | 0.95        | 2.72  | 3.479 (3)    | 137     |  |
| C18C—H18C····Cg9 <sup>iv</sup>                            | 0.95        | 2.99  | 3.720 (4)    | 135     |  |
| $C20C$ — $H20C$ ··· $Cg11^{v}$                            | 0.95        | 2.88  | 3.332 (3)    | 110     |  |
|                                                           |             |       |              |         |  |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+3/2, z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) x+1, y, z; (v) -x+2, y-1/2, -z+1/2.