
Citation: Cladel, N.M.; Xu, J.;

Peng, X.; Jiang, P.; Christensen, N.D.;

Zheng, Z.-M.; Hu, J. Modeling

HPV-Associated Disease and Cancer

Using the Cottontail Rabbit

Papillomavirus. Viruses 2022, 14, 1964.

https://doi.org/10.3390/v14091964

Academic Editors: Megan Spurgeon

and Sanghyuk Chung

Received: 18 July 2022

Accepted: 1 September 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Modeling HPV-Associated Disease and Cancer Using the
Cottontail Rabbit Papillomavirus
Nancy M. Cladel 1,2 , Jie Xu 3 , Xuwen Peng 4, Pengfei Jiang 5 , Neil D. Christensen 1,2,6, Zhi-Ming Zheng 7

and Jiafen Hu 1,2,*

1 The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University,
Hershey, PA 17033, USA

2 Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
3 Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical

Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
4 Department of Comparative Medicine, Pennsylvania State University College of Medicine,

Hershey, PA 17033, USA
5 Institute of Molecular Virology and Immunology, Department of Microbiology & Immunology,

School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
6 Department of Microbiology and Immunology, Pennsylvania State University College of Medicine,

Hershey, PA 17033, USA
7 Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute,

National Institutes of Health, Frederick, MD 21702, USA
* Correspondence: fjh4@psu.edul; Tel.: +1-717-531-4700; Fax: +1-717-531-5634

Abstract: Approximately 5% of all human cancers are attributable to human papillomavirus (HPV)
infections. HPV-associated diseases and cancers remain a substantial public health and economic
burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and
treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morpho-
logical examination and/or testing for the presence of high-risk HPV types. There is a lack of robust
targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring an-
imal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among
them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard.
This model has played a pivotal role in the successful development of vaccines now available to
prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to
study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes
with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of
viral–host interaction during tumor progression. In recent years, the application of genome-wide
RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those
reported in HPV-associated cancers. In addition, we have established a selection of gene-modified
rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In
the current review, we summarize some significant findings that have advanced our understanding of
HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits
to future mechanistic studies.

Keywords: rabbit; papillomavirus; CRPV; HPV; tumor regression; disease progression; cancer; gene
modified rabbits; RNAseq; codon optimization; wound healing; immune responses

1. Introduction

Human papillomavirus (HPV)-associated diseases and cancers remain a significant
public health problem worldwide [1]. Due to the species-specific properties of HPV, several
naturally occurring animal papillomavirus models have been critical in studying HPV
pathogenesis [2,3]. Among these preclinical models, the Cottontail rabbit papillomavirus
(CRPV) was the first identified papillomavirus and the CRPV model has been widely
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used to study viral–host interactions for HPV-associated diseases and cancers since the
first report by Shope in 1933 [4–8]. The extensive genetic and functional homology of
CRPV with high-risk HPVs has made this model system a gold standard for testing novel
anti-viral and anti-tumor treatments leading to clinical applications and providing the first
proof-of-evidence for the current HPV vaccines [9–17]. Over the past eighty years since
the discovery of this tumor virus [4], especially after the CRPV genome sequence was
reported in 1985 [18], we have gained a significant understanding about viral pathogenesis
by using tools such as genetic modification to alter this virus genome (mutations /insertions
/deletions) without destroying its ability to induce tumors. Several key milestones in CRPV
studies correlating to breakthroughs in HPV cancer research are updated in Figure 1 from
previous reviews [8,19–28].
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Figure 1. Several milestones of the CRPV rabbit model (blue) and HPV study (red). The rabbit model
has played a pivotal role in HPV vaccine development and better understanding of HPV pathogenesis.
The research using the rabbit model can be divided into two periods based on the first report on the
genomic sequence of CRPV: pre-genetic modification era and post-genetic modification era. The notable
research activities on the rabbit model have continued to reduce over the last two decades.

CRPV has significant biosafety advantages relative to HPVs in preclinical experiments
because its species specificity ensures that it does not pose harm to humans and other
animals. Therefore, the CRPV model is ideal to test many novel anti-viral and anti-tumor
compounds, as well as novel vaccines [9]. To facilitate vaccine development for both
prophylactic and therapeutic purposes, many vaccine strategies have been developed
including peptide, protein, and DNA vaccines targeting both viral early and late genes
(E1, E2, E6, E7, E8, L1, L2) [29–41]. Some of these strategies have moved on to clinical
trials (see review paper [8]). We also synthesized the HPV/CRPV pseudovirus to test novel
vaccines, including a broadly protective minor capsid protein L2 vaccine in the CRPV rabbit
model [42–45].

In addition to different mutant viral genomes, rabbits with different genetic backgrounds
(inbred, outbred, transgenic, and gene knockout) have been used to advance our under-
standing of the interaction of viral pathogenesis and host immunogenicity [7,33,46–54]. In the
current review, which is not inclusive of all of the research performed in the rabbit papillo-
mavirus field, we focused on some of our recent findings relating to viral pathogenesis in
the post-genetic modification era (Figure 1) and highlight recent advances in gene-modified
rabbits [55] that can be used for future studies.

2. Cottontail Rabbit Papillomavirus (CRPV)-Associated Pathogenesis

The CRPV genome exhibits a genetic structure and biology similar to those of high-risk
HPVs [3,8,27,56]. Three oncogenes, E6, E7, and E8 (an equivalent for E5 of HPV, which is
now also called E10), corresponding to those of HPVs have been identified [33,57–60]. To
investigate the oncogenicity and immunogenicity of viral genes, a large panel of mutant
CRPV genomes have been generated by different groups over the years, including 300 plus
mutant genomes generated in our laboratory [20,23,25,26,50,53,58,61–64]. Some unique
features of our mutant CRPV genomes are summarized in Table 1.
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Table 1. Published mutant CRPV genomes with unique phenotypes.

Constructs (>300) Tumor Phenotype Cancer

Wild type (>3) Latent, persistent, cancer Yes, >12 months
(Hu et al., 2002, 2005, 2009; Cladel et al., 2009, 2013)

Regressive strain (>5) Regressive No
(Hu et al., 2002, 2005, 2009)

Hybrid, epitope etc., mutants (>200) Varies Maybe (Hu et al., 2002, 2005, 2009; Cladel et al.,
2009, 2013; Bounds, 2010) and unpublished

E8 and SE6 mutants (>10) Persistent, benign, and small Maybe, >12 months
(Hu et al., 2002, 2005, 2009; Cladel et al., 2009, 2013)

E7 mutant genomes (>5) Persistent and benign No (unpublished observations)
E6 and E7 codon

optimized genomes (>20) Regressive or Cancer Yes, >3 months
(Cladel et al., 2009, 2013)

CRPV-infected tissues can either progress to cancer, maintain persistent and benign, or
regress completely depending on the viral and host genetic background (Figure 2) [8,50,53,65].
The CRPV rabbit model is an excellent model to assess the role of both early
and late genes in vivo because infection can be initiated with the viral DNA cloned into a
plasmid [20,23,27,50,66–68]. Intriguingly, some of these mutant CRPV genomes display
unique phenotypes in disease outcomes at predictable time frames [8,27,49]. Using an
improved pre-wounding strategy established in our laboratory, we were able to achieve
consistent and reproducible results among different experiments [69].
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Figure 2. The CRPV rabbit model mimics HPV-associated infections and diseases with predictable
disease outcomes at different time frames. Significant immune cell infiltrates (yellow arrows) were
found in the tumors undergoing regression.

2.1. Increased Viral Infection and Tumor Growth Using a Pre-Wounding Strategy

In the original study, Shope used a scarification strategy to successfully inoculate wart
suspensions and to induce tumor growth on the skin of both wild and domestic rabbits [4].
This method has been adopted in most published studies for CRPV viral infections. Since
the development of genetic modification technology, mutant CRPV genomes have been
generated to further understand the function of individual genes in the viral life cycle and
tumor progression. The best strategies to effectively induce infections with viral DNA
have been a road block for researchers until the pre-wounding method was tested and
validated [20,22–25,27,33,50,53,56,58,62,64–67,69–72]. The pre-wounding technique greatly
improved the efficiency of infections initiated by plasmid DNA. Using this technique,
plasmid loads as low as 40 ng yielded infection [69]. Interestingly, this new method also
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significantly increased viral infectivity by a thousand-fold, and increased induction of
tumors from a dilution of 10−2 of viral stock to as low as 10–5 from the same viral stock [69].
In addition to improvements in both reproducibility and consistency, the pre-wounding
technique is cost-effective considering the limited resources of viral stock and the cost of
making large quantities of highly purified viral DNA plasmid [50]. It was especially helpful
in increasing the sensitivity of some viral mutants, such as the E8ATGko mutant [33,58],
that are less viable than the wild type. Using the pre-wounding method, we demonstrated
that an E8ATGko mutant genome induced significantly smaller tumors than those of
the wild type [64], whereas no lesions were found using a gene-gun delivery method by
another group [58]. Therefore, this improved pre-wounding technique for viral inoculation
played a significant role to gain a more accurate and deeper understanding of the in vivo
oncogenicity of the individual oncogenes.

The mechanisms underlying the improved viral infection by pre-wounding in our in-
oculation protocol need further investigation [69]. Skin wounding triggers innate immune
responses including inflammatory reactions via recruiting immune cells to counteract local
infections [73,74]. We postulate that the wounding strategy plus CRPV infections further
promote the local chronic inflammation that has been associated with cancer develop-
ment [75–77]. Coincidently, we have identified a panel of wound healing-related molecules
in CRPV tumors using the genome-wide transcriptome assay for which a high homology
is shared between rabbits and humans [73,74,78–81]. Some of these molecules are signif-
icantly dysregulated in CRPV tumors [82]. Recent studies confirmed the important role
of wound healing-related molecules including Arginase1 and Cox-2 in cutaneous wound
repair; interestingly, these molecules were found to be dysregulated in CRPV-induced
lesions [81,82]. Therefore, this model holds the promise of further understanding the role
of these inflammation-associated molecules in HPV-associated viral infection, persistence,
and tumor progression, which would improve our ability to identify interventions to treat
and prevent HPV-associated diseases and cancers.

In addition to local infections, we also demonstrated that productive infections could
be established by delivery of virions or viral DNA intravenously [82]. The intravenous
infection was first reported in the original study by Shope, using wart suspensions [4].
Using careful controls and different viral doses, our study provided solid and new proof-
of-evidence to show that papillomavirus especially viral DNA can be transmitted through
the bloodstream and induce local infections at pre-wounded sites of domestic rabbits [82].
These findings suggest the possibility that the same could pertain in humans [83].

2.2. The Use of Mutant CRPV Genomes to Understand the Viral Life Cycle In Vivo

We have made modifications in both the early and late genes of the CRPV
genome [27,33,35,36,50,71]. Among many mutant genomes that induce visible skin tu-
mors on rabbits, the regions that tolerate insertions, deletions, and mutations cluster in the
two late capsid genes, L1 and L2. As expected, most mutants with changes in the L1 and L2
genes did not significantly reduce the capacity to induce tumor growth in vivo [35,36,62,84].

2.2.1. Early Genes Play a Crucial Role in Viral Life Cycle and Tumor Growth

The early genes E1, E2, E6, and E7 are essential for tumor growth in vivo [20,21,27,60].
However, we were able to insert small fragments at the end of the E6 and E7 genes of some
of the mutant genomes without losing the capacity for induction of tumor growth [51,84].
Many of these early gene-modified constructs became less vigorous in promoting tumor
growth even with the pre-wounding method [27]. It should be noted that viral DNA can be
readily detected in the lesions of wild cottontail rabbits after infection with the wild-type
CRPV genome cloned as a plasmid by in situ hybridization [8]. However, the tumors
induced by the same genome in New Zealand White (NZW) rabbits show much lower
copies of viral DNA despite similar levels of tumor growth and antibody detection in
these animals [8,35,56,82]. These findings suggest that the plasmid may interfere in some
way in the domestic laboratory rabbits, while the Cottontail rabbits could overcome this
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interference (unpublished observations). Plasmid interference in the laboratory rabbits
is supported by our findings that the release of DNA from the vector prior to infection
resulted in increased L1 signals in the resulting lesions [56]. To increase the viability
of the mutant constructs, we leveraged the knowledge of naturally identified tandem
repeat papillomavirus sequences [82] and generated tandem repeat CRPV constructs as
described in our previous publications [26,84]. These tandem repeat mutant constructs
with duplicate numbers of early (E6, E7, E1, E2) and/or late (L1 and L2) genes that
showed increased infectivity resulting in tumor outgrowth in vivo [26,84] display additive
pathological functions and could be also complemental [26]. The tandem repeat strategy
was not only used to explore the impact of different early and late genes in the viral
life cycle in vivo [27,84] but also to generate hybrid constructs with HPV genes/epitopes
inserted into different regions for vaccine development against HPV-associated diseases
and cancers [51,84].

2.2.2. Synonymous Codon Optimization Increases Oncogenicity and Immunogenicity
of the Virus

As in the case of HPVs, the CRPV genome contains many rare codons, presumably
to escape host immune and miRNA surveillance by inhibiting the expression of its early
and late genes [72,85–87]. To release the brake on this suppression, we introduced syn-
onymous codons (without changes in the protein sequences) into the oncogenes E6 and
E7 of the wild-type CRPV to match mammalian codons [25,72]. The codon-optimized
E6 (CoE6) and E7 (CoE7) proteins promote cell proliferation in vitro [25,72]. CoE7 also
induces primary centrosome duplication errors leading to abnormal centrosome numbers
(>2) in CoE7 transfected cells (our unpublished observations), as shown in HPV16E7 [87,88].
Therefore, aneuploidy associated with codon-optimized CRPV (designated as CoCRPV) E6
and E7 may have played a role in accelerated cancer development observed for some
CoCRPV genomes [25,72]. We identified one particular CoCRPV containing 15 and
18 synonymous codon changes in E6 and E7, respectively, that could induce cancers
within 16 weeks post infection [25]. The accelerated cancer development by the CoCRPV
genomes is characterized by a disruption of the basement membrane and invasion into
the dermis as early as week 10 post infection, and contrasts significantly with the one-year
average time scale to cancer for wild-type CRPV [25]. The lesions generated from the
CoCRPV genomes contain higher viral copies, suggesting an increased viral replication
in the codon-optimized CRPV-infected cells [25]. Comparable levels of E6 and E7 tran-
scripts between the CoCRPV and wtCRPV lesions suggest that the levels of these two viral
transcripts may not be critical in triggering a malignant transition [89–91], even though
they might be important for tumor initiation, given that the UV light reactivation of latent
CRPV infections significantly increased the E6/E7 transcripts [92]. In contrast, a third of the
CoCRPV papillomas showed a greater tendency for regression or reduced growth [72]. This
outcome may be due to larger amounts of oncoproteins being produced in codon-modified
papillomas and subsequently targeted by the immune system, as we observed increased
immune cell infiltration in these lesions [41,72]. We look forward to utilizing these unique
constructs for further elucidating the functions of these oncoproteins in the viral life cycle
and pathogenesis.

2.2.3. Early Gene E6 Is Important for Tumor Regression

HPV E6 has been shown to play a key role in disease progression by binding and
degrading tumor suppressor protein p53 [93–95]. Similarly, CRPV E6 has been shown to
bind tumor suppressors [59]. Based on the phenotype, two CRPV viral strains have been
isolated: the progressive strain and the regressive strain that mimics high- and low-risk
HPV types, respectively [53,65]. By swapping the E6 genes between these two unique
CRPV strains, we observed that the E6 of the progressive strain is the key oncogene for
viral persistence, a prerequisite for cancer development [50,59]. To further understand
E6 function in vivo, we generated several CRPV genomes with hybrid progressive and
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regressive E6 [27,96]. We determined that the carboxyl terminus of regressive E6 is cru-
cial for the regressive phenotype [50]. Interestingly, the same construct could display the
opposite phenotype based on the host’s genetic background [50,53], or when the host
T cells were depleted, which parallels the increased HPV disease and cancers in organ
transplant patients [57]. The contribution of the host immune control of papillomavirus
infections has benefited from studies on tumors that regressed [97–99]. Tumor regres-
sion correlated with infiltration of the CD4 and CD8 T cells that target early genes, such
as E2 and E6 [100–108]. The CRPV model will be a useful tool to gain deeper under-
standing of the roles of infiltrating cells in the regression, using novel technology such as
single-cell omics.

The constructs with hybrid E6 between the progressive CRPV E6 and E6 of the rabbit
oral papillomavirus (ROPV), a mucosotropic papillomavirus, have been used to further
understand tissue tropism and the underlying mechanisms [36,96,109–111]. Interestingly,
all of these latter hybrid constructs failed to promote tumor growth in the skin sites of
rabbits [27]. Despite this lack of viability in vivo, some of these hybrid E6 constructs show
oncogenicity in vitro [109], suggesting that in vivo failure may be related to the tissue
specificity of CRPV versus ROPV. Further studies will be needed to better understand the
role of E6 in the pathogenesis and regression of different tissues.

3. Genetic Analyses of Changes during CRPV Infections

By taking advantage of recent genome-wide transcriptome analyses, we have begun
to gain a deeper understanding of the changes occurring at the molecular level during
infection [8,82,90]. Unbiased whole-genome RNA-seq analysis has been utilized and host
gene transcript profiling of tumor tissues has been reported in our recent study [82].

3.1. Host Changes during Viral Infection

Immune cell infiltration is correlated with CRPV-induced tumor regression, as demon-
strated in other PV models and HPV [41,103–108]. The changes at the transcription level
of the host genes that were identified and correlated with CRPV infection have been re-
ported [82,90,112,113], including common signal transduction pathways/ molecules in
HPV specimens. Using two representative host genes that play critical roles in DNA repair
(Apobec2) and inflammation (IL36r) that were identified in the wild-type CRPV-infected
tissues as examples [82], we also observed a similar expression pattern in persistent and
benign tumors induced by a CRPVE8ATGko (E8m) mutant genome suggesting that both
the wild type and E8 mutant interfere with these pathways [33,58]. As we have a large
selection of mutant CRPV genomes with different phenotypes that can be used for com-
parative studies, we may determine whether the differences we observed in some of the
genes/pathways among different mutant genome–induced lesions are predictive for tumor
growth and disease trajectory. These can be measured by in vitro and in vivo T cell function
assays [51], neutralization assays, ELISA, Western blot, immuno-precipitation, and cytokine
profiling assays [8,24,82].

3.2. In Situ Analysis of Tissues at Different Disease Stages

To study the virus-induced expression changes in host genes during disease pro-
gression, a panel of in situ assays have been developed over the years by different
groups [3,24,25,36,56,70,71,92,114]. Newly improved assays, including the in situ hybridiza-
tion for detection of CRPV DNA in CRPV-infected tumor tissues and improved RNA-ISH
analysis to detect CRPV E4 transcripts have been applied to recent studies [82]. To validate
host gene expression in the infected tissues, we have identified a panel of cancer-related
genes that are upregulated in advanced CRPV lesions (Table 2, based on secondary anal-
yses of our published RNAseq dataset) [24,25,82]. These include the biomarkers PCNA,
Cyclin E, and MCM7 [25] which are also upregulated in HPV-associated cancer tissues
(Table 2) [82,115–122]. A good example is pro-inflammatory molecule calcium-binding
protein A9 or S100A9 which is highly dysregulated in both CRPV-infected tissues [82]
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and HPV-associated cancers [123–126]. These striking parallels between the rabbit model
and the HPV cancers further enhance the value of this preclinical model for new targeted
therapies. To facilitate study in different immune cell populations, we have also developed
antibodies to rabbit T cell surface markers including a CD4 T cell antibody that has been
used successfully for in vivo depletion studies [25,127]. These antibodies are useful for the
validation of our earlier observations that fewer T cells (CD4 and CD8) infiltrate in tumors
relative to those undergoing regression [41].

Table 2. Representative molecules related to cancers and T cell functions that are significantly changed
in both the CRPV-induced tumor tissues AND cervical cancer.

Genes Changes in CRPV-Infected Tumors Pathways

Krt1, 2, 3, 4, 7, 10, 14, 16, 78; Krt13, 75 UP/Down Cytokeratin
KLF3, 10; KLF 1, 9, 11, 15 UP/Down Keratinocyte proliferation

BRCA1, BRCA2, FANCD2, PCNA; DDR2 UP/Down DNA damage
MAPK6, 13; MAPK12 UP/Down p38 MAPKs

PCNA, CDK2, CASP8, ERBB3, PDCD5,6;
TGFBR2, PDCD4 UP/Down Cell growth and death

TP53I3, CDKN2A UP Tumor suppressor
CTLA-4, RNF149, Cblb, Rel, PD-L1; Gata3,
NFATC1, 4, CD34, NR4A1, Foxp1, CD8b UP/Down T cell function

CXCL8, IFNgR1, STAT4; Cox-2, CX3CL1 UP/Down Cytokines, chemokines, and ligands
IL1A, IL4R, IL10RA, IL13, IL17F, IL23A, IL36A,

IL36g; IL6R, 11RA, IL13, IL16 UP/Down Interleukins

4. Rabbits for Studying Viral–Host Interactions during Tumor Progression

Rabbits have been used for studying a number of human diseases, including papillo-
mavirus infections [128]. The host genetic background, including HLA class II alleles, plays
an important role in HPV-associated disease progression and cancer development [129–133].
Similarly, rabbit MHCII has been linked to CRPV-induced tumor regression [53,54]. In
agreement with these findings, we and others have demonstrated, using a variety of rab-
bit strains, that the host genetic constitution plays a role in disease outcome of CRPV
infections [7,8,33,50,54,65,134]. Different responses to the same CRPV genomic construct
have been reported in outbred and inbred rabbits in our studies [33,50]. We generated
transgenic rabbits, including EJ-ras and HLA-A2.1 rabbits, to facilitate determination of the
role of host oncogene and immune responses in the CRPV infection [33,46,50,134]. In recent
years, novel gene modification technologies, especially CRISPR editing, have enabled rapid
production of gene-modified rabbits [135–137].

4.1. Inbred and Outbred Rabbits

Most studies have used outbred rabbits that are supplied by several vendors including
Charles River, Robinson, and Covance [3,50,61]. During the early years of our studies,
we used rabbits from each of these suppliers [36,39,110,138]. While rabbits from different
suppliers are all susceptible to CRPV infections, we did observe different natural regression
rates following infections [39]. To maintain consistency from study to study, we have
used the same supplier for most of our studies in the past two decades [8]. The inbred
rabbit strain (EIII/JC) has been maintained in our facility for over thirty years and was
originally acquired from NIH [33,50]. These inbred rabbits appear to be normal except for
a heightened sensitivity to noise. These rabbits showed higher regression rates after CRPV
infection [33,49]. In our previous studies, we have tested our CRPV mutant constructs on
both outbred and inbred rabbits; the results are summarized in Table 3 [50]. It would be
interesting to compare the host gene expression profiles after CRPV infections in these
different rabbit strains.
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4.2. Transgenic Rabbits

To understand the pathogenesis and tissue-tropism of CRPV in rabbits, we generated
a CRPV/EJ-ras transgenic rabbit strain [48]. We observed that the tissue specificity of CRPV
DNA expression in these rabbits was the same as in the virion-infected wild-type animals.
It appears that the strict tissue-tropism of CRPV is controlled by the URR of the CRPV
genome [46–48,139].

Table 3. Rabbit strains used in our studies.

Rabbit Strain Phenotype after Infection References

Outbred Persistent and cancer (wild-type CRPV)
Regressive (regressive CRPV)

Hu et al., 2002, 2005, 2009; Cladel et al.,
2009, 2013, 2019

EIII/JC inbred Higher regression rate for wild-type CRPV Hu et al., 2002, 2005, 2006, 2007, 2009

HLA-A2.1 outbred
Persistent and cancer (wild-type CRPV) with

higher regression rates
Regressive (regressive CRPV)

Hu et al., 2006, 2007, Bounds et al., 2009,
Cladel et al., 2019

To facilitate vaccine development for HPV-associated diseases and cancers, we also
developed an HLA-A2.1 transgenic rabbit model to test HPV vaccines in the context of
a human MHCI background (HLA-A2.1) [134,140]. We have tested the immunogenicity
of several known and unknown HLA-A2.1 restricted epitopes delivered by either DNA
or peptides and have demonstrated both the prophylactic and therapeutic effects of these
candidates [35,51,134,141]. The HLA-A2.1 transgenic rabbit model will continue contribut-
ing to future studies that lead to novel prophylactic and therapeutic strategies against
HPV-associated diseases and cancers.

4.3. Novel Genetically Modified Rabbits

The recent development of gene-editing technologies has brought new tools to the
development of animal models, especially for species for which germ-line embryonic stem
cells (ESCs) are not available [55]. The attempts to produce gene-targeted rabbits date
back two decades, after Chesne et al. reported the successful cloning of rabbits by somatic
cell nuclear transfer [142]. The idea was to generate targeted mutations, for example, a
gene knockout in the somatic cells (bypassing the need for ESCs), and to use these cells
for animal cloning. Knockout pigs and cows had been produced via this strategy [143].
Unfortunately, despite large numbers of embryo transfers, no gene-targeted rabbits were
cloned and produced using this approach.

The first gene knockout rabbit was produced shortly after zinc finger nuclease (ZFN)
was introduced to researchers [144]. This first-generation gene editing nuclease (GEN) was
quickly replaced by TALEN and then CRISPR/Cas9. To date, CRISPR/Cas9 represents the
most commonly used GEN in the production of rabbit models [55]. Our group reported
the first success in producing gene knockout rabbits by CRISPR/Cas9 in 2014 [135]. More
than ten animal lines were efficiently produced, highlighting the power of CRISPR/Cas9 in
the gene editing of rabbits. Later, in 2016, we reported that the efficiency of gene knock-in
in rabbits by Cas9 or TALEN can be improved two–five-fold when a small molecular
compound RS-1 is used [145].

In 2017, we reported the production of multiple lines of immunodeficient rabbits [138].
The targeted knockout genes include Foxn1, Il2rg, and Rag2. Foxn1 is essential for thy-
mus and hair follicle epithelial cell development. The knockout of Foxn1 leads to the
hairless “nude” phenotype and an impaired T cell development, as shown in athymic
nude mice [146]. Il2rg is a gene that codes for the common gamma chain (γc), which
is a cytokine receptor sub-unit that is common to the receptor complexes for different
interleukin receptors. These include IL-2, IL-4, IL-7, IL-9, and IL-15. The loss-of-function
mutation of Il2rg leads to defective B and T cell development and subsequently to se-
vere combined immunodeficiency (SCID) disease [147]. Rag2 is involved in the V(D)J
recombination process for B and T cells and is essential for the generation of mature B and
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T lymphocytes. Individuals with defective Rag2 therefore also often suffer from SCID.
These immunodeficient rabbit lines will be useful for delineating the contributions of the
B and T cells in viral pathogenesis, and for developing therapeutic strategies in the CRPV
rabbit model.

5. Summary and Conclusions

HPV infection causes approximately 5% of human cancers and 30% of all cancers
caused by infectious agents [148]. Most of the HPV infections (>90%) are cleared within
two years because the host immune system is effective in eliminating HPV infections in
most situations [148]. The CRPV rabbit model has provided opportunities to study the fine
balance between viral oncogenicity and immunogenicity in deciding disease outcomes over
the past several decades [1,3,8,149,150]. In addition to the key role of adaptive immune
responses, we and others have also demonstrated that innate immune modulators, such as
select cytokines, play a role in viral persistence and tumor progression [34,141]. However,
an in-depth understanding of viral pathogenesis in the rabbit model has been delayed due to
the slow advancement in whole genome sequencing and annotation of the rabbit genome [8].
Only recently were we able to obtain the genome-wide transcriptome profile of CRPV-
infected lesions [83]. These datasets identified many parallel changes in different signal
transduction pathways/genes that have been reported in HPV studies [150], which further
confirmed the applicability of the CRPV rabbit model to HPV pathogenesis. The noticeable
limitation for most human studies is that they have focused on HPV disease at a single time
point assuring that the dynamics of tumor progression are difficult to follow [151]. This
limitation can be overcome by using the rabbit model with predictable disease outcomes
within a reasonable time frame. We can monitor dynamic changes at different disease
stages and determine how the balance of oncogenicity and immunogenicity is associated
with cancer development. Equipped with the availability of novel gene-modified rabbit
lines, we expect to conduct more mechanistic studies leading to significant contributions to
the deeper understanding of HPV pathogenesis.

The CRPV model continues to hold great promise for mechanistic studies of
papillomavirus-associated disease progression or regression, especially with recent techno-
logical advances such as single-cell omics which provide unprecedented opportunities to
analyze the complexities of biological systems at the single cell level. Novel hypotheses,
including the dynamic changes in the balance of oncogenicity and immunogenicity during
cancer development can be tested in this model system in future studies based on newly
acquired knowledge as well as unique resources and reagents that will continue to be
established for rabbit researchers.
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