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Adaptive stimulus selection for multi-alternative psychometric
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Psychometric functions (PFs) quantify how external
stimuli affect behavior, and they play an important role
in building models of sensory and cognitive processes.
Adaptive stimulus-selection methods seek to select
stimuli that are maximally informative about the PF
given data observed so far in an experiment and
thereby reduce the number of trials required to
estimate the PF. Here we develop new adaptive
stimulus-selection methods for flexible PF models in
tasks with two or more alternatives. We model the PF
with a multinomial logistic regression mixture model
that incorporates realistic aspects of psychophysical
behavior, including lapses and multiple alternatives for
the response. We propose an information-theoretic
criterion for stimulus selection and develop
computationally efficient methods for inference and
stimulus selection based on adaptive Markov-chain
Monte Carlo sampling. We apply these methods to data
from macaque monkeys performing a multi-alternative
motion-discrimination task and show in simulated
experiments that our method can achieve a substantial
speed-up over random designs. These advances will
reduce the amount of data needed to build accurate
models of multi-alternative PFs and can be extended to
high-dimensional PFs that would be infeasible to
characterize with standard methods.

Understanding the factors governing psychophysical
behavior is a central problem in neuroscience and
psychology. Although accurate quantification of the
behavior is an important goal in itself, psychophysics
provides an important tool for interrogating the
mechanisms governing sensory and cognitive process-
ing in the brain. As new technologies allow direct
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manipulations of neural activity in the brain, there is a
growing need for methods that can characterize rapid
changes in psychophysical behavior.

In a typical psychophysical experiment, an observer
is trained to report judgments about a sensory stimulus
by selecting a response from among two or more
alternatives. The observer is assumed to have an
internal probabilistic rule governing these decisions;
this probabilistic map from stimulus to response is
called the observer’s psychometric function. Because the
psychometric function is not directly observable, it
must be inferred from multiple observations of
stimulus—response pairs. However, such experiments
are costly due to the large numbers of trials typically
required to obtain good estimates of the psychometric
function. Therefore, a problem of major practical
importance is to develop efficient experimental designs
that can minimize the amount of data required to
accurately infer an observer’s psychometric function.
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Bayesian adaptive stimulus selection

A powerful approach for improving the efficiency of
psychophysical experiments is to design the data-
collection process so that the stimulus is adaptively
selected on each trial by maximizing a suitably defined
objective function (MacKay, 1992). Such methods are
known by a variety of names, including active learning,
adaptive or sequential optimal experimental design,
and closed-loop experiments.

Bayesian approaches to adaptive stimulus selection
define optimality of a stimulus in terms of its ability to
improve a posterior distribution over the psychometric
function, for example by reducing variance or entropy
of the posterior. The three key ingredients of a
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Figure 1. (A) Schematic of Bayesian adaptive stimulus selection. On each trial, a stimulus is presented and the response observed; the
posterior over the parameters 0 is updated using all data collected so far in the experiment D;; and the stimulus that maximizes the
expected utility (in our case, information gain) is selected for the next trial. (B) A graphical model illustrating a hierarchical
psychophysical-observer model that incorporates lapses as well as the possibility of omissions. On each trial, a latent attention or
lapse variable a; is drawn from a Bernoulli distribution with parameter /4, to determine whether the observer attends to the stimulus
X; on that trial or lapses. With probability 1 — /, the observer attends to the stimulus (a; = 0) and the response y; is drawn from a
multinomial logistic regression model, where the probability of choosing option i is proportional to exp(w; ' x;). With probability 4, the
observer lapses (a;= 1) and selects a choice from a (stimulus-independent) response distribution governed by parameter vector u. So-
called omission trials, in which the observer does not select one of the valid response options, are modeled with an additional

response category y; = k.

Bayesian adaptive stimulus-selection method are
(Chaloner & Verdinelli, 1995; Pillow & Park, 2016):

* model, which parametrizes the psychometric func-
tion of interest;

* prior, which captures initial beliefs about model
parameters; and

e utility function, which quantifies the usefulness of a
hypothetical stimulus-response pair for improving
the posterior.

Sequential algorithms for adaptive Bayesian exper-
iments rely on repeated application of three basic steps:
data collection (stimulus presentation and response
measurement); inference (posterior updating using data
from the most recent trial); and selection of an optimal
stimulus for the next trial by maximizing expected
utility (see Figure 1A). The inference step involves
updating the posterior distribution over the model
parameters according to Bayes’s rule with data from
the most recent trial. Stimulus selection involves
calculating the expected utility (i.e., the expected
improvement in the posterior) for a set of candidate
stimuli, averaging over the responses that might be
elicited for each stimulus, and selecting the stimulus for
which the expected utility is highest. Example utility
functions include the negative trace of the posterior
covariance (corresponding to the sum of the posterior
variances for each parameter) and the mutual infor-

mation or information gain (which corresponds to
minimizing the entropy of the posterior).

Methods for Bayesian adaptive stimulus selection
have been developed over several decades in a variety
of different disciplines. If we focus on the specific
application of estimating psychometric functions, the
field goes back to the QUEST (A. B. Watson & Pelli,
1983) and ZEST (King-Smith, Grigsby, Vingrys, Benes,
& Supowit, 1994) algorithms, which are focused on the
estimation of discrimination thresholds, and to the
simple case of 1-D stimulus and binary responses
(Treutwein, 1995). The ¥ method (Kontsevich & Tyler,
1999) uses Bayesian inference for estimating both the
threshold and slope of a psychometric function, which
have been extended to 2-D stimuli by Kujala and
Lukka (2006). Further development of the method
allowed for adaptive estimation of more complex
psychometric functions, where the parameters are no
longer limited to a threshold and a slope (Barthelmé &
Mamassian, 2008; Kujala & Lukka, 2006; Lesmes, Lu,
Baek, & Albright, 2010; Prins, 2013) and may exhibit
statistical dependencies (Vul, Bergsma, & MacLeod,
2010). Models with multidimensional stimuli have also
been considered (DiMattina, 2015; Kujala & Lukka,
2006; A. B. Watson, 2017).

Different models have been used to describe the
psychometric function. Standard choices include the
logistic regression model (Chaloner & Larntz, 1989;
DiMattina, 2015; Zocchi & Atkinson, 1999), the
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Weibull distribution function (A. B. Watson & Pelli,
1983), and the Gaussian cumulative distribution
function (Kontsevich & Tyler, 1999). More recent work
has considered Gaussian process regression models
(Gardner, Song, Weinberger, Barbour, & Cunningham,
2015). Most previous work, however, has been limited
to the case of binary responses.

Bayesian methods for inferring psychometric func-
tions (Kuss, Jikel, & Wichmann, 2005; Prins, 2012;
Wichmann & Hill, 2001a, 2001b) have enlarged the
space of statistical models that can be used to describe
psychophysical phenomena based on (often limited)
data. A variety of recent advances have arisen in
sensory neuroscience or neurophysiology, driven by the
development of efficient inference techniques for neural
encoding models (Lewi, Butera, & Paninski, 2009; M.
Park, Horwitz, & Pillow, 2011) or model comparison
and discrimination methods (Cavagnaro, Myung, Pitt,
& Kujala, 2010; DiMattina & Zhang, 2011; Kim, Pitt,
Lu, Steyvers, & Myung, 2014). These advances can in
many cases be equally well applied to psychophysical
experiments.

Our contributions

In this article, we develop methods for adaptive
stimulus selection in psychophysical experiments that
are applicable to realistic models of human and animal
psychophysical behavior. First, we describe a psy-
chophysical model that incorporates multiple response
alternatives and lapses, in which the observer makes a
response that does not depend on the stimulus. This
model can also incorporate omission trials, where the
observer does not make a valid response (e.g.,
breaking fixation before the go cue), by considering
them as an additional response category. Second, we
describe efficient methods for updating the posterior
over the model parameters after every trial. Third, we
introduce two algorithms for adaptive stimulus
selection, one based on a Gaussian approximation to
the posterior and a second based on Markov-chain
Monte Carlo (MCMC) sampling. We apply these
algorithms to simulated data and to real data analyzed
with simulated closed-loop experiments and show that
they can substantially reduce the number of trials
required to estimate multi-alternative psychophysical
functions.

Here we describe a flexible model of psychometric
functions (PFs) based on the multinomial logistic
(MNL) response model (Glonek & McCullagh, 1995).
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We show how omission trials can be naturally
incorporated into a model as one of the multiple
response alternatives. We then develop a hierarchical
extension of the model that incorporates lapses (see
Figure 1B).

Multinomial logistic response model

We consider the setting Where the observer is
presented with a stimulus x € R? and selects a response
y €{l,...,k} from one of k discrete choices on each
trial. We Will assume the stimulus is represented
internally by some (possibly nonlinear) feature vector
¢(x), which we will write simply as ¢ for notational
simplicity.

In the MNL model, the probability p; of each
possible outcome i € {1,...,k} is determined by the
dot product between the feature ¢ and a vector of
weights w; according to

_eww 4
"TSE exp(w @) v

where the denommator ensures that these probabilities
sum to 1, Zl  pi = 1. The function from stimulus to a
probdblhty vector over choices, x—(p1, ..., pr), is the
psychometric function, and the set of weights {W,'}ﬁ(:]
its parameters. Note that the model is overparame-
terized when written this way, since the requirement
that probabilities sum to 1 removes one degree of
freedom from the probability vector. Thus, we can
without loss of generality fix one of the weight vectors
to zero, for example w;, =0, so thdt the denominator in
Equation 1 becomes z =1 + Z 1exp(w ¢) and
P =1/z

We consider the feature vector ¢ to be a known
function of the stimulus x, even when the dependence is
not written explicitly. For example, we can consider a
simple form of feature embedding, ¢(x) = [1, x"]",
corresponding to a linear function of the stimulus plus
an offset. In this case, the weights for the ith choice
would correspond to w; = [b;, aﬂT, where b; is the
offset or bias for the ith choice and a; are the linear
weights governing sensitivity to x. The resulting choice
probability has the familiar form p; « exp(b; + a x).
Nonlinear stimulus dependencies can be incorporated
by including nonlinear functions of x in the feature
vector ¢(x) (Knoblauch & Maloney, 2008; Murray,
2011; Neri & Heeger, 2002). Dependencies on the trial
history, such as the previous stimulus or reward, may
also be included as additional features in ¢ (see, e.g.,
Bak, Choi, Akrami, Witten, & Pillow, 2016).

It is useful to always work with a normalized
stimulus space, in which the mean of each stimulus
component x,, over the stimulus space is (x,) = 0 and
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Figure 2. Effects of omission and lapse. Here we illustrate the undesirable effects of failing to take into account omission and lapse. (A)
If the psychometric function (PF) follows an ideal binomial logistic model, it can be estimated very well from data. The black dashed
line shows the true PF for one of the two responses (say y = R) and the gray dashed line shows the true PF for the other (say y=L),
such that the two dashed curves always add up to 1. The black dots indicate the mean probability of observing this response y =R at
each stimulus point x. We drew 20 observations per stimulus point, at each of the 21 stimulus points along the one-dimensional axis.
The resulting estimate for P(y = 1) is shown by the solid black line. The inference method is not important for the current purpose,
but we used the maximum a posteriori estimate. (B) Now suppose that some trials fell into the implicit third choice, which is omission
(red dashed line). The observed probability of y = R at each stimulus point (open black circles) follows the true PF (black dashed line).
But if the omitted trials are systematically excluded from analysis, as in common practice, the estimated PF (solid black line) reflects a
biased set of observations (filled black circles) and fails to recover the true PF. (C) When there is a finite lapse rate (we used a total
lapse of 2 =0.2, uniformly distributed to the two outcomes), the true PF (dashed black line) asymptotes to a finite offset from 0 or 1.
If the resulting observations (black dots) are fitted to a plain binomial model without lapse, the slope of the estimated PF (solid black
line) is systematically biased.

the standard deviation std(x,) = 1. This normalization the PF if these trials are more common for some stimuli
ensures that the values of the weight parameters are than others (see Figure 2B).

defined in more interpretable ways. The zero-mean The multinomial response model provides a natural
condition ensures that the bias b is the expectation framework for incorporating omission trials because it
value of log probability over all possible stimuli. The accommodates an arbitrary number of response
unit-variance condition means that the effect of moving categories. Thus we can model omissions explicitly as
a certain distance along one dimension of the weight one of the possible choices the observer can choose
space is comparable to moving the same distance in from, or as response category k + 1 in addition to the k
another dimension, again averaged over all possible valid responses. One could even consider different
stimuli. In other words, we are justified in using the kinds of omissions separately—for example, allowing
same unit along all dimensions of the weight space. choice k + 1 to reflect fixation-period violations and

choice k + 2 to reflect failure to report a choice during
the response window. Henceforth, we will let k reflect

Including omission trials the total number of choices including omission, as
illustrated in Figure 1B.

Even in binary tasks with only two possible choices This formulation can also be useful for the rated yes/
per trial, there is often an implicit third choice, which is no task in human psychophysics, where a “not sure”
to make no response, make an illegal response, or response is explicitly presented (C. S. Watson, Kellogg,
interrupt the trial at some point before the allowed Kawanishi, & Lucas, 1973). Although such a model
response period. For example, animals are often was considered for adaptive stimulus selection (Lesmes
required to maintain an eye position or a nose poke or et al., 2015), the third alternative was not handled as a
wait for a “go” cue before reporting a choice. Trials on fully independent choice, as the goal was only to
which the animal fails to obey these instructions are estimate the two detection thresholds separately: one
commonly referred to as omissions or violations and are for a strict yes, another for a collapsed response of
typically discarded from analysis. However, failure to either yes or not sure. Our model treats each of the

take these trials into account may bias the estimates of multiple alternatives equivalently.
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Modeling lapses with a mixture model

Another important feature of real psychophysical
observers is the tendency to occasionally make errors
that are independent of the stimulus. Such choices,
commonly known as lapses or button-press errors, may
reflect lapses in concentration or memory of the
response mapping (Kuss et al., 2005; Wichmann & Hill,
2001a). Lapses are most easily identified by errors on
easy trials—that is, trials that should be performed
perfectly if the observer is paying attention.

Although lapse rates can be negligible in highly
trained observers (Carandini & Churchland, 2013),
they can be substantially greater than zero in settings
involving nonprimates or complicated psychophysical
tasks. Lapses affect the PF by causing it to saturate
above 0 and below 1, so that perfect performance is
never achieved even for the easiest trials. Failure to
incorporate lapses into the PF model may therefore
bias estimates of sensitivity, as quantified by PF slope
or threshold (illustrated in Figure 2C; also see Prins,
2012; Wichmann and Hill, 2001a, 2001b).

To model lapses, we use a mixture model that treats
the observer’s choice on each trial as coming from one
of two probability distributions: a stimulus-dependent
one (governed by the MNL model) or a stimulus-
independent one (reflecting a fixed probability of
choosing any option when lapsing). Simpler versions of
such mixture model have been proposed previously
(Kuss et al., 2005).

Figure 1B shows a schematic of the resulting model.
On each trial, a Bernoulli random variable ¢ ~ Ber(4)
governs whether the observer lapses: With probability 4
the observer lapses (i.e., ignores the stimulus), and with
probability 1 — A the observer attends to the stimulus. If
the observer lapses (a = 1), the response is drawn
according to the fixed-probability distribution (cy, ...,
¢x) governing the probability of selecting options 1 to k,
where > ¢; = 1. If the observer does not lapse (a = 0),
the response is selected according to the MNL model.
Under this model, the conditional probability of
choosing option 7 given the stimulus can be written as

exp(w; @)
> exp(w) @)’
where ¢; is the lapse-free probability under the classical
MNL model (Equation 1).

It is convenient to reparameterize this model so that

Ac;, the conditional probability of choosing the ith
option due to a lapse, is written

(2)

pPi = (1 — ),)q,- + /1(',', qi =

Jc; = CXp(H;) (3)

L+ 37 exp(y)’

where each auxiliary lapse parameter u; is proportional
to the log probability of choosing option i due to lapse.
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The lapse-conditional probabilities ¢; of each choice
and the total lapse probability 4 are respectively
exp(u;)

N exp
=S o)’ LTIy exp) exp oy Y

Because each u; lives on the entire real line, fitting
can be carried out with unconstrained optimization
methods, although adding reasonable constraints may
improve performance in some cases. The full parameter
vector of the resulting model is 6 = [w', u'] ", which
includes k additional lapse parameters u = {uy, ..., u}.
Note that in some cases it might be desirable to assume
that lapse choices obey a uniform distribution, where
the probability of each option is ¢; = 1/k. For this
simplified uniform-lapse model we need only a single
lapse parameter u. Note that we have unified the
parameterizations of the lapse rate (deviation of the
upper asymptote of the PF from 1; in this case, 4 — A¢;)
and the guess rate (deviation of the lower asymptote
from O; in this case, Ac;), which have often been
modeled separately in previous works with two-
alternative responses (Schiitt, Harmeling, Macke, &
Wichmann, 2016; Wichmann & Hill, 2001a, 2001b).
Here they are written in terms of a single family of
parameters {#;} and extended naturally to multi-
alternative responses.

Our model provides a general and practical param-
eterization of PFs with lapses. Although previous work
has considered the problem of modeling lapses in
psychophysical data, much of it assumed a uniform-
lapse model, where all options are equally likely during
lapses. Earlier approaches have often assumed either
that the lapse probability was known a priori (Kont-
sevich & Tyler, 1999) or was fitted by a grid search over
a small set of candidate values (Wichmann & Hill,
2001a). Here we instead infer individual lapse proba-
bilities for each response option, similar to recent
approaches described by Kuss et al. (2005), Prins (2012,
2013), and Schiitt et al. (2016). Importantly, our
method infers the full parameter 0 that includes both
the weight and lapse parameters, rather than treating
the lapse separately. In particular, our parameteriza-
tion (Equation 3) has the advantage that there is no
need to constrain the support of the lapse parameters
u;. These parameters’ relationship to lapse probabilities
¢; takes the same (softmax) functional form as the
MNL model, placing both sets of parameters on an
equal footing.

Before closing this section, we would like to reflect
briefly on the key differences between omissions and
lapses. First, although omissions and lapses both reflect
errors in decision making, omissions are defined as
invalid responses and are thus easily identifiable from
the data; lapses, on the other hand, are indistinguish-
able from normal responses, and are identifiable only
from the fact that the psychometric function does not
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saturate at 0 or 1. Second, modeling omissions as a
response category under the MNL model means that
the probability of omission is stimulus dependent (e.g.,
more likely to arise on trials with high difficulty, or
generally when the evidence for other options is low).
Even if the omissions are not stimulus dependent, and
are instead governed entirely by a bias parameter, the
probability of omission will still be higher when the
evidence for other choices is low or lower when the
evidence for other choices is high. Omissions that arise
in a purely stimulus-independent fashion, on the other
hand, will be modeled as arising from the lapse
parameter associated with the omission response
category. Omissions can thus arise in two ways under
the model: as categories selected under the multinomial
model or as lapses arising independent of the stimulus
and other covariates.

Bayesian methods for adaptive stimulus selection
require the posterior distribution over model parame-
ters given the data observed so far in an experiment.
The posterior distribution results from the combination
of two ingredients: a prior distribution p(f), which
captures prior uncertainty about the model parameters
0, and a likelihood function p({y}|{x,}, @), which
captures information about the parameters from the
data {(xy,ys)}, where s =1, ..., ¢ consists of stimulus—
response pairs observed up to the current time bin .

Unfortunately, the posterior distribution for our
model has no analytic form. We therefore describe two
methods for approximate posterior inference: one
relying on a Gaussian approximation to the posterior,
known as the Laplace approximation, and a second one
based on MCMC sampling.

Prior

The prior distribution specifies our beliefs about
model parameters before we have collected any data,
and serves to regularize estimates obtained from small
amounts of data—for example, by shrinking estimated
weights toward zero. Typically we want the prior to be
weak enough that the likelihood dominates the
posterior for reasonable-sized data sets. However, the
choice of prior is especially important in adaptive
stimulus-selection settings, because it determines the
effective volume of the search space (M. Park & Pillow,
2012; M. Park, Weller, Horwitz, & Pillow, 2014). For
example, if the weights are known to exhibit smooth-
ness, then a correlated or smoothness-inducing prior
can improve the performance of adaptive stimulus
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selection because the effective size (or entropy) of the
parameter space is much smaller than under an
independent prior (M. Park & Pillow, 2012).

In this study, we use a generic independent, zero-
mean Gaussian prior over the weight vectors

p(w) =N(0,0°D), (5)

forallie (1,...,k), with a fixed standard deviation o.
This choice of prior is appropriate when the regressors
{x} are standardized, since any single weight can take
values that allow for a range of PF shapes along that
axis, from flat (w=0) to steeply decreasing (w=—20) or
increasing (w =-+20). We used ¢ = 3 in the simulated
experiments in Results. For the lapse parameters {u;},
we used a uniform prior over the range [log(0.001), 0]
with the natural log, so that each lapse probability Ac; is
bounded between 0.001 and 1/2. We set the lower range
constraint below 1/N, where N = 100 is the number of
observed trials in our simulations, since we cannot
reasonably infer lapse probabilities with precision finer
than 1/N. The upper range constraint gives maximal
lapse probabilities of 1/(k + 1) if all u; take on the
maximal value of 0. Note that our prior is uniform with
respect to the rescaled lapse parameters {u;} rather
than to the actual lapse rates; projected to the space of
the lapse probabilities, given the bounds, the prior
increases toward smaller lapse. For a comprehensive
study of the effect of different priors on lapse, see
Schiitt et al. (2016).

PF likelihood

The likelihood is the conditional probability of the
data as a function of the model parameters. Although
we have thus far considered the response variable y to be
a scalar taking values in the set {1, ..., k}, it is more
convenient to use a “one-hot” or “l-of-k” representa-
tion, in which the response variable y for each trial is a
vector of length k& with one 1 and k& — 1 zeros; the
position of the 1 in this vector indicates the category
selected. For example, in a task with four possible
options per trial, a response vector y=[0 0 1 0] indicates
a trial on which the observer selected the third option.

With this parameterization, the log-likelihood func-
tion for a single trial can be written

log p(y[x,0) = > yilog pi(x, 0)

=y' logp(x,0), (6)

where p{(x, 0) denotes the probability p(y; = 1|x, 0)
under the model (Equation 1), and p(x, 0) =
[p1(x, 0),...,pr(x, 0)]" denotes the vector of proba-
bilities for a single trial.

In the classical (lapse-free) MNL model, where
0 = {w;}, the log likelihood is a concave function of 0,
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which guarantees that numerical optimization of the
log likelihood will find a global optimum. With a finite
lapse rate, however, the log likelihood is no longer
concave (see Appendix A).

Posterior distribution

The log-posterior can be written as the sum of log
prior and log likelihood summed over trials, plus a
constant:

log p(0|D;) = log p(0)

t
+ » logp(y,|xs,0) +¢, (7)
—1

N

where D, ={x,, ys};_; denotes the accumulated data up
to trial 7 and ¢ = —log( [ p(0) [T, p(y,|x;)d0) is a
normalization constant that does not depend on the
parameters 0. Because this constant has no tractable
analytic form, we rely on two alternate methods for
obtaining a normalized posterior distribution.

Inference via Laplace approximation

The Laplace approximation is a well-known Gauss-
ian approximation to the posterior distribution, which
can be derived from a second-order Tayler series
approximation to the log posterior around its mode
(Bishop, 2006).

Computing the Laplace approximation involves a
two-step procedure. The first step is to perform a
numerical optimization of log p(8|D;) to find the
posterior mode, or maximum a posteriori (MAP)
estimate of 6. This vector, given by

15
0, = argmaxlog p(0) + Zlogp(ys\xﬁ 0), (8)
0 s=1

provides the mean of the Laplace approximation.
Because we can explicitly provide the gradient and
Hessian of the log likelihood (see Appendix A) and log
prior, this optimization can be carried out efficiently via
Newton—Raphson or trust-region methods.

The second step is to compute the second derivative
(the Hessian matrix) of the log posterior at the mode,
which provides the inverse covariance of the Gaussian.
This gives us a local Gaussian approximation of the
posterior, centered at the posterior mode:

p(0|Dy) %N(b\h C), 9)

where covariance C; = —H;I 1s the inverse Hessian of
the log posterior, H,(i,j) = 8*(log p(0|D;)/(30:00;),
evaluated at 0,.
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Note that when the log posterior is concave (i.e.,
when the model does not contain lapses), numerical
optimization is guaranteed to find a global maximum
of the posterior. Log concavity also strengthens the
rationale for using the Laplace approximation, since
the true and approximate posterior are both log-
concave densities centered on the true mode (Paninski
et al., 2010; Pillow, Ahmadian, & Paninski, 2011).
When the model incorporates lapses, these guarantees
no longer apply globally.

Inference via MCMC sampling

A second approach to inference is to generate
samples from the posterior distribution over the
parameters via MCMC sampling. Sampling-based
methods are typically more computationally inten-
sive than the Laplace approximation but may be
warranted when the posterior is not provably log
concave (as is the case when lapse rates are nonzero)
and therefore not well approximated by a single
Gaussian.

The basic idea in MCMC sampling is to set up an
easy-to-sample Markov chain that has the posterior as
its stationary distribution. Sampling from this chain
produces a dependent sequence of posterior samples
{0,,} ~ p(0|D,), which can be used to evaluate posterior
expectations via Monte Carlo integrals:

E[f(0)] ~ %Zf(om), (10)
m=1

for any function f{#). The mean of the posterior is
obtained from setting f{(0) = 0, although for adaptive
stimulus selection we will be interested in the full shape
of the posterior.

The Metropolis—Hastings algorithm is perhaps the
simplest and most widely used MCMC sampling
method (Metropolis, Rosenbluth, Rosenbluth, Teller,
& Teller, 1953). It generates samples via a proposal
distribution centered on the current sample (see
Appendix B). The choice of proposal distribution is
critical to the efficiency of the algorithm, since this
governs the rate of mixing, or the number of Markov-
chain samples required to obtain independent samples
from the posterior distribution (Rosenthal, 2011).
Faster mixing implies that fewer samples M are
required to obtain an accurate approximation to the
posterior.

Here we propose a semiadaptive Metropolis—Hast-
ings algorithm, developed specifically for the current
context of sequential learning. Our approach is based
on an established observation that the optimal width
of the proposal distribution should be proportional to
the typical length scale of the distribution being



Journal of Vision (2018) 18(12):4, 1-25 Bak & Pillow 8

A inferred with 20 observations B inferred with 200 observations

Or of ,*:

o 4L o 4L + True parameter
3 8 O MAP est
e o A MCMC est
2T 2r MCMC samples
—MAP cov
3+ 3 —MCMC cov

0 1 2 3 4 5

slope a
D 1 i e
08r
0.6
> - - True PF
‘QD 0.4 —MAP estimate
o —MCMC estimate
........ :MAP 95% CI
0.2 MCMC 95% ClI
o ks l |
-2 -1 0 1 2
stimulus x stimulus x

Figure 3. Inferring the psychometric function. Example of a psychometric problem, with a lapse-free binomial logistic model
f(v) =¢e"/(1+€"). Given a 1-D stimulus, a response was drawn from a “true” model P(y = 1) = f(b + ax) with two parameters,
slope a =2 and bias b = 0. (A-B) On the parameter space, the posterior distributions become sharper (and closer to the true
parameter values) as the data-set size N increases. (A) N=20 (small); (b) N= 200 (large). For the maximum a posteriori estimate,
the mode of the distribution is marked with a square and the two standard deviations (“widths”) of its Gaussian approximation
with bars. For the Markov-chain Monte Carlo sampling method, all M =500 samples of the chain are shown with dots, the sample
mean with a triangle, and the widths with bars. The widths are the standard deviations along the principal directions of the
sampled posterior (eigenvectors of the covariance matrix; not necessary aligned with the a—b axes). (C—D) The accuracy of the
estimated psychometric function improves with the number of observations N, using either of the two posterior inference
methods (MAP or MCMC). (C) N = 20 (small); (D) N =200 (large). The two methods are highly consistent in this simple case,
especially when N is large enough.

sampled (Gelman, Roberts, & Gilks, 1996; Roberts,
Gelman, & Gilks, 1997). Our algorithm is motivated
by the adaptive Metropolis algorithm (Haario, Saks- methods
man, & Tamminen, 2001), where the proposal

distribution is updated at each proposal within a

Adaptive stimulus-selection

As data are collected during the experiment, the

single chain; here we adapt the proposal not within posterior distribution becomes narrower due to the
chains but rather after each trial. Specifically, we set fact that each trial carries some additional informa-
the covariance of a Gaussian proposal distribution to tion about the model parameters (see Figure 3). This
be proportional to the covariance of the samples from narrowing of the posterior is directly related to

the previous trial, using the scaling factor of Haario et information gain. A stimulus that produces no

al. (2001). See Appendix B for details. The adaptive expected narrowing of the posterior is, by definition,
algorithm takes advantage of the fact that the uninformative about the parameters. On the other
posterior cannot change too much between trials, hand, a stimulus that (on average) produces a large
since it changes only by a single-trial likelihood term change in the current posterior is an informative

on each trial. stimulus. Selecting informative stimuli will reduce the
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number of stimuli required to obtain a narrow
posterior, which is the essence of adaptive stimulus-
selection methods. In this section, we introduce a
precise measure of information gain between a
stimulus and the model parameters, and propose an
algorithm for selecting stimuli to maximize it.

Infomax criterion for stimulus selection

At each trial, we present a stimulus x and observe the
outcome y. After ¢ trials, the expected gain in
information from a stimulus x is equal to the mutual
information between y and the model parameters 0,
given the data D, observed so far in the experiment. We
denote this conditional mutual information:

L(0;ylx) = / d0.dy p(0,y/x,D,)

X log

p(0|D)p(ylx, D)’

where p(0,y|x, D) is the joint distribution of @ and y
given a stimulus x and dataset D;; p(0|D,) is the current
posterior distribution over the parameters from previ-
ous trials; and p(y|x, D) = [ dOp(y|x,0)p(0|D,) is
known as the posterior-predictive distribution of y
given X.

It is useful to note that the mutual information can
equivalently be written in two other ways involving
Shannon entropy. The first is given by

1,(0;y[x) = H,(0) — H,(0ly;x), (12)

where the first term is the entropy of the posterior at
time ¢,

H(0) =~ [ dop(oD)logp(0/D). (13
and the second is the conditional entropy of € given y,
H,(0ly; x) = —Eg,y[log p(0]y,x, D/)]
—~ [[ dvay pio.yix.2)
X logp(0ly,x,D,), (14)

which is the entropy of the updated posterior after
having observed x and y, averaged over draws of y
from the posterior-predictive distribution. Written this
way, the mutual information can be seen as the
expected reduction in posterior entropy from a new
stimulus—response pair. Moreover, the first term H,(0)
is independent of the stimulus and response on the
current trial, so infomax stimulus selection is equivalent
to picking the stimulus that minimizes the expected
posterior entropy H,(0|y;x).
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A second equivalent expression for the mutual
information, which will prove useful for our sampling-
based method, is

1,(0;y|x) = H/(y;x) — H,(y|0;x), (15)

which is the difference between the marginal entropy of
the response distribution conditioned on x,

Hi(yix) = — / dy p(yix, Dy) log plylx. D), (16)

and the conditional entropy of the response y given 0,
conditioned on the stimulus,

Hi(y]0:x) = — / dy d0 p(0, y|x, D)

Xlogp(y|x,0). (17)

This formulation shows the mutual information to
be equal to the difference between the entropy of the
marginal distribution of y conditioned on x (with 0
integrated out) and the average entropy of y given x
and 0, averaged over the posterior distribution of 6.
The dual expansion of the mutual information has also
been used by Kujala and Lukka (20006).

In a sequential setting where ¢ is the latest trial and ¢
+ 1 is the upcoming one, the optimal stimulus is the
information-maximizing (“infomax”) solution:

X.+1 = argmax /,(0;y|x). (18)

Figure 4 shows an example of a simulated experiment
where the stimulus was selected adaptively following
the infomax criterion. Note that our algorithm takes a
“greedy” approach of optimizing one trial at a time.
For work on optimizing beyond the next trial, see for
example Kim, Pitt, Lu, and Myung (2017).

Selecting the optimal stimulus thus requires
maximizing the mutual information over the set of all
possible stimuli {x}. Since each evaluation of the
mutual information involves a high-dimensional
integral over parameter space and response space,
this is a highly computationally demanding task. In
the next sections, we present two algorithms for
efficient infomax stimulus selection based on each of
the two approximate inference methods described
previously.

Infomax with Laplace approximation

Calculation of the mutual information is greatly
simplified by a Gaussian approximation of the poste-
rior. The entropy of a Gaussian distribution with
covariance C is equal to %log |C| up to a constant
factor. If we expand the mutual information as in
Equation 12 and recall that we need only minimize the
expected posterior entropy after observing the re-
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Figure 4. Example of infomax adaptive stimulus selection, simulated with a three-alternative lapse-free model on 1-D stimuli. The
figure shows how, given a small set of data (the stimulus—response pairs shown in the top row), the psychometric functions are
estimated based on the accumulated data (middle row) and the next stimulus is chosen to maximize the expected information gain
(bottom row). Each column shows the instance after the N observations in a single adaptive stimulus-selection sequence, for N= 10,
11, 15, and 20, respectively. In the middle row, the estimated psychometric functions (solid lines) quickly approach the true functions
(dashed lines) through the adaptive and optimal selection of stimuli. This example was generated using the Laplace approximation—
based algorithm, with an independent Gaussian prior over the weights with mean zero and standard deviation ¢ = 10.

sponse, the optimal stimulus for time step 7+ 1 is given
by

X', = argmin / dy p(ylx, D) log |C(x, ¥)], (19)

where C(x,y) is the covariance of the updated (Gauss-
ian) posterior after observing stimulus-response pair (X,
y). To evaluate the updated covariance C(x,y) under the
Laplace approximation, we would need to numerically
optimize the posterior for @ for each possible response y
for any candidate stimulus x, which would be compu-
tationally infeasible. We therefore use a fast approxi-
mate method for obtaining a closed-form update for
C(x,y) from the current posterior covariance C,,
following an approach developed by Lewi et al. (2009).
See Appendix C for details. Note that this approximate
sequential update is only used for calculating the
expected utility of each candidate stimulus by approx-
imating the posterior distribution at the next trial. For
obtaining the MAP estimate of the current model
parameter 6,, numerical optimization needs to be
performed using the full accumulated data D, each time.

Once we have 10g}C(x,y)| for each given stimulus—
observation pair, we numerically sum this over a set of
discrete counts y that are likely under the posterior-
predictive distribution. This is done in two steps, by
separating the integral in Equation 19 as

/ dy p(y[x, D) log |C(x, )|

_ / d6, p(0,/D,) / dy plylx. 0,) log |C(x, y)|.  (20)

Note that the outer integral is over the current posterior
p(0,|D,) ~N(6,, C,), which is to be distinguished from

the future posterior p(0]y,x, D;) ~ N(0(x,y), C(x,y)),
whose entropy we are trying to minimize. Whereas the
inner integral is simply a weighted sum over the set of
outcomes y, the outer integral over the parameter 0 is in
general challenging, especially when the parameter space is
high dimensional. In the case of the standard MNL model
that does not include lapse, we can exploit the linear
structure of model to reduce this to a lower dimensional
integral over the space of the linear predictor, which we
evaluate numerically using Gauss—Hermite quadrature
(Heiss & Winschel, 2008). (This integral is 1-D for classic
logistic regression and has k — 1 dimensions for MNL
regression with k classes; see Appendix C for details.)
When the model incorporates lapses, the full parameter
vector @ = [w',u"]" includes the lapse parameters in
addition to the weights w. In this case, our method with
Laplace approximation may suffer from reduced accuracy
due to the fact that the posterior may be less closely
approximated by a Gaussian.

In order to exploit the convenient structure of the
reduced integral over the weight space, we choose to
maximize the partial information /(w;y|x) between the
observation and the psychophysical weights instead of
the full information 7(0;y|x). This is a reasonable
approximation in many cases where the stimulus-
dependent behavior is the primary focus of the
psychometric experiment (for a similar approach, see
also Prins, 2013). However, we note that this is the only
piece in this work where we treat the weights separately
from the lapse parameters; posterior inference is still
performed for the full parameter 0. Thus for Laplace-
based infomax exclusively, the partial covariance Cyy
= —(*(log P)/ow?) " is used in place of the full
covariance C = —(0%(log P)/d0%) ', where P(0) is the
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posterior distribution over the full parameter space.
Because the positive semidefiniteness of the partial
covariance is still not guaranteed, it needs to be
approximated to the nearest symmetric positive semi-
definite matrix when necessary (Higham, 1988). We can
show, however, that the partial covariance is asymp-
totically positive semidefinite in the small-lapse limit
(Appendix A).

Infomax with MCMC

Sampling-based inference provides an attractive
alternative to the Laplace method when the model
includes nonzero lapse rates, where the posterior may
be less well approximated by a Gaussian. To compute
mutual information from samples, it is more conve-
nient to use the expansion given in Equation 15, so that
it is expressed as the expected uncertainty reduction in
entropy of the response y instead of a reduction in the
posterior entropy. This will make it straightforward to
approximate integrals needed for mutual information
by Monte Carlo integrals involving sums over samples.
Also note that we are back in the full parameter space;
we no longer treat the lapse parameters separately, as
we did for the Laplace-based infomax.

Given a set of posterior samples {6,,} from the
posterior distribution p(0|D,) at time 7, we can evaluate
the mutual information using sums over “potential”
terms that we denote by

Lin(x)=p(y; = 1x,0,). (21)

This allows us to evaluate the conditional response
entropy as

H,(y|0;x) ~ __ZLJM x)log Ljn(x), (22)

and the marginal response entropy as

H5%) == 3 (i3 L)
X log (ﬁZLim(X)), (23)

where we have evaluated the posterior-predictive
distribution as

p(yi=1x,D;) =~

Z Lin(x

Putting together these terms, the mutual information
can be evaluated as

1,(0;y|x) :——Zij x) log (x) (25)

_ Lmx)
Z Ljw (x)/ M

which is straightforward to evaluate for a set of
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candidate stimuli {x}. The computational cost of this
approach is therefore linear in the number of samples,
and the primary concern is the cost of obtaining a
representative sample from the posterior.

We consider two approaches for testing the perfor-
mance of our proposed stimulus-selection algorithms:
one using simulated data, and a second using an off-line
analysis of data from real psychophysical experiments.

Simulated experiments

We first tested the performance of our algorithms
using simulated data from a fixed psychophysical-
observer model. In these simulations, a stimulus x was
selected on each trial and the observer’s response y was
sampled from a “true” psychometric function,

Ptrue (Y|X) = p(le, 0true>-

We considered psychophysical models defined on a
continuous 2-D stimulus space with four discrete
response alternatives for every trial, corresponding to
the problem of estimating the direction of a 2-D
stimulus moving along one of the four cardinal
directions (up, down, left, right). We computed
expected information gain over a set of discrete
stimulus values corresponding to a 21 X 21 square grid
(Figure 5A). The stimulus plane is colored in Figure SA
to indicate the most likely response (one of the four
alternatives) in each stimulus region. Lapse probabil-
ities Ac; were set to either zero (the lapse-free case) or a
constant value of 0.05, resulting in a total lapse
probability of 4 = 0.2 across the four choices (Figure
5B). We compared performance of our adaptive
algorithms with a method that selected a stimulus
uniformly at random from the grid on each trial. We
observed that the adaptive methods tended to sample
more stimuli near the boundaries between colored
regions on the stimulus space (Figure 5C), which led to
more efficient estimates of the PF compared to the
uniform stimulus-selection approach (Figure 5D). We
also confirmed that the posterior entropy of the
inferred parameters decreased more rapidly with our
adaptive stimulus-sampling algorithms in all cases
(Figure SE and 5F). This was expected because our
algorithms explicitly attempt to minimize the posterior
entropy by maximizing the mutual information.

For each true model, we compared the performances
of four different adaptive methods (Figure 6A and 6B),
defined by performing inference with MAP or MCMC
and assuming the lapse rate to be fixed at zero or
including nonzero lapse parameters. Each of these
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Figure 5. The simulated experiment. (A) At each trial, a stimulus was selected from a 2-D stimulus plane with a 21 X 21 grid. The two
lines, running along x; and x, respectively, indicate the cross-sections used in (C—D). Colors indicate the most likely response in the
respective stimulus regime, according to the true psychometric function shown in (B), with a consistent color code. (B) Given each
stimulus, a simulated response was drawn from a true model with four alternatives. Shown here is the model with lapse,
characterized by a nondeterministic choice (i.e., the choice probability does not approach 0 or 1) even at an easy stimulus, far from
the choice boundaries. (C-D) Examples of Laplace approximation—based inference results after 50 trials, where stimuli were selected
either (C) using our adaptive infomax method or (D) uniformly, as shown at left. In both cases, the true model was lapse free, and the
algorithm assumed that lapse was fixed at zero. The two sets of curves show the cross-sections of the true (dotted) and estimated
(solid) psychometric functions, along the two lines marked in (A), after sampling these stimuli. (E-F) Traces of posterior entropy from
simulated experiments, averaged over 100 runs each. The true model for simulation was either (E) lapse free or (F) with a finite lapse
rate of /= 0.2, with a uniform lapse scenario ¢;= 1/4 for each outcome i=1, 2, 3, 4. In algorithms considering lapse (panels on the
right), the shift in posterior entropy is due to the use of partial covariance (with respect to weight) in the case of Laplace
approximation. The algorithm either used the classical multinomial logistic model that assumes zero lapse (left column) or our
extended model that considers lapse (right column). Average performances of adaptive and uniform stimulus-selection algorithms are
plotted in solid and dashed lines, respectively; algorithms based on Laplace approximation and Markov-chain Monte Carlo sampling
are plotted in purple and cyan. The lighter lines show standard-error intervals over 100 runs, which are very narrow. All sampling-

based algorithms used the semiadaptive Markov-chain Monte Carlo method with chain length M = 1,000.

inference methods was also applied to data selected
according to a uniform stimulus-selection algorithm.
We quantified performance using the mean squared
error between the true response probabilities p; = p(y
= j|xi, Owrue) and the estimated probabilities p;; over the
21 X 21 grid of stimulus locations {x;} and the four
possible responses {j}. For MAP-based inference,
estimated probabilities were given by

Dij = p(y = j|Xi, Omap). For MCMC-based inference,
probabilities were given by the predictive distribution,
evaluated using an average over samples:

Pij =2, P(y = j|Xi,0,,), where {0,,} represent sam-
ples from the posterior.

When the true model was lapse free (Figure 6A),
lapse-free and lapse-aware inference methods per-
formed similarly, indicating that there was minimal
cost to incorporating parameters governing lapse when

lapses were absent. Under all inference methods,
infomax stimulus selection outperformed uniform
stimulus selection by a substantial margin. For
example, infomax algorithms achieved in 50-60 trials
the error levels that their uniform stimulus-selection
counterparts required 100 trials to achieve.

By contrast, when the true model had a nonzero
lapse rate (Figure 6B), adaptive stimulus-selection
algorithms based on the lapse-free model failed to select
optimal stimuli, performing even worse than uniform
stimulus-selection algorithms. This emphasizes the
impact of model mismatch in adaptive methods, and
the importance of a realistic psychometric model.
When lapse-aware models were used for inference, on
the other hand, both Laplace-based and MCMC-based
adaptive stimulus-selection algorithms achieved a
significant speedup compared to uniform stimulus
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Figure 6. The simulated experiment, continued; results from the
same set of simulated experiments as in Figure 5. (A—B) Traces
of the mean squared error, where the true model was either (A)
lapse free or (B) with a total lapse rate of 2 = 0.2, uniformly
distributed to each outcome. Standard-error intervals are
plotted in lighter lines as in Figure 5E and 5F. (C) Effect of lapse,
tested by adding varying total lapse rates /. Shown are the
mean squared error after N =100 trials of each stimulus-
selection algorithm, equivalent to the endpoints in (B). Error
bars indicate the standard error over 100 runs, equivalent to
the lighter line intervals in Figure 5E and 5F.

selection, while the MCMC-based adaptive algorithm
performed better. This shows that the MCMC-based
infomax stimulus-selection method can provide an
efficient and robust platform for adaptive experiments
with realistic models. When the true behavior had
lapses, the MCMC-based adaptive stimulus-selection
algorithm with the lapse-aware model automatically
included easy trials, which provide maximal informa-
tion about lapse probabilities. These easy trials are
typically in the periphery of the stimulus space (strong-
stimulus regimes, referred to as “asymptotic perfor-
mance intensity” by Prins, 2012).
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However, the effect of model mismatch due to
nonzero lapse only becomes problematic at a high
enough lapse rate; in the simulation shown in Figures
S5F and 6B, we used a high lapse rate of A=0.2, which is
more typical in the case of less sophisticated animals
such as rodents (see, e.g., Scott, Constantinople, Erlich,
Tank, & Brody, 2015). With lapse rates more typical in
well-designed human psychophysics tasks (/4 < 0.05; see,
e.g., Wichmann & Hill, 2001a, 2001b), infomax
algorithms still tend to perform better than uniform
sampling algorithms (Figure 6C).

Finally, we measured the computation time per trial
required by our adaptive stimulus-selection algorithms
on a personal desktop computer with an Intel 17
processor. With the Laplace-based algorithm, the
major computational bottleneck is the parameter-space
integration in the infomax calculation, which scales
directly with the model complexity. We could easily
achieve tens-of-milliseconds trials in the case of the
simple two-alternative forced-choice task, and sub-
second trials with 2-D stimuli and four-alternative
responses, as used in the current set of simulations
(Figure 7A and 7B). With the MCMC-based algorithm,
the time per trial in the sampling-based method is
limited by the number of samples M in each MCMC
chain rather than by the model complexity. Using the
standard implementation for the Metropolis—Hastings
sampler in Matlab, a time per trial of approximately 0.1
s was achieved with chains shorter than M <200
(Figure 7C and 7D, top panels). This length of M ~
200 was good enough to represent the posterior
distributions for our simulated examples (Figure 7C
and 7D, bottom panels), although we note that longer
chains are required to sample a more complex posterior
distribution, and this particular length M should not be
taken as the benchmark in general.

Optimal reordering of real data set

A second approach for testing the performance of
our methods is to perform an off-line analysis of data
from real psychophysical experiments. Here we take an
existing data set and use our methods to reorder the
trials so that the most informative stimuli are selected
first (for a similar approach, see Lewi, Schneider,
Woolley, & Paninski, 2011). To obtain a reordering, we
iteratively apply our algorithm to the stimuli shown
during the experiment. On each trial, we use our
adaptive algorithm to select the optimal stimulus from
the set of stimuli {x,;} not yet incorporated into the
model. This selection takes place without access to the
actual responses {y;}. We update the posterior using the
stimulus x; and the response y; it actually elicited during
the experiment, then proceed to the next trial. We can
then ask whether adding the data according to the
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Figure 7. Computation time and accuracy. (A—B) The computation times for the Laplace-based algorithms grow linearly with the number
of candidate stimulus points, as shown on the top panels, because one needs to perform a numerical integration to compute the
expected utility of each stimulus. In general, there is a trade-off between cost (computation time) and accuracy (inversely related to the
estimation error). The bottom panels show the mean squared error of the estimated psychometric function, calculated after completing
a sequence of N trials, where the 10 initial trials were selected at regular intervals and the following trials were selected under our
adaptive algorithm. Error estimates were averaged over 100 independent sequences. Error bars indicate the standard errors. The true
model used was the same as in either (A) Figure 5, with two-dimensional stimuli and four-alternative responses, described by nine
parameters; or (B) Figure 3, with one-dimensional stimuli and binary responses, with only two parameters (slope and threshold). The
different rates at which the computation time increases under the two models reflect the different complexities of numerical quadrature
involved. We used lapse-free algorithms in all cases in this example. (C-D) We similarly tested the algorithms based on Markov-chain
Monte Carlo sampling using the two models as in (A—B). In this case, the computation times (top panels) grow linearly with the number
of samples in each chain and are not sensitive to the dimensionality of the parameter space. On the other hand, the estimation-error

plots (bottom panels) suggest that a high-dimensional model requires more samples for accurate inference.

proposed reordering would have led to faster narrow-
ing of the posterior distribution than other orderings.
To perform this analysis, we used a data set from
macaque monkeys performing a four-alternative mo-
tion-discrimination task (Churchland, Kiani, & Shad-
len, 2008). Monkeys were trained to observe a motion
stimulus with dots moving in one of the four cardinal
directions and to report this direction of motion with
an eye movement. The difficulty of the task was
controlled by varying the fraction of coherently moving
dots on each trial, with the remaining dots appearing
randomly (Figure 8A). Each moving-dot stimulus in
this experiment could be represented as a 2-D vector,
where the direction of the vector is the direction of the
mean movement of the dots, and the amplitude of the
vector is given by the fraction of coherently moving
dots (a number between 0 and 1). Each stimulus
presented in the experiment was aligned with one of the
two cardinal axes of the stimulus plane (Figure 8§B).
The PF for this data set consists of a set of four 2-D
curves, where each curve specifies the probability of

choosing a particular direction as a function of location
in the 2-D stimulus plane (Figure 8C).

This monkey data set contained more than 10,000
total observations at 29 distinct stimulus conditions,
accumulating more than 300 observations per stimulus.
This multiplicity of observations per stimulus ensured
that the posterior distribution given the full data set
was narrow enough that it could be considered to
provide a ground-truth PF against which the inferences
based on the reordering experiment could be compared.

The first 100 stimuli selected by the infomax
algorithms had noticeably different statistics from the
full data set or its uniform subsampling (the first N =
100 trials under uniform sampling). On the other hand,
the sets of stimuli selected by both MAP-based and
MCMC-based infomax algorithms were similar. Figure
8D shows the histogram of stimulus components along
one of the axes, p(x2|x; =0), from the first N =100
trials, averaged over 100 independent runs under each
stimulus-selection algorithm using the lapse-free model.
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Figure 8. Optimal reordering of a real monkey data set. (A) The psychometric task consisted of a 2-D stimulus presented as moving dots,
characterized by a coherence and a mean direction of movement, and a four-alternative response. The four choices are color-coded
consistently in (A—C). (B) The axes-only stimulus space of the original data set, with 15 fixed stimuli along each axis. Colors indicate the
most likely response in the respective stimulus regime according to the best estimate of the psychometric function. (C) The best
estimate of the psychometric function of monkeys in this task, inferred from all observations in the data set. (D) Stimulus selection in the
first N =100 trials during the reordering experiment, under the inference method that ignores lapse. Shown are histograms of x, along
one of the axes, x; =0, averaged over 100 independent runs in each case. (E-F) Error traces under different algorithms, averaged over
100 runs. Algorithms based on both Laplace approximation (purple) and Markov-chain Monte Carlo sampling (cyan; M= 1,000) achieve
significant speedups over uniform sampling. Because the monkeys were almost lapse free in this task, inference methods that (E) ignore
and (F) consider lapse performed similarly. Standard-error intervals over 100 runs are shown in lighter lines, but are very narrow.

Because the true PF was unknown, we compared the
performance of each algorithm to an estimate of the PF
from the entire data set. With the MAP algorithm, the
full-data-set PF was given by p; = p(y = j|xi, Orun),
evaluated at the MAP estimate of the log posterior,
0,1 = argmaxg log p(0| Dy ), given the full dataset Dyyy.
For the MCMC algorithm, the full-data-set PF was
computed by p;~+ >, p(v = j|x;, 0,x), where the
MCMC chain {0,,} ~log p(0|Ds) sampled the log
posterior given the full data set. The reordering test on
the monkey data set showed that our adaptive
stimulus-sampling algorithms were able to infer the PF
to a given accuracy in a smaller number of observa-
tions, compared to a uniform sampling algorithm
(Figure 8E and 8F). In other words, data collection
could have been faster with an optimal reordering of
the experimental procedure.

Exploiting the full stimulus space

In the experimental data set considered in the
previous section, the motion stimuli were restricted to

points along the cardinal axes of the 2-D stimulus plane
(Figure 8B; Churchland et al., 2008). In some
experimental settings, however, the PFs of interest may
lack identifiable axes of alignment or may exhibit
asymmetries in shape or orientation. Here we show that
in such cases, adaptive stimulus-selection methods can
benefit from the ability to select points from the full
space of possible stimuli.

We performed experiments with a simulated
observer governed by the lapse-free PF estimated
from the macaque-monkey data set (Figure 8C). This
PF was either aligned to the original stimulus axes
(Figure 9A and 9B) or rotated counterclockwise by
45° (Figure 9C). We tested the performance of
adaptive stimulus selection using the Laplace info-
max algorithm, with stimuli restricted to points along
the cardinal axes (Figure 9A) or allowed to be among
a grid of points in the full 2-D stimulus plane (Figure
9B and 9C).

The simulated experiment indeed closely resembled
the results of our data set reordering test in terms of the
statistics of adaptively selected stimuli (compare Figure
9A to the purple histogram in Figure 8D). With the full
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Figure 9. Design of multidimensional stimulus space. (A—C) Three different stimulus-space designs were used in a simulated
psychometric experiment. Responses were simulated according to fixed lapse-free psychometric functions (PFs), matched to our best
estimate of the monkey PF (Figure 8C). Stimuli were selected within the respective stimulus spaces: (A) the cardinal-axes design, as in
the original experiment; (B) the full stimulus plane, with the PF aligned to the cardinal axes of the original stimulus space; and (C) the
full stimulus plane, with rotated PF. The black dots in (A-C) indicate which stimuli were sampled by the Laplace-based infomax
algorithm during the first N= 100 trials of simulation, where the dot size is proportional to the number of trials in which the stimulus
was selected (averaged over 20 independent runs, and excluding the 10 fixed initial stimuli). (D) The corresponding error traces,
under infomax (solid lines) or uniform (dashed lines) stimulus selection, averaged over 100 runs respectively. Colors indicate the three
stimulus-space designs, as shown in (A-C). Standard-error intervals over 100 runs are shown in lighter lines.

2-D stimulus space aligned to the cardinal axes, on the
other hand, our adaptive infomax algorithm detected
and sampled more stimuli near the boundaries between
colored regions in the stimulus plane, which were
usually not on the cardinal axes (Figure 9B). Finally,
we observed that this automatic exploitation of the
stimulus space was not limited by the lack of alignment
between the PF and the stimulus axes; our adaptive
infomax algorithm was just as effective in detecting and
sampling the boundaries between stimulus regions in
the case of the unaligned PF (Figure 9C).

The error traces in Figure 9D show that we can infer
the PF at a given accuracy in an even smaller number of
observations using our adaptive algorithm on the full 2-
D stimulus plane (orange curves) compared to the
cardinal-axes design (black curves). This also confirms
that we can infer the PF accurately and effectively with
an unaligned stimulus space (red curves) as well as with
an aligned stimulus space. For comparison purposes,
all errors were calculated over the same 2-D stimulus
grid, even when the stimulus selection was from the
cardinal axes. (This had negligible effects on the
resulting error values: Compare the black curves in
Figure 9D and the purple curves in Figure 8E.)

We developed effective Bayesian adaptive stimulus-
selection algorithms for inferring psychometric func-
tions, with the objective of maximizing the expected
informativeness of each stimulus. The algorithms select
an optimal stimulus adaptively in each trial, based on

the posterior distribution of model parameters inferred
from the accumulating set of past observations.

We emphasize that in psychometric experiments,
especially with animals, it is crucial to use models that
can account for nonideal yet common behaviors, such as
omission (no response; an additional possibility for the
outcome) or lapse (resulting in a random, stimulus-
independent response). Specifically, we constructed a
hierarchical extension of a multinomial logistic model
that incorporates both omission and lapse. Although we
did not apply these additional features to real data, we
performed simulated experiments to investigate their
impacts on the accurate inference of PFs. To ensure
applicability of the extended model in real-time closed-
loop adaptive stimulus-selection algorithms, we also
developed efficient methods for inferring the posterior
distribution of the model parameters, with approxima-
tions specifically suited for sequential experiments.

Advantages of adaptive stimulus selection

We observed two important advantages of using
Bayesian adaptive stimulus-selection methods in psy-
chometric experiments. First, our adaptive stimulus-
selection algorithms achieved significant speedups in
learning time (number of measurements), both on
simulated data and in a reordering test of a real
experimental data set, with and without lapse in the
underlying behavior. Importantly, the success of the
algorithm depends heavily on the use of the correct
model family; for example, adaptive stimulus selection
fails when a classical (lapse-ignorant) model is used to
measure behavior with a finite lapse rate. Based on the
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simulation results, it seems good practice to always use
the lapse-aware model unless the behavior under study
is known to be completely lapse free, although it should
be checked that the addition of the lapse parameters
does not make the inference problem intractable, given
the constraints of the specific experiments. (One way to
check this is using a simulated experiment, where lapse
is added to the PF inferred by the lapse-free model,
similar to what we did in this article.) The computa-
tional cost for incorporating lapses amounts to having
k additional parameters to sample, one per each
available choice, which is independent of the dimen-
sionality of the stimulus space.

Second, our adaptive stimulus-selection study has
implications on the optimization of experimental
designs more generally. Contrary to the conventional
practice of accumulating repeated observations at a
small set of fixed stimuli, we suggest that the
(potentially high-dimensional) stimulus space can be
exploited more efficiently using our Bayesian adaptive
stimulus-selection algorithm. Specifically, the algorithm
can automatically detect the structure of the stimulus
space (with respect to the PF) as part of the process. We
also showed that there are benefits to using the full
stimulus space even when the PF is aligned to the
cardinal axes of the stimulus space.

Comparison of the two algorithms

Our adaptive stimulus-selection algorithms were
developed based on two methods for effective posterior
inference: one based on local Gaussian approximation
(Laplace approximation) of the posterior, and another
based on MCMC sampling. The well-studied analytical
method based on the Laplace approximation is fast and
effective in simple cases, but becomes heavier in the
case of more complicated PFs because the computa-
tional bottleneck is the numerical integration over the
parameter space that needs to be performed separately
for each candidate stimulus. In the case of sampling-
based methods, on the other hand, the computational
speed is constrained by the number of MCMC samples
used to approximate the posterior distribution, but not
directly by the number of parameters or the number of
candidate stimuli. In general, however, accurately
inferring a higher dimensional posterior distribution
requires more samples, and therefore a longer compu-
tation time. We note that our semiadaptive tuning
algorithm helps with the cost—accuracy trade-off by
optimizing the sampling accuracy in a given number of
samples, without human intervention, although it does
not reduce the computation time itself.

To summarize, when the PF under study is low
dimensional and well described by the MNL model, for
example in a two-alternative forced-choice study with

Bak & Pillow 17

human subjects, the Laplace-based approach provides
a lightweight and elegant approach. But if the PF is
higher dimensional or deviates significantly from the
ideal model (e.g., includes large lapse), MCMC
sampling provides a flexible and affordable solution.
Results suggest that our MCMC-based algorithm will
be applicable to most animal psychometric experi-
ments, as the model complexities are not expected to
significantly exceed our simulated example. However,
one should always make sure that the number of
MCMC samples being used is sufficient to sample the
posterior distribution under study.

Limitations and open problems

One potential drawback of adaptive experiments is
the undesired possibility that the PF of the observer
might adapt to the distribution of stimuli presented
during the experiments. If this is the case, the system
under measurement would no longer be stationary nor
independent of the experimental design, profoundly
altering the problem one should try to solve. The usual
assumption in psychometric experiments is that well-
trained observers exhibit stationary behavior on the
timescale of an experiment; under this assumption, the
order of data collection cannot bias inference (Mac-
Kay, 1992). However, the empirical validity of this
claim remains a topic for future research.

One approach for mitigating nonstationarity is to
add regressors to account for the history dependence of
psychophysical behavior. Recent work has shown that
extending a psychophysical model to incorporate past
rewards (Bak et al., 2016; Busse et al., 2011; Corrado,
Sugrue, Seung, & Newsome, 2005; Lau & Glimcher,
2005), past stimuli (Akrami, Kopec, Diamond, &
Brody, 2018), or the full stimulus—response history
(Friind, Wichmann, & Macke, 2014) can provide a
more accurate description of the factors influencing
responses on a trial-by-trial basis.

Our work leaves open a variety of directions for
future research. One simple idea is to reanalyze old data
sets under the multinomial response model with
omissions included as a separate response category; this
will reveal whether omissions exhibit stimulus depen-
dence (e.g., occurring more often on difficult trials) and
will provide greater insight into the factors influencing
psychophysical behavior on single trials. Another set of
directions is to extend the MNL observer model to
obtain a more accurate or more flexible model of
psychophysical behavior; particular directions include
models with nonlinear stimulus dependencies or
interaction terms (Cowley, Williamson, Clemens,
Smith, & Byron, 2017; DiMattina & Zhang, 2011;
Hyafil & Moreno-Bote, 2017; Neri & Heeger, 2002),
models with output nonlinearities other than the
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logistic (Kontsevich & Tyler, 1999; Schiitt et al., 2016;
A. B. Watson, 2017; A. B. Watson & Pelli, 1983), or
models that capture overdispersion, for example due to
nonstationarities of the observer, via a hierarchical
prior (Schiitt et al., 2016). In general, such extensions
will be much easier to implement with the MCMC-
based inference method, due to the fact that it does not
rely on gradients or Hessians of a particular parame-
terization of log likelihood. Finally, it may be useful to
consider the same observer model under optimality
criteria other than mutual information—recent work
has shown that infomax methods do not necessarily
attain optimal performance according to alternate
metrics (e.g., mean squared error; I. M. Park & Pillow,
2017; M. Park et al., 2014)—or using nongreedy
selection criteria that optimize stimulus selection based
on a time horizon longer than the next trial (Kim et al.,
2017; King-Smith et al., 1994).

Keywords: adaptive stimulus selection, sequential
optimal design, Bayesian adaptive design, psychometric
function, closed-loop experiments
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Appendix A

Log likelihood for the classical MNL model

Here we provide more details about the log
likelihood L =y ' logp under the MNL model (Equa-
tion 6), first in the lapse-free case.

A convenient property of the MNL model (a
property common to all generalized linear models) is
that the parameter vector p; governing y depends
only on a 1-D projection of the input, V; = ¢TW,',
which is known as the linear predictor. Recall that ¢
= ¢(x) is the input feature vector. In the multino-
mial case, it is useful to consider the column vector
of linear predictors for a single trial,

V=1[V, -, V], and the concatenated weight
vector w=[w],---,w]|', consisting of all weights

stacked into a single vector. We can summarize their
linear relationship as V = Xw, where X is a block
diagonal matrix containing k blocks of ¢ ' along the
diagonal. In other words,

¢T OT . OT Wi
OT T L. OT w
X=1 . ¢ . o ow= N (26)
o' o' ... ¢ Wi
Derivatives

It is convenient to work in terms of the linear
predictor V = {V;} first. If N, =)".y; = 1 is the total
number of responses per trial, the first and second
derivatives of L with respect to V are dL/dV; = y; —
N,p; and 8>L/aV:aV; = N,pi(d; — p;), respectively. Re-
writing in vector forms, we have

oL .
- = _ ) 2

V (y—-Np) ., (27)

L . T\

el (diag(p) —pp' ) =—-N,I(p), (28)

where diag(p) = [p;d;] is a square matrix with the
elements of p on the diagonal and zeros otherwise.
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Putting back in terms of the weight vector w is easy,
thanks to the linear relationship V = Xw:

oL oL - -
—=_X=(y-p ' Xx=A", (2
0°L 0’L
——=X'—SX=-XTX=-A. (30)
ow? FAY
Concavity

Importantly, L is concave with respect to V (and
therefore with respect to w). To prove the concavity of
L, we show that the Hessian H = —diag(p) + pp' =-T
is negative semidefinite, which is equivalent to showing
thatz'I'z > 0:

z' Tz = z'diag(p)z — (ZTP)2
=D zipi- (Z/prj)2
- |- )] 20 6

for an arbitrary vector z.

Log likelihood with lapse

With a finite lapse rate A (to recap), the MNL model
is modified as p; = (1 — A)g; + Ac;, where

exp(V;)

| exp(i)
qi Z]: exp( VJ) )

“TI1F >oexp(uy) (32)

Let us introduce the following abbreviations:
_ /N{Cl'
pi’

where the dimensionless ratio r € [0, 1] can be consid-
ered as the order parameter for the effect of lapse.

ri ti=yi(1 —ri),

Sl'Eyﬂ‘l'(l —i’,‘), (33)

Derivatives with respect to the weights

Differentiating with the linear predictor V, we get

aq;
= 5!' - iy
v, (0 —q1)q
azqi
= (0 — q:) (i — q1) — (034q; — g i
VoV [( i — ;) (0i — q1) — (0uq 4_1‘11)]4

This leads to

32‘11‘
av;o Vv,

av,

J i ad i 62 i
Di_q—pd TP
v, Vv
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We are interested in the derivatives of the log

likelihood L =y ' logp with respect to V. The partial
gradient is

MW
aV/ - ‘pidVi
:lz—mzlz-

i

Similarly, the partial Hessian is written as

1_/“ Zyl

11—(11

0’L _Z 1 &p 1 ap; op;
avav, £V \piavav, praviavi
= J1<S1 (]12 ) (g5 + q1s))

+ q.i‘]l(zl.si + Zi i)-

In vector forms, and with t=)".¢; and 6 =) s,
oL
t— 34
=t (39)
9L ~ T T T
P diag(s —tq) — (qs' +sq )+ (t +0)qq

= —1|diag(q) — qq]
+ [diag(s) — (qs" +sq') +oqq']. (35)

Note that we recover t; — y; and s; — 0 in the
lapse-free limit 4 — 0. Hence the first square bracket
in Equation 35 reduces back to the lapse-free
Hessian, while the second square bracket vanishes as
A—0.

In the presence of lapse, one might still be interested
in the partial Hessian with respect to the weight
parameters, H=9’L/ aV?, which should be evaluated
as in Equation 35. To test the negative semidefiniteness
of this partial Hessian, again for an arbitrary vector z,
we end up with

z Hz = — 2}: f_/<(z - <Z>q>2>q
T ZSj(Z_f - <Z>q)2, (36)

where (x), = > x;q;. The partial Hessian is asymp-
totically negdtlve semidefinite (Whlch is equivalent to
the log likelihood being concave) in the lapse-free limit,
where t; — y; and 5; — 0.

Derivatives with respect to lapse parameters

From Equations 2 and 3, we have p;= (1 — A)¢, + Ac;,

where

Y explu)
Ty expl)”

exp(u;)

S expi) 37)

Cci =
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Differentiating with respect to the auxiliary lapse
parameter u;, we have
ac; Ly

auj ( y l) oAl auj

= (1= 2)ic. (38)

The gradient is then

p;
aluj: (65— pi)ac;  (39)

using the abbreviations in Equation 33, the gradient of
the log likelihood is

oL N 1 api

o =r(—

— = y_ N'y . p . 40
auj - lpi 8u, ) J) ( )
The second derivative with respect to lapse is
therefore
Op; api

= 0y— — (8; + Oy —
du;ou; ”au, (j+ !

2pi)iciici;  (41)
it is useful to notice that
9pi 9pi Ipi

=9 —)C]

81,{_/ oy il oy Pz( i =+ 0if

2pi)iciici.  (42)

The corresponding part of the Hessian is
L 1 &@p; 1 dp;ap;
oo~ Z g (F_ auia’;l - 3%; G_Z;)
= 0j Z)’t i < lC[) gl;j
= 5ﬂ (sl ripiNy —|—rlp Zyl)

Finally, the mixed derivative is

D (1 - g (G- adan (44)
=—(1 =A4)Ac; - (0 — .

8u_,8V; g il —dq1)q1
Again, it is useful to notice that

ap; opi O’pi

el — (5 — D (45

awav, - 0P Gy 49)
Hence

0?L 1 0%p; 1 dp; dp;
v = 2 o
u,-a V[ 7 311](9 V] Di aujan

q2

J

From Equations 40, 43, and 46, we see that all
derivatives involving the lapse parameter scale with at
least one order of r, therefore vanishing in the lapse-
free limit 2 — 0.
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The Metropolis—Hastings algorithm

The Metropolis—Hastings algorithm (Metropolis et
al., 1953) generates a chain of samples, using a proposal
density and a method to accept or reject the proposed
moves.

A proposal is made at each iteration, where the
algorithm randomly chooses a candidate for the next
sample value x’ based on the current sample value x,.
The choice follows the proposal density function x’ ~
O(x’ | x,). When the proposal density Q is symmetric,
for example a Gaussian, the sequence of samples is a
random walk. In general the width of Q should match
with the statistics of the distribution being sampled,
and individual dimensions in the sampling space may
behave differently in the multivariate case; finding the
appropriate Q can be difficult.

The proposed move is either accepted or rejected with
some probability; if it is rejected, the current sample value
is reused in the next iteration, X’ = x,. The probability of
acceptance is determined by comparing the values of
P(x,) and P(x’), where P(x) is the distribution being
sampled. Because the algorithm only considers the
acceptance ratio p = P(x')/P(x,) = f(x')/f(x,), where
f(x) can be any function proportional to the desired
distribution P(x), there is no need to worry about the
proper normalization of the probability distribution. If p
> 1, the move is always accepted; if p < 1, it is accepted
with a probability p. Consequently, the samples tend to
stay in the high-density regions, visiting the low-density
regions only occasionally.

Optimizing the sampler

One of the major difficulties in using the MCMC
method is making an appropriate choice of the
proposal distribution, which may significantly affect
the performance of the sampler. If the proposal
distribution is too narrow, it will take a long time for
the chain to diffuse away from the starting point,
producing a chain with highly correlated samples and
requiring a long time to achieve independent samples.
On the other hand, if the proposal distribution is too
wide, most of the proposed moves will be rejected, once
again resulting in the chain stuck at the initial point. In
either case the chain would mix poorly (Rosenthal,
2011). In this article we restrict our consideration to the
Metropolis—Hastings algorithm (Metropolis et al.,
1953), although the issue of proposal-distribution
optimization is universal in most variants of MCMC
algorithms, with only implementation-level differences.
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The basic idea is that the optimal width of the
proposal distribution would be determined in propor-
tion to the typical length scale of the distribution being
sampled. This idea was made precise in the case of a
stationary random-walk Metropolis algorithm with
Gaussian proposal distributions, by comparing the
covariance matrix X, of the proposal distribution to the
covariance matrix X of the sampled chain. Once a linear
scaling relation X, = s,X is fixed, it has been observed
that it is optimal to have s, = (2.38)%/d, where d is the
dimensionality of the sampling space (Gelman et al.,
1996; Roberts et al., 1997). An adaptive Metropolis
algorithm (Haario et al., 2001) follows this observation,
where the Gaussian proposal distribution adapts con-
tinuously as the sampling progresses. That adaptive
algorithm uses the same scaling rule X, = s, but
updates X, at each proposal, where X is the covariance
of the samples accumulated so far. Additionally, a small
diagonal component is added for stability, as
%, =54(Z + el). We used € =0.0001 in this work.

Here we propose and use the semiadaptive Metrop-
olis—Hastings algorithm, which is a coarse-grained
version of the original adaptive algorithm by Haario et
al. (2001). The major difference in our algorithm is that
the adjustment of the proposal distribution is made only
at the end of each (sequential) chain, rather than at each
proposal within the chain. This coarse-graining is a
reasonable approximation because we will be sampling
the posterior distribution many times as it refines over
the course of data collection, once after each trial.
Assuming that the change in posterior distribution after
each new observation is small enough, we can justify our
use of the statistics of the previous chain to adjust the
properties of the current chain. Unlike in the fully
adaptive algorithm, where the proposal distribution
needs to stabilize quickly within a single chain, we can
allow multiple chains until stabilization, usually a few
initial observations—Ileaving some room for the coarse-
grained approximation. This is because for our purpose,
it is not imperative that we have a good sampling of the
distribution at the very early stages of the learning
sequence where the accuracy is already limited by the
smallness of the data set.

When applied to the sequential learning algorithm,
our semiadaptive Metropolis sampler shows a consis-
tent well-mixed property after a few initial adjustments,
with the standard deviation of each sampling dimen-
sion decreasing stably as data accumulate (Figure 10).
Although Kujala and Lukka (2006) also had the idea of
adjusting the proposal density between trials, their
scaling factor was fixed and independent of the
sampling dimension. Building on more precise statisti-
cal observations, our method generalizes well to high-
dimensional parameter spaces, typical for multiple-
alternative models. Our semiadaptive sampler provides
an efficient and robust alternative to particle-filter
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Figure 10. Statistics of the semiadaptive Markov-chain Monte Carlo algorithm in a simulated experiment, with M= 1,000 samples per chain.
We used the same binomial model as in Figure 3, and the uniform stimulus-selection algorithm. (A-B) Lapse-free model. (A) The standard
deviation of the samples, along each dimension of the parameter space, decreases as the learning progresses, as expected because the
posterior distribution should narrow down as more observations are collected. Also shown is the scatterplot of all 1,000 samples at the last
trial N= 50, where the true parameter values are (a, b) = (5, 0). (B) The mixing time of the chain (number of steps before the autocorrelation
falls to 1/e) quickly converges to some small value, meaning that the sampler is quickly optimized. Autocorrelation function at the last trial N
=50 is shown. (C-D) Same information as (A-B), but with a lapse rate of 2 = 0.1, with uniform lapse (c; = ¢; = 1/2).

implementations (Kujala & Lukka, 2006), which have
the known problem of weight degeneration (DiMatti-
na, 2015) as the posterior distribution narrows down

with the accumulation of data.

Appendix C

Fast sequential update of the posterior, with
Laplace approximation

Use of Laplace approximation has been shown to be
particularly useful in a sequential experiment (Lewi et
al., 2009), where it can be assumed that the posterior
distribution after the next trial in sequence, P,,, would
not be very different from the current posterior P,. Let
us consider the lapse-free case § = w for the moment,
where the use of Laplace approximation is valid.
Rearranging from Equations 7 and 9, the sequential
update for the posterior distribution is

log Pr.1(W) = log P (W) + Liw1(W);  (47)
or with Laplace approximation,
10gN<W’01+17 Ct+1)
~log N (w[0;,C;) + Liy1(w), (48)

where L;(w) = log p(y,|x;, w) is a shorthand for the log
likelihood of the ith observation.

With this, we can achieve a fast sequential update of
the posterior without performing the full numerical

optimization each time. Because the new posterior mode
0., is where the gradient vanishes, it can be approxi-
mated from the previous mode 0, by taking the first
derivative of Equation 48. The posterior covariance C, 4
is similarly approximated by taking the second derivative:

L1

0t+1 - 0: + CIAI+17 oW

At+1 =

(49)
w=0,
— —1
Cl+1 - (Ct ! + Al+1) )

_32Lz+1
ow?

At = (50)

w=0,,,

Using the matrix inversion lemma (Henderson &
Searle, 1981), we can rewrite the posterior covariance
update as

Cni =6 [1_ 1+ At+1Ct)_1At+lCt]- (51)

Unlike in the earlier application of this trick (Lewi et
al., 2009), the covariance matrix update (Equation 50)
is not a rank-1 update, because of the multinomial
nature of our model (our linear predictor y is a vector,
not a scalar as in a binary model).

Integration over the parameter space: Reducing
the integration space

The evaluation of the expected utility function usually
involves a potentially high-dimensional integral over the
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parameter space. With the Gaussian approximation of
the posterior, we can reduce and standardize the
integration space. The process consists of three steps:
diagonalization, marginalization, and standardization.
First we choose a new coordinate system of the (say ¢-
dimensional) weight space, such that the first k& elements
of the extended weight vector w are coupled one-to-one to
the elements of k-vector y. Then we marginalize to
integrate out the remaining ¢ — k dimensions, effectively
changing the integration variable from w to y. Finally, we
use Cholesky decomposition to standardize the normal
distribution, which is the posterior on y. The resulting
integral is still multidimensional, due to the multinomial
nature of our model. But once the distribution is
standardized, there are a number of efficient numerical
integration methods that can be applied. For example, in
this work, we use the sparse-grid method (Heiss &
Winschel, 2008) based on Gauss—Hermite quadrature.

Diagonalization

It is clear from Equations 19, 20, 29, and 30 that all
parameter dependence in our integrand is in terms of
the linear predictor y = Xw. That is, we are dealing with
the integral of the form

Fe / AW N (WIW, C) - fXw),  (52)

where C is the covariance matrix and X = @’leg’; is a
fixed matrix constructed from a direct sum ot k vectors.
It helps to work in a diagonalized coordinate system, so
that we can separate out the relevant dimensions of w.
We use the singular-value decomposition of the design
matrix (X = UGV" with U= T and V= Q). Because
of the direct-sum construction, XX is already diagonal,
and the left singular matrix is always 7 in this case. Then

G=X0" =[G, G,], (53)

where Gy is a k X k diagonal matrix and G, is a k X (g —
k) matrix of zeros. We can now denote wy = (wy,-- -,
wi) and w, = (W41, -+, wy) in the diagonalized vari-
able w = Ow’, such that
T
W = [Wi, W,]

GwW = Giwi = (g1W1,82W2, - - - EkWk)-

)

Marginalization

Now we have
F= [ dwN s B - flGw),
B™'=0C0", (54)
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where B is the inverse of the new covariance matrix
after diagonalization. If we block-decompose this
matrix,

_ Bkk qu B -
b= [Bq/c Bz]q:|’ Bk‘i = (qu) ) (55)

the Gaussian distribution is also decomposed as

N(w|w, B = N (wi|wi, B )
'N(Wq‘(wq —b) Bil)a

’7Tqq

where b = B, ! Byw and B. = By — Biy B, By As
the nonparallel part w, is integrated out, we have
marginalized the integral. It is useful to recall that if a
variable w ~ NV (w, C) is Gaussian distributed, its linear
transform y = Xw is also Gaussian distributed as y ~
N(¥,%), with y = Xw and £ = XCX'. Changing the
integration variable to y = G,wy is then straightfor-
ward:

F= /dwk/\/'(wk!ﬁ'k,B*l) - f(Grewy)

_ / dyN (y[y, Z) - Ay),
T =GiBI'Gl. (56)

Standardization

Finally, in order to deal with the numerical
integration, it is convenient to have the normal
distribution standardized. We can use the Cholesky
decomposition for the covariance matrix,

LL" =%, (57)

such that the new variable 0 = L~ (y —y,.,) is
standard normal distributed. We can then write L
directly in terms of the Cholesky decomposition of B,:

L=GR' where R'R=B.. (58)

Importantly, with this transformation each dimen-
sion of @ is independently and identically distributed.
The objective function to be evaluated is now

Flx) = / dy - N[Frer, o) A7, %)

_ / do - N(6[0,1) - f($(6),x), (59)

where ¢(0) =Yy,,; + L6. Once the integration is stan-
dardized this way, there are a number of efficient
numerical methods that can be applied.
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