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The co-occurrence of stress-induced posttraumatic stress disorder (PTSD)

and obesity is common, particularly among military personnel but the
link between these conditions is unclear. Individuals with comorbid PTSD
and obesity manifest other physical and psychological problems, which
significantly diminish their quality of life. Current understanding of the

pathways connecting stress to PTSD and obesity is focused largely on
behavioral mediators alone with little consideration of the biological

regulatory mechanisms that underlie their co-occurrence. In this work, we
leverage prior knowledge to systematically highlight such bio-behavioral
mechanisms and inform on the design of confirmatory pilot studies. We

use natural language processing (NLP) to extract documented regulatory
interactions involved in the metabolic response to stress and its impact on
obesity and PTSD from over 8 million peer-reviewed papers. The resulting
network describes the propagation of stress to PTSD and obesity through

34 metabolic mediators using 302 documented regulatory interactions
supported by over 10,000 citations. Stress jointly affected both conditions
through 21 distinct pathways involving only two intermediate metabolic

mediators out of a total of 76 available paths through this network. Moreover,
oxytocin (OXT), Neuropeptide-Y (NPY), and cortisol supported an almost
direct propagation of stress to PTSD and obesity with different net effects.

Although stress upregulated both NPY and cortisol, the downstream effects
of both markers are reported to relieve PTSD severity but exacerbate obesity.
The stress-mediated release of oxytocin, however, was found to concurrently
downregulate the severity of both conditions. These findings highlight how

a network-informed approach that leverages prior knowledge might be
used effectively in identifying key mediators like OXT though experimental
verification of signal transmission dynamics through each path will be needed

to determine the actual likelihood and extent of each marker’s participation.
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Introduction

The biological and behavioral link between posttraumatic
stress disorder (PTSD) and obesity has gathered some empirical
traction, particularly because of the elevated co-occurrence of
the two conditions (Mitchell et al., 2021). Indeed, veterans with
PTSD consistently present with elevated body mass index (Buta
et al., 2018) with 83% qualifying as overweight (BMI = 25–
29), or obese (BMI ≥ 30) (Hall et al., 2020). This frequency
of occurrence does not appear to differ significantly between
sexes. A large study conducted recently by the Veterans Health
Administration (VHA; Breland et al., 2020, N = 4,867,049),
found that 44.2% of female veterans had a mean BMI of 29.9
(SD = 6.5) and 41.7% of male veterans had a mean BMI of
29.7 (SD = 5.7), again pointing to an elevated rate of obesity
in this population. Importantly, a nationally representative
investigation of PTSD and obesity among veterans (N = 3,157)
found that 5.8% of veterans had co-occurring PTSD and
obesity, while 32.7% of them reported obesity and 16.4%
reported PTSD (Stefanovics et al., 2020). Moreover, these
same authors found that veterans with co-occurring PTSD
and obesity also suffered from a higher occurrence of other
psychiatric disorders such as anxiety and depressive disorders,
suicidal ideation, nicotine dependence as well as a myriad
of physical health problems including migraine headaches,
diabetes, hypertension, and insomnia.

Current explanations for the convergence of PTSD and
obesity often implicate various types of eating disorders
[e.g., night eating syndrome (Dorflinger and Masheb, 2018),
binge eating (Hoerster et al., 2015), bulimia nervosa (Mitchell
et al., 2012), anorexia nervosa (Castellini et al., 2018;
Longo et al., 2019), and emotional eating (Dorflinger and
Masheb, 2018)], emerging as maladaptive coping strategies,
which mediate and maintain the relationship between PTSD
and obesity. Consistent with this view, PTSD is widely
considered a behavioral risk factor for Metabolic Syndrome
(MetS), including diabetes, dyslipidemia, hypertension, and
obesity (Bartoli et al., 2013). Indeed, our understanding
of the underlying biological regulatory mechanisms that
jointly drive PTSD and obesity is still in its nascent stages,
particularly as it applies the persistence and co-occurrence
of these conditions. In a reductionist approach, investigations
of the physiological response mechanisms underlying PTSD
have typically focused narrowly on dysregulation of the
hypothalamic-pituitary-adrenal (HPA) axis (Dunlop and Wong,
2019). In contrast, a broader physiology has been implicated
in obesity, one involving interplay between thyroid regulation,
immune function as well as sex hormone regulation (Lainez
and Coss, 2019) in maintaining energy homeostasis (Schwartz
et al., 2017). Only in recent years have potentially important
directions been proposed that focus on the convergence of
stress responsive mechanisms active in both conditions (Xiao
et al., 2020; Oroian et al., 2021). For instance, Michopoulos

et al. (2016) reported on the co-occurrence of PTSD and
metabolic disorders such as obesity and diabetes, suggesting
that PTSD involves endocrine responses, which might lead
to metabolic dysregulation as a function of trauma exposure.
More specifically, the latter points to mechanistic interactions
linking HPA axis function with that of the hypothalamic-
pituitary-thyroid (HPT) axis. Phenotypically distinct yet also
co-occurring, PTSD and obesity seem to engage both illness-
specific well as overlapping stress-response mechanisms which
might be recruited preferentially depending on the individual as
well as on the history and context of events to drive the onset of
a single or dual pathology.

In this article we leverage the known physiology of
HPA, HPT and immune regulation to extract elements of
these mechanisms from the peer-reviewed literature using
large-scale automated text-mining. Documented interactions
linking stress-responsive endocrine and immune mediators are
then used to assemble a cohesive mechanistically informed
network. We then analyze the uninterrupted paths in the
network that facilitate the propagation of stress response
through a cascade of metabolic regulatory mediators to
affect either pathology independently or both pathologies
jointly. By formally representing the close integration of these
regulatory axis and the extent of their cross-talk in dictating
behavioral responses, such network-informed methods have the
potential to be highly effective in identifying key mediators
of dysregulation in complex stress-mediated co-morbidities
and by doing so offer a new and important perspective on
their treatment.

Materials and methods

Network creation

In this work we establish an evidence-based regulatory
network linking stress, PTSD, and obesity, by extracting
endocrine and immune mediators with documented
involvement in these conditions as well as their functional
interactions from the Elsevier Biology Knowledge Graph
database (Elsevier, Amsterdam) (Kamdar et al., 2020) using the
Pathway Studio∗ suite of software tools (Nikitin et al., 2003).
Updated on a weekly basis, this database currently recognizes
in excess of 1.4 M biological entities (molecules, cell types,
diseases, clinical measures, etc.) connected through over 13.5 M
relationships (co-expression, regulatory, binding interactions,
etc.) extracted by automated text mining from over 5 M full-text
peer-reviewed publications and over 32 M PubMed abstracts
describing in vitro as well as in vivo animal and human studies
(including results from over 300,000 clinical trials). The query of
this database conducted in the context of this work supported an
initial 302 regulatory interactions (edges) previously extracted
from 10,673 full text of peer-reviewed journal publications
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using the MedScan natural language processing (NLP) engine
(Novichkova et al., 2003; Daraselia et al., 2004).

Network reliability

Subsequent to model creation, we attempt to control for
false positive interactions by testing each of the latter using
network analytical concepts proposed by Guimerà and Sales-
Pardo (2009) and based on the conservation of connectivity
patterns that are broadly conserved in biological and social
networks such as modularity or the presence of densely
connected subnetworks. By comparing the properties of a given
network to those that might be expected in biological networks
of comparable size and complexity, the authors compute a
reliability Rij for each network interaction, or the estimated
probability that the link “truly” exists given our observation of
the whole underlying network. We extend this notion further
by the adjusting the probability of an interaction being spurious
based on the extent of documentation or number of citations Cij

supporting this interaction. Accordingly, an interaction linking
node i to node j that presents with a high reliability Rij base on
its role in supporting a biologically plausible network structure
and that is well documented in addition would correspond to a
low spurious score Sij (Eq. 1).

Sij =
(1− Rij)

Cij
(1)

The spurious score Sij was computed for each of the initial
302 regulatory interactions producing values ranging from 0
to roughly 68% that were in turn used to prune the network.
We observe that these values decrease almost linearly for
the 50 or so highest values. As shown in Figure 1, a linear
regression was fit to the decrease in spurious score in this
region (observations 10 through 30) producing an adjusted
R2 value of 0.98 with an average absolute residual error of
0.007. Using a standard one-sample t test to identify significant
deviations from this linear regression we found that these
occurred consistently with p < 0.01 for spurious scores below
30% indicating an inflection point and significant stabilization
in spurious score. Accordingly, associations with spurious scores
above this threshold were considered unreliable and removed
from the final network (see Supplementary Table 1).

Analysis of network structure and
traversing paths

As a means of assessing the degree of biological fidelity
capture by this literature-informed network we computed
various fundamental network topological features and
properties (Barabási and Oltvai, 2004; Huber et al., 2007; Mason
and Verwoerd, 2007). These include measures describing the

general structure of the overall network such as the as its size
and complexity such as network diameter and the network
connection density. The network diameter represents the
breadth of the network and is computed as the shortest distance
between two most remote nodes. Likewise, we computed
the characteristic path length, or the mean minimal distance
between any two nodes, as a measure of the efficiency of
information propagation through the network. As an indicator
of network complexity, we computed the network connection
density, or the total number of edges in the current network
represented as a fraction of all the possible edges in a fully
connected network with the same number of nodes. This
measure is known to vary significantly across levels of biology
and physiological compartments (Frankenstein et al., 2006).
Finally, as connection patterns in biological networks tend to
favor the emergence of highly subnetworks, or clusters, we
also compute the network clustering coefficient (Guimerà and
Sales-Pardo, 2009; Di Camillo et al., 2012) using the software
package Cytoscape (Shannon et al., 2003).

At the level of individual nodes, we computed different
centrality measures to describe their relative role within the
network. First, we estimated the closeness centrality to describe
how well-connected a given node is to the remainder of the
network overall. This is computed as the average length of the
shortest path between a given node and all other nodes in the
network. To describe how a node might act as a key broker of
information or gatekeeper between adjacent highly connected
sub-networks, we computed the betweenness centrality. The
measure is proportional to the frequency with which a node is
positioned along the shortest paths between two other nodes.
This same concept is extended to a more detailed analysis of
minimal path length where we computed all paths of minimal
length containing one or two intermediate nodes separating
stress from obesity and stress from PTSD. These network
analyses were conducted using the Python package NetworkX
(Hagberg et al., 2008).

Results

General characteristics of the network

The original network produced by the NLP text-mining
consisted of 33 nodes and 302 regulatory interactions. Analysis
of the estimated reliability if these interactions indicated that
roughly 1 in 8 of these (∼34 edges) did not contribute toward
improving alignment of the overall network topology with what
might be expected of a typical biological network containing the
same number of nodes. These were removed to yield a truncated
network consisting of the same 33 nodes connected through
268 regulatory interactions supported by a total of 10,637
reference citations (Figure 2 and Supplementary Table 1A).
The functional class assigned to these source-target relationships
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FIGURE 1

Reliability of regulatory interactions. Spurious scores Sij (Eq. 1) computed for each of the initial 302 regulatory relationships (blue dots) as an
estimate of the likelihood that these interactions might be false positives. These scores decrease linearly (red regression line) to Sij∼30% below
which the rate of change slows considerably. As a result, regulatory relationships with Sij ≥ 30% were removed as having a high likelihood of
being spurious or false positive occurrences.

by MedScan (Novichkova et al., 2003; Daraselia et al., 2004)
included direct regulation (23 edges), regulation (44 edges),
molecular synthesis (19 edges), molecular transport (122 edges),
and co-expression (60 edges). Relationships where the mode of
action was not assigned were excluded leaving 179 relationships
where the source upregulates the downstream target (positive
polarity) and 89 where it downregulates the latter (negative
polarity). On average, each of the 33 nodes interacted through
these functional relationships with approximately 8 upstream
and 8 downstream neighbors on average (Supplementary
Table 1B) leading to an overall network connection density
of roughly 25%. Perhaps not surprisingly, insulin (INS) and
glucose appear as highly influential nodes with insulin having
the highest number of upstream regulators (indegree 24) and
glucose affecting the largest number of downstream targets
(outdegree 20). High closeness centralities for both nodes (0.67
for insulin and 0.76 for glucose) indicated that these connections
were distributed in a way that support a broad network-wide
involvement. Insulin also emerged as the dominant mediator
of information flow across the various network neighborhoods
with a betweenness centrality of 1.88, or roughly 50% more than
its closest rivals triglyceride energy stores (betweenness 1.16),
TSH (betweenness 1.06), and ADIPOQ (betweenness 1.01).

While a dominant role of mediators closely related to
the regulation of glucose makes intuitive sense and would
support the plausibility of this metabolic response network it
is also important to examine overall network structure and
patterns of information flow (Supplementary Table 2). With
respect to the overall breadth of the network, the shortest path

linking the 2 most remotes nodes consisted of 4 cascading
relationships (network diameter of 4) with on average any
pair of nodes being separated by at least two edges or at
least one intermediate mediator node (1.87 characteristic path
length). On average nodes in the immediate neighborhood of
any given node in this network would connect would connect
with each other with a connection density exceeding 40% of all
possible neighborhood interactions (0.41 clustering coefficient).
A cursory examination of similar statistics reported in the
literature describing biological networks existing at different
levels of granularity suggest that the metabolic response
network presented here shares many structural similarities
with organ-level networks as opposed to intra-cellular or
social networks (Albert and Barabási, 2002; Supplementary
Table 2). Indeed, a map connecting 55 functional regions of
whole cerebral cortex in cat (Hilgetag et al., 2000) share a
strikingly similarity with the network presented here in terms of
overall connection density, average number neighboring nodes
and characteristic path length separating nodes. Likewise, a
theoretical network based on the functional connectivity in
cat and macaque monkey cortex (Young, 1993; Sporns and
Kötter, 2004) and enriched in functional motifs delivers a
virtually identical clustering coefficient of approximately 0.4.
These similarities with functional connectivity in mammalian
brain contrast sharply with the much lower clustering that
appears characteristic of neuronal networks in C. elegans
(0.28) (Watts and Strogatz, 1998) and the much higher
clustering in social interaction networks (e.g., film actors)
(Watts and Strogatz, 1998) and language (Yook et al., 2001).
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FIGURE 2

A metabolic network model. Created through Pathway Studios, this model involves directional effects between metabolic markers implicated in
PTSD and obesity. Arrows indicate directional regulatory edges between mechanisms, such that a green arrow indicates the source node
upregulates the target node while a red arrow indicates the source node downregulates the target node.

Similarly, while intracellular metabolic pathways exhibit a
network diameter of similar magnitude, individual nodes are
only half as connected with neighbors on average (Jeong et al.,
2000). Though not an exhaustive comparison, the dominant
role of core glucose regulators as well as the overall topological
organization of the propose text-mined response network would
suggest that it is to a large extent compatible with known
functional networks existing at a similar level of biology.

Shared and unique mediators of
posttraumatic stress disorder and
obesity

In order to identify metabolic mediators that play a
key role in exacerbating PTSD and obesity, we conducted
an analysis of the shortest possible paths facilitating the
transmission of stress response onto these two pathologies.
We found 11 such direct paths where stress affected these
pathologies directly by regulating only one of eight possible

intermediate network nodes. These consisted of adiponectin
(ADIPOQ), apolipoprotein B (APOB), the gastrointestinal
hormone cholecystokinin (CCK), cortisol, ghrelin, leptin (LEP),
neuropeptide Y (NPY), and oxytocin (OXT). While five of
these exercised a direct and unique effect on obesity only, both
pathologies were jointly affected by the remaining three, namely
cortisol, NPY, and OXT (Figure 3 and Supplementary Table 3).
Unfortunately, cortisol and NPY while mediating reduced
severity in PTSD are predicted to concurrently exacerbate
obesity. Indeed, only increased levels of OXT expressed in
response to stress were predicted to jointly reduce severity of
symptoms in both PTSD and obesity. Interestingly this effect
continues to apply to stress response involving a cascade of
two intermediate mediators (Supplementary Table 4A). We
found a total of 76 such two-step regulatory cascades. Of
these 21 jointly propagated the effects of stress onto both
pathologies concurrently. Of these only seven concurrently
alleviated the severity of PTSD and obesity. All involved
transmission of stress response through OXT via one of the
following upstream regulators: CCK, cortisol, ghrelin, LEP, fear
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FIGURE 3

A single metabolic mediator subnetwork. Subnetwork of shortest paths linking stress to PTSD and obesity through only one intermediate
metabolic mediator. Shared paths leading to both PTSD and obesity involved the convergent actions of cortisol, oxytocin (OXT), and
neuropeptide Y (NPY).

mediator Neuropeptide S (NPS), NPY or through vasoactive
intestinal polypeptide (VIP). This being said, transmission of
stress through regulation of OXT simultaneously exacerbated
both pathologies when also mediated through thyroid hormone
triiodothyronine or T3. All other shortest stress response
paths promoted divergent effects, alleviating one pathology
while exacerbating the other. In addition to these stress
response cascades jointly affecting both pathologies, we
identified 45 paths involving two sequential mediators that
uniquely affected obesity (Supplementary Table 4B), 25
of which promoted a stress-induced reduction in obesity.
Likewise, we identified 11 cascades through which stress
uniquely affected PTSD and not obesity (Supplementary
Table 4C). Interestingly, thyroid-stimulating hormone or TSH
is common to all these metabolic pathways. Four such
pathways attenuated the effects of stress and reduced PTSD
severity. These involved upstream regulation of TSH by either
cortisol, ghrelin, NPY or OXT. The frequency with which
all of the individual network elements mentioned above are
recruited into these stress response pathways is summarized in
Figure 4.

Discussion

Posttraumatic stress disorder and obesity are two major
prevalent public health concerns in the United States across
both military veterans and the general public (Farr et al.,
2014). Given the pervasiveness of these two conditions and
the inadequate understanding of their underlying mechanisms
and pathways, the current study explored how stress affects
PTSD and obesity through varied metabolic mediators. We
find multiple regulatory cascades involving as few as one or
two mediators that support the mechanistic engagement of
distinct metabolic response processes to stress that jointly affect
PTSD severity and obesity. Whereas many of these paths
drove the severity of PTSD and obesity in opposing directions,
stress-mediated release of oxytocin was found to concurrently
downregulate the severity of both conditions. These results
suggest that established graph theoretical concepts might be
applied to existing peer-reviewed knowledge to discover the
basic physiological mechanisms recruited in support of this co-
morbidity.
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FIGURE 4

Involvement of cascading regulators. Mediation of one or both health conditions involving two-intermediate metabolic regulators reported as
the number of available path occurences. Paths annotated as overlapping involve the same two intermediate mediators to simultaneously link
stress to both PTSD and obesity. Oxytocin (OXT), neuropeptide Y (NPY), and cortisol were most frequently involved in jointly mediating PTSD
and obesity.

First and perhaps foremost, it is interesting to observe
that the current body of published knowledge contained
sufficient information of individual elemental interactions to
derive a regulatory network linking an environmental trigger
such as stress with health outcomes, both physiological and
behavioral, through known metabolic circuitry. Not only was
this text-mined network cohesive, allowing for continuous
directed paths to each pathology, but it displayed topological
features and information flow patterns that were consistent
with those broadly conserved across biological networks
(Guimerà and Sales-Pardo, 2009; Di Camillo et al., 2012).
Moreover, the architecture of this network was especially
consistent with real-world functional networks reported in
mammalian brains (Albert and Barabási, 2002), a level of
physiology particularly relevant to this work. Of note, almost
one third of the cascades theoretically available to support
the propagation of stress response across this model network
jointly affected both pathologies, a proportion reminiscent
of the ratio of PTSD and obesity comorbidity reported by
Stefanovics et al. (2020). NPY, cortisol, and OXT played a key
role in directly propagated stress response to PTSD and obesity
as well as in cascades recruiting other metabolic mediators.
Interestingly, with the exception of the thyroid hormone T3,
all cascades involving OXT were predicted to concurrently
alleviate the effects of stress on PTSD severity and obesity. In
contrast, NPY and cortisol were predicted to exert divergent
effects on these health outcomes. Low levels of NPY are found
to contribute to chronic PTSD (Rasmusson et al., 2000; Sah
et al., 2009; Sah and Geracioti, 2013; Tural and Iosifescu,
2020) and the efficacy of NPY administered intranasally toward
relieving PTSD symptoms is supported in empirical studies

(Sayed et al., 2018) earning it the name “resiliency hormone”
(Sah et al., 2009). Unfortunately, there is an even larger
body of evidence indicating that NPY, a potent orexigenic
(appetite-inducing) peptide (Beck, 2006; Assan et al., 2021),
when released in response to stress stimulates adipogenesis,
inducing an increase in adiposity and exacerbating obesity
as well as triggering a cascade of other metabolic alterations
(Masodkar et al., 2016; Ailanen et al., 2017). The involvement
of cortisol highlights the metabolic sequalae to stress. Once
again, the network model presented here predicts that this HPA
regulated glucocorticoid will drive divergent outcomes in these
pathologies, with stress-induced cortisol exacerbating obesity,
while reducing PTSD severity. Expressed at lower basal levels
resulting from a maladaptation of the HPA axis to increased
GR sensitivity, the role of cortisol in PTSD has justifiably been
broadly studied (Dunlop and Wong, 2019), though much less so
in obesity (Oroian et al., 2021). Nonetheless, the exogenous role
of stress impacting obesity through elevated cortisol reactivity
and maladaptive coping behaviors (e.g., comfort eating) has
gained much empirical traction (Herhaus et al., 2020). Indeed,
heightened consumptive behaviors as a function of HPA axis
reactivity was found when CRH was endogenously administered
to healthy non-obese adults (George et al., 2010).

The joint mediation by the oxytocinergic system across
PTSD and obesity is further described in focused work by
Thienel et al. (2016) as well as that of Witteveen et al. (2020).
Broadly considered a “natural medicine” attenuating the effects
of stress, and promoting resilience and healing (Carter et al.,
2020), OXT has been found to impart both preventive and
curative effects in PTSD (van Zuiden et al., 2017; Donadon
et al., 2018). Importantly, a hybrid intervention with OXT and
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psychotherapy has been shown to have a potent effect on PTSD
severity (Flanagan et al., 2018), though these effects reportedly
vary across the sexes (Frijling et al., 2015). Likewise, OXT, being
anorectic, functions as a “nutrient status sensor” (McCormack
et al., 2020, p. 122), and is found to reduce obesity across
humans, rodents, and non-human primates (Niu et al., 2021),
through its effect on consumptive behaviors by simultaneously
regulating cognitive control as well as food reward processing
(Spetter et al., 2018). Importantly, increased OXT signaling
and secretion are known to regulate both energy intake and
energy expenditure which result in weight loss by its effect
on fat mass loss (as opposed to lean mass loss) (McCormack
et al., 2020). In addition, there is evidence that OXT is
involved in reversing insulin resistance and glucose intolerance,
thus reducing obesity (Zhang et al., 2013). Collectively, these
results suggest that OXT, an essential regulator of the gut-
brain axis (Olszewski et al., 2017) also exercising key roles
in various other neurobehavioral pathways and homeostatic
systems (McCormack et al., 2020), might be a biomarker and
even a potential target of intervention worthy of further study
in the management of both PTSD and obesity.

Though not an exhaustive validation of the over 260
regulatory interactions captured in this network, interpretations
of the literature made by the MedScan natural language
processing engine would appear consistent with those of
the human reader, at least in this focused verification those
metabolic mediators identified as playing a key role in the
comorbidity of obesity and PTSD. This technology continues
to evolve and though results are highly dependent on the
validation set and metrics, it is not unreasonable to expect a
disambiguation accuracy exceeding 85% (Yepes and Berlanga,
2015) in the interpretation of medical texts. This is consistent
with the experience of our group where we found accuracy
of interpretation exceeding 90% in an endocrine regulatory
network counting over 200 interactions validated by consensus
with a second NLP engine and a human domain expert reader
(Morris et al., 2019). It is also important to remember that
in this work every citation was attributed an equal credibility
in its support of a given interaction, irrespective of the
possible differences in publication date or source publication.
The development of useful quality metrics continues to be
an active field for our group (Jackson, 2021) and others.
Although they are useful in highlighting those regulatory
cascades through which stress propagate, it is important to
remember that these paths were identified based on connectivity
alone. Though theoretically available, the relative kinetics of
signal transmission through each path will determine the
actual likelihood and extent of its participation. Nonetheless
we propose that the current analysis offers an efficient
framework for collecting, reconciling, and operationalizing
existing community knowledge toward informing on key
markers in the design of studies that can precede even pilot
level investigation. Moreover, the resulting networks offer a
mechanistically informed description of biology relevant to

an illness of interest without being illness-specific. Hence,
representing accrued knowledge in this way creates a lasting
and widely applicable model of what we know that transcends
a specific study data set while also ensuring the consistency
of the latter with peer-reviewed observations of the broader
research community.
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