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Abstract
Acute respiratory distress syndrome is associated with skeletal muscle compro-
mise, which decreases survival and impairs functional capacity. A comparative 
analysis of peripheral and respiratory muscles' atrophy and dysfunction in acute 
lung injury (ALI) has not been performed. We aimed to evaluate diaphragmatic 
and peripheral muscle mass and contractility in an ALI animal model. ALI 
was induced in C57BL/6 mice by intratracheal lipopolysaccharides instillation. 
Muscle mass and in vitro contractility were evaluated at different time points in 
hindlimb soleus (slow-twitch) and extensor digitorum longus (EDL, fast-twitch), 
as well as in the main respiratory muscle diaphragm. Myogenic precursor satel-
lite cell-specific transcription factor Pax7 expression was determined by Western 
blot. Lung injury was associated with atrophy of the three studied muscles, al-
though it was more pronounced and persistent in the diaphragm. Specific con-
tractility was reduced during lung injury in EDL muscle but restored by the time 
lung injury has resolved. Specific force was not affected in soleus and diaphragm. 
A persistent increase in Pax7 expression was detected in diaphragm and EDL 
muscles after induction of ALI, but not in soleus muscle. Different peripheral and 
respiratory skeletal muscles are distinctly affected during the course of ALI. Each 
of the studied muscles presented a unique pattern in terms of atrophy develop-
ment, contractile dysfunction and Pax7 expression.
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1   |   INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a major 
cause of severe respiratory failure, frequently affecting 
patients with critical conditions like sepsis or trauma 
(Bellani et al.,  2016; Pham & Rubenfeld,  2017). Many 
patients with ARDS develop skeletal muscle weakness, 
which typically persists for years after the resolution of 
lung injury (Fan et al., 2014). Muscle dysfunction is asso-
ciated with increased long-term mortality, reduced func-
tional status, and worse quality of life (Dinglas et al., 2017; 
Fan et al., 2014; Herridge et al., 2011).

Different profiles of peripheral and respiratory mus-
cle atrophy and weakness have been described in criti-
cally ill patients (Carambula et al., 2021; Dres et al., 2017; 
Puthucheary et al., 2013). Moreover, diverse muscle groups 
are affected to different degrees (Campbell et al., 1995; Jung 
et al., 2014). In humans with chronic respiratory diseases, 
for example, the respiratory muscles are differentially 
affected from the limb muscles (Barreiro & Gea,  2015). 
Recent studies using lung injury animal models have pro-
vided some insight into the mechanisms involved in skele-
tal muscle dysfunction (Chacon-Cabrera et al., 2014; Files 
et al.,  2012; Files et al.,  2016; Marin-Corral et al.,  2010; 
Shieh et al.,  2019). However, comprehensive analyses of 
ARDS-related muscle atrophy and contractile dysfunction 
in different muscle groups and their progression patterns 
have not been performed. Most studies focus on either limb 
or respiratory muscles compromise, making it difficult to 
conclude whether different muscles are affected in the 
same way. While both peripheral and ventilatory muscle 
dysfunction are deleterious, clinical studies in mechani-
cally ventilated patients have demonstrated that their im-
pact on patients' outcomes is different (Dres et al.,  2017; 
Dres et al., 2019). Moreover, affection of distinct muscles 
could benefit from specific preventive and therapeutic 
approaches (Dong et al.,  2021; Leite et al.,  2018; Martin 
et al.,  2011; Nakanishi et al.,  2020; Nakano et al.,  2021; 
Sotak et al., 2021).

Therefore, our study aimed to describe the morphologic 
and functional characteristics of different skeletal muscles 
during the course of acute lung injury (ALI). We used a 
previously established animal model of ALI developed 
by intratracheal instillation of lipopolysaccharides (LPS), 
which reproduces many characteristics of human ARDS. 
This model was chosen because it has already been used to 
study ALI-related skeletal muscle compromise in hindlimb 
of mice (Files et al., 2012; Files et al., 2016). The model is 
characterized by a sublethal lung injury, with complete 
pulmonary recovery within 1 week. Hence, time points 
within this period were selected in order to describe the 
evolution of muscle affection through different stages of 

ALI. Furthermore, to comprehend the impact of ALI on 
different muscle types, all analyses were performed in a 
predominantly slow-twitch and in a predominantly fast-
twitch hindlimb muscles, soleus and extensor digitorum 
longus (EDL), respectively; as well as in the diaphragm 
(predominantly fast-twitch fibers) as the main respiratory 
muscle. We hypothesized that different profiles of atrophy 
and contractile dysfunction would be detected in respi-
ratory, peripheral slow-twitch and peripheral fast-twitch 
muscles.

2   |   METHODS

2.1  |  Ethics statement

Experiments were performed following the ARRIVE 
guidelines, under a project license granted by the institu-
tional ethics committee (approval no. 070153–000560-14, 
Comisión de Ética en el Uso de Animales, Facultad de 
Medicina, Universidad de la República).

2.2  |  Animal model

Ten-week-old male C57BL/6 mice were provided by 
Facultad de Medicina and maintained under standard 
laboratory conditions (23°C, 12:12-h light–dark cycle) 
with food and water accessible at libitum. Mice were an-
esthetized with isoflurane and intubated with a 20-gauge 
catheter. LPS from Escherichia coli 055:B5 (L2880, Sigma-
Aldrich) at 3 μg/g of body weight was instilled intratrache-
ally in order to induce lung injury (Files et al., 2012). Sham 
control animals received a similar volume of sterile saline 
instead of LPS. At different time points, animals were an-
esthetized with sodium pentobarbital (40 mg/kg intraperi-
toneal) for tissue sampling. Animals were euthanized by 
exsanguination. Sham animals were studied 3 days after 
saline instillation. For all experiments n ≥ 6 animals per 
group, unless otherwise specified.

2.3  |  Bronchoalveolar lavage and analysis

The bronchoalveolar lavage fluid (BALF) was obtained 
after instillation of 1 ml of sterile saline through an air-
way catheter. White blood cell (WBC) count in the BALF 
was determined using an automated hematology analyzer 
(Cell-Dyn Ruby, Abbott Core Laboratory Systems). To 
measure protein concentration BALF was centrifuged at 
200g for 5 min and the supernatant was analyzed with the 
bicinchoninic acid assay.
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2.4  |  Lung histology

A 20-gauge catheter was sutured into the trachea, the 
lungs were carefully excised and inflated to 15 cmH2O 
with 4% buffered formaldehyde. Lungs were embedded in 
paraffin and 4-μm sections were stained with hematoxy-
lin and eosin (H&E) for histologic evaluation (Optiphot; 
Nikon).

2.5  |  Muscle procurement and 
determination of muscle mass

At selected time points (2, 4, and 7 days after LPS adminis-
tration, i.e. LPS-d2-4-7) hindlimb and respiratory skeletal 
muscles were carefully dissected under real-time magnifi-
cation. Soleus and EDL were extracted preserving proxi-
mal and distal tendons. Subsequently, the diaphragm was 
dissected preserving the central tendon and the costal in-
sertions. Muscle mass was determined for soleus and EDL 
after removing fat, tendons, and remaining blood using an 
analytical balance (ED124S, Sartorius). Muscle mass was 
normalized by tibia length.

2.6  |  Muscle histology

Muscles were fixed with 4% buffered formaldehyde and 
embedded in paraffin. Serial transverse cryosections 
(4  μm) were stained with H&E for histologic evalua-
tion. Photomicrographs were taken at 40× magnification 
(Optiphot, Nikon, Japan). For each muscle fiber cross-
sectional area (CSA) was measured in ≥200 fibers (ImageJ, 
National Institutes of Health) and expressed as mean 
fiber CSA (μm2) and fiber size distribution (Jaitovich 
et al., 2015).

2.7  |  Muscle in vitro contractility

Muscle contractile properties were studied in vitro under 
isometric conditions in sham, LPS-d3, and LPS-d7 mice 
(Angulo et al.,  2009). Muscles were surgically excised 
taking special care not to stretch or damage the fibers. 
Muscles were immediately placed in chilled (4°C) Krebs 
solution (in mM: NaCl 118, KCl 4.7, CaCl2 2.5, MgSO4 
1.2, KH2PO4 1, NaHCO3 25, glucose 11; pH 7.4) bubbled 
with 95% O2–5% CO2 (Barreiro et al., 2002). A muscle strip 
(3–4 mm wide) of the lateral portion of the diaphragm was 
dissected, along with the orientation of the fibers, with 
part of the rib and central tendon attached for mounting. 
Soleus and EDL muscles were mounted through proximal 
and distal tendons. Muscles were transferred to a vertical 

organ bath (MyoBath, World Precision Instruments, Inc., 
Sarasota, FL) filled with equilibrated Krebs solution 
(95% O2–5% CO2) kept at 23°C, with a constant flow of 
approximately 10  ml/min. A 4–0 silk suture was used 
to secure each muscle to an isometric force transducer 
(FORT100, World Precision Instruments, Inc., Sarasota, 
FL) and allowed to equilibrate for 15 min. Muscles were 
subsequently stimulated via two platinum electrodes 
using 1-ms square current pulses at supramaximal volt-
age (Grass S48 Stimulator, Grass Instruments). All experi-
mental procedures were conducted maintaining optimal 
muscle fiber length (Lo), defined as the muscle length at 
which maximal twitch tension was obtained. Force meas-
urements were recorded and analyzed with AxoScope 
Software (Molecular Devices).

2.7.1  |  Single twitch

Twitch contractile properties were analyzed by perform-
ing a single electrical pulse (1 Hz) and measuring: single 
twitch tension, contraction time to peak tension (CT), 
half relaxation time (HRT, time required for peak ten-
sion to decrease by 50%), contraction speed (dT/dtmax, 
maximum rate of rising of peak tension) and relaxation 
speed (−dT/dtmax, maximum rate of decrease in peak 
tension).

2.7.2  |  Force-frequency relationship

Maximal isometric tetanic tension was determined at 
different stimulating frequencies (10, 20, 30, 50, 80, 100, 
and 120 Hz, 1-s train duration), with 1 min between each 
stimulation train.

2.7.3  |  Fatigue resistance and recovery

To examine fatigue muscles were stimulated at 20 Hz, 
500-ms train duration, 1 train/s, for 5 min. Fatigue resist-
ance was determined by comparing the tension generated 
on the first and last train (%). Immediately after the fa-
tigue protocol, maximum tetanic stimuli (120 Hz, 1-s train 
duration) were performed at subsequent time points (0, 1, 
2, 3, 4, and 5 min) and fatigue recovery was determined 
by comparing the generated tension to pre-fatigue 120 Hz 
tension.

At the end of the experiment muscle length at Lo was 
measured using a digital caliper. Muscle was freed from 
tendons and ribs and weighted. Absolute tension (g) gen-
erated during contraction was normalized for CSA and 
expressed as specific force (N/cm2) using the following 
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formula: tension (kg) × 9.8 (gravitational constant, m/s2) 
× length (cm) × 1.056 (muscle density, g/cm3) / weight (g) 
(Supinski et al., 1999).

2.8  |  Western blot

Muscle samples were mechanically homogenized on ice 
with cold lysis buffer in a 10-fold excess (wt/wt), contain-
ing NaF 5 mM, β-glycerophosphate 50 mM, RIPA buffer 
(Tris pH 8 25 mM, NaCl 150 mM, NP-40 1%, deoxycholate 
1%, sodium dodecyl sulfate 0.1%) and protease inhibitors 
with a tissue homogenizer (T10 basic ULTRA-TURRAX, 
Ika). Samples were centrifuged at 12,000g for 15 min at 
4°C and the supernatant was collected. The Bradford 
assay was employed to measure protein concentration 
(Thermo Scientific Protein Biology Products). Proteins 
were separated by SDS-PAGE and semi-dry transferred to 
nitrocellulose membranes for immunoblotting. Primary 
antibodies for Pax-7 (Santa Cruz Biotechnology Cat# sc-
81,975, RRID:AB_2252008) and GAPDH (Santa Cruz 
Biotechnology Cat# sc-32,233, RRID:AB_627679) were 
used and results were visualized by chemiluminescence 
using horseradish peroxidase-conjugated secondary an-
tibodies according to the manufacturer's instructions 
(Thermo Scientific Protein Biology Products).

2.9  |  Statistical analysis

Data are expressed as mean (SD) or absolute frequency 
(%), unless otherwise specified. Comparisons be-
tween different groups were performed with one-way 
ANOVA followed by Bonferroni post hoc test. Two-
way ANOVA and Bonferroni tests were used to analyze 
force-frequency relationships and fatigue recovery. 
Results were considered statistically significant when 
p < 0.05. Prism 6.01 software (GraphPad) was used for 
the analysis.

3   |   RESULTS

3.1  |  Acute lung injury in mice

Lipopolysaccharide's instillation resulted in acute and 
reversible lung injury. A significant increase in protein 
concentration and WBC count in BALF was observed 
on days 2 and 4 after LPS administration, returning to 
baseline levels (sham group) by day 7 (Figure  1a,b). 
In concordance, cellular infiltrates and interstitial 
thickening was evident in histologic analysis on days 
2 and 4, but resolved by day 7 after LPS instillation 
(Figure 1c).

F I G U R E  1   Evolution of lung injury after intratracheal LPS instillation. (a) white blood cell (WBC) count in bronchoalveolar lavage fluid 
(BALF). (b) protein concentration in BALF. (c) lung sections stained with hematoxylin and eosin. Scale bars = 20 μm. *p < 0.05, ***p < 0.001, 
****p < 0.0001 compared to control animals (sham).
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3.2  |  Skeletal muscle atrophy

Atrophy was detected in the three study muscles after LPS 
administration. A significant decrease was observed in 
soleus wet weight and in the fibers' mean CSA by days 
2 and 4, with a gradual recovery by day 7 (Figure 2a,b). 
Accordingly, a leftward shift in the fibers size distribu-
tion histogram occurred in animals treated with LPS 
(Figure 2c). Wet muscle weight of EDL was significantly 
reduced after LPS administration, even after lung in-
jury resolved (day 7, Figure 2d). A decrease in EDL fib-
ers' CSA (reaching a nadir at day 4) and a predominance 
of smaller fibers was also observed after LPS instillation 
(Figure 2e,f). Finally, a profound and persistent reduction 
in diaphragm fibers' CSA occurred in mice following LPS 
administration (Figure 3g,h).

3.3  |  Skeletal muscle contractility

Different patterns of muscle function compromise were 
observed in the three studied muscles. In soleus mus-
cle, a significant reduction in absolute tension (from 
50 to 120 Hz stimuli) was observed during the acute 
phase of lung injury (LPS-d3), which was completely 
restored on day 7 (Figure 3a). Nevertheless, soleus spe-
cific force was not affected in mice with lung injury 
(Figure  3b). A significant decrease in dT/dtmax could 
be detected in mice on the third day of LPS instillation, 

without affection of another soleus' twitch contractile 
kinetics (Figure 3c–f). Soleus muscle fatigue resistance 
and recovery were not different between animal groups 
(Figure 3g,h).

Contractile properties of EDL muscle were more com-
promised. A robust and significant decline was observed 
in EDL absolute tension in LPS-d3 mice, which was not 
completely restored by day 7 (Figure  4a). Specific force 
was also significantly reduced in LPS-d3, but returned to 
near normal (sham) levels in LPS-d7 animals (Figure 4b). 
No differences were observed in EDL single twitch CT 
and HRT (Figure 4c,d). Contraction speed (dT/dtmax) was 
significantly lower in EDL of LPS-d3 mice, but similar 
to control in LPS-d7 animals (Figure  4e). A not statisti-
cally significant reduction in relaxation speed (−dT/dtmax) 
could be detected 3 days after LPS instillation (Figure 4f). 
No differences were observed in EDL muscle fatigue re-
sistance and recovery among sham, LPS-d3, and LPS-d7 
mice (Figure 4g,h).

Finally, all diaphragmatic contractile properties (single 
twitch kinetics, force-frequency relationship, fatigue resis-
tance, and fatigue recovery) were similar between sham, 
LPS-d3, and LPS-d7 animals (Figure 5).

3.4  |  Pax7 expression

Skeletal muscle recovery after injury or atrophy 
is mainly determined by the myogenic precursor 

F I G U R E  2   Skeletal muscle atrophy in mice with lung injury. (a) soleus muscle weight normalized by tibia length. (b) soleus muscle 
fibers' mean cross-sectional area (CSA). (c) histogram of soleus fiber size distribution. (d) extensor digitorum longus (EDL) muscle weight 
normalized by tibia length. (e) EDL muscle fibers' mean CSA. (f) histogram of EDL fiber size distribution. (g) diaphragm muscle fibers' mean 
CSA. (h) histogram of diaphragm fiber size distribution. *p < 0.05, **p < 0.01, ***p < 0.001 compared to control animals (sham). ^p < 0.05, 
^^p < 0.01, ^^^p < 0.001 between groups.
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satellite cell (Chen & Shan,  2019; Fukada,  2018). In 
order to get an initial insight regarding the myogenic 
response to acute lung injury, expression of the satel-
lite cell-specific transcription factor Pax7 was deter-
mined in the different muscles by immunoblotting. 
We did not find differences in soleus Pax7 expression 
after intratracheal LPS administration (Figure  6a,b). 
However, a remarkable and persistent increase in Pax7 
protein expression was observed in EDL (1.5-2.0-fold, 

p < 0.05) and diaphragm (2.3–3.5-fold, p < 0.05) of 
mice with lung injury (Figure 6c–f).

4   |   DISCUSSION

In the current study, the most relevant result was that 
different peripheral and respiratory skeletal muscles are 
distinctly affected during the course of ALI. In fact, each 

F I G U R E  3   Soleus in vitro contractility analysis in control mice (sham), 3 days (LPS d3) and 7 days (LPS d7) after LPS instillation. Soleus 
absolute tension (a) and specific force (b) at different stimulation frequencies were recorded. Contraction time (c), half relaxation time (d), 
contraction speed (dT/dtmax, e) and relaxation speed (−dT/dtmax, f) were measured from a single twitch (1 Hz). Fatigue resistance (g) and 
recovery after fatigue (h) are presented. *p < 0.05, **p < 0.01 comparing sham versus LPS d3.
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of the studied muscles presented a unique pattern in 
terms of atrophy development, contractile dysfunction 
and Pax7 expression. In the fast-twitch hindlimb mus-
cle EDL, persistent muscle wasting was observed, with 
a transient impairment of contractility, and a signifi-
cant increase in Pax7 expression. In contrast, although 
atrophy was also detected in the slow-twitch hindlimb 
muscle soleus, contractility was not affected, and Pax7 
expression remained unchanged. Finally, profound 
muscle atrophy was observed in the diaphragm, with 

a remarkable increase in Pax7 expression but without 
contractile dysfunction.

4.1  |  Muscle atrophy in acute lung injury

Previous work from Files et al. demonstrated that mus-
cle wasting observed in mice with ALI induced by in-
tratracheal LPS instillation was mediated through the E3 
ubiquitin ligase MuRF1 (Files et al.,  2012). The authors 

F I G U R E  4   Extensor digitorum longus (EDL) in vitro contractility analysis in control mice (sham), 3 days (LPS d3) and 7 days (LPS 
d7) after LPS instillation. EDL absolute tension (a) and specific force (b) at different stimulation frequencies were recorded. Contraction 
time (c), half relaxation time (d), contraction speed (dT/dtmax, e) and relaxation speed (−dT/dtmax, f) were measured from a single twitch 
(1 Hz). Fatigue resistance (g) and recovery after fatigue (h) are presented. *p < 0.05, **p < 0.01, ****p < 0.0001 comparing sham versus LPS d3. 
^p < 0.05 comparing sham versus LPS d7.
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described atrophy occurring at the hindlimb fast-twitch 
muscle tibialis anterior (TA), as well as a decrease in 
hindlimb contractile force determined in vivo. The pat-
tern of muscle compromise described both in patients 
with ARDS and in different animal models is highly heter-
ogeneous (Carambula et al., 2021; Divangahi et al., 2004; 
Shiota et al., 2004). Therefore, we aimed to further inves-
tigate the morphologic and functional properties of three 
different muscles during the course of murine acute lung 
injury and resolution stages.

Muscle atrophy was developed in all three studied 
muscles after LPS instillation (Figure  2). Both hindlimb 
muscles were affected by muscle wasting. Slow-twitch 
(oxidative) and fast-twitch (glycolytic) fibers have dif-
ferent susceptibility to specific atrophy signals.(Wang & 
Pessin,  2013) Although differential fiber type CSA anal-
ysis was not performed in our study, a similar degree and 
evolutionary pattern of atrophy were observed in predom-
inantly slow-twitch (soleus) and fast-twitch (EDL) mus-
cles. Our experiments also demonstrated a more severe 

F I G U R E  5   Diaphragm in vitro contractility analysis in control mice (sham), 3 days (LPS d3) and 7 days (LPS d7) after LPS instillation. 
Diaphragm specific force at different stimulation frequencies was recorded (a). Contraction time (b), half relaxation time (c), contraction 
speed (dT/dtmax, d) and relaxation speed (−dT/dtmax, e) were measured from a single twitch (1 Hz). Fatigue resistance (f) and recovery after 
fatigue (g) are presented.
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and persistent atrophy of the diaphragm, as compared to 
peripheral muscles. Interestingly, muscle mass (particu-
larly diaphragmatic) was not completely restored by the 
time lung injury was resolved (day 7).

4.2  |  Muscle dysfunction in acute 
lung injury

Muscle force-generation capacity depends on muscle mass, 
specific contractility, and neuromuscular transmission. In 
this animal model, a reduction in hindlimb dorsiflexion abso-
lute force (mainly determined by TA contraction) (Gerlinger-
Romero et al.,  2019) was previously reported, but without 
affection of specific force (Files et al.,  2012). However, in 
our study different patterns of muscle function compromise 
were observed. Noteworthy, intrinsic contractile proper-
ties of EDL muscle were significantly affected. Therefore, 
the profound decline in EDL's absolute force observed in 
LPS-d3 (Figure  4a) reflects muscle atrophy (Figure  2d–f) 
and impaired specific contractility (Figure  4b). However, 
while EDL's specific force was restored in LPS-d7, absolute 
strength was still reduced because of persistent muscle atro-
phy. In contrast to EDL, soleus and diaphragm specific force 
were not affected during the course of lung injury (Figures 3b 
and 5a). Hence, the reduced soleus absolute force on LPS-
d3 (Figure 3a) is probably a consequence of muscle atrophy 
at that time point (Figure 2a–c). While the absolute force of 
the whole diaphragm could not be determined in vitro in 
this setting, the pronounced and persistent atrophy observed 
(Figure  3g,h) suggests that respiratory muscle capacity is 
probably reduced in mice treated with LPS.

The heterogeneous compromise of intrinsic contractile 
properties found in our study is particularly interesting. 
Specific force was impaired in EDL muscle during the 
phase of active lung injury, but preserved in soleus and 
diaphragm. Different muscle susceptibility to contrac-
tile dysfunction has been already described in numerous 
animal models. Chronic hypoxia in rats determined a 
severe reduction in EDL's contractility, with a minor at-
tenuation on diaphragmatic force and no effect on soleus 
(Shiota et al.,  2004). Hemorrhagic shock was associated 
with a dramatic impairment of soleus contractility but 
preserved diaphragmatic function (Carreira et al., 2014). 
On the contrary, Pseudomonas aeruginosa lung infection 
in mice caused a significant impairment of diaphragmatic 
contractility without affecting soleus or EDL (Divangahi 
et al., 2004). There is no clear explanation for these discrep-
ancies among different animal models. Undoubtedly, fiber 
type composition (fast-twitch/slow-twitch), muscle group 
(peripheral/respiratory) and workload (disuse/overload) 
are major determinants of the way each muscle is affected 
in a particular scenario. However, other factors such as 
calcium homeostasis, myofibrillar composition, and mi-
tochondrial function could also be decisive (Ottenheijm 
et al., 2008; Picard et al., 2012; van Hees et al., 2012).

4.3  |  Differential Pax7 expression in 
response to acute lung injury

Skeletal muscle has a remarkable capacity to regenerate 
upon injury, which is mainly accomplished by recruiting 
myogenic stem cells, called satellite cells (Mauro, 1961). The 

F I G U R E  6   Pax7 protein expression in soleus, extensor digitorum longus (EDL), and diaphragm after LPS-induced lung injury. 
Representative immunoblots and densitometry of Pax7 in soleus (a, b), EDL (c, d), and diaphragm (e, f) in control mice (sham) and at days 2, 
4, and 7 after LPS instillation (n ≥ 3). GAPDH was used as loading control. Cropped blot images are presented for clarity. *p < 0.05 compared 
to sham.
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muscle regeneration process might be a key factor to better 
understand skeletal muscle compromise in patients recover-
ing from ARDS. In fact, reduced content of satellite cells was 
observed in patients with sustained muscle atrophy after in-
tensive care unit discharge (Dos Santos et al., 2016).

Upon activation, the transition of satellite cells 
through the different stages of myogenesis is regulated by 
the sequential expression of specific transcription factors 
(Guitart et al., 2018). Among them, Pax7 is considered the 
key biomarker of satellite cells. Pax7 is uniquely expressed 
by satellite cells, and its upregulation is essential and char-
acteristic during satellite cell activation and proliferation 
(Seale et al., 2000). Therefore, the increased expression of 
Pax7 in diaphragm and EDL suggests that quiescent satel-
lite cells are activated in response to LPS-induced ALI in 
these muscles. However, more specific techniques would 
be required to confirm this presumption. Surprisingly, 
increased expression of Pax7 was not observed in soleus 
muscle despite presenting a similar degree of atrophy. 
Differences among fast-twitch and slow-twitch muscles in 
the regeneration process after distinct insults have already 
been described by other authors, and could be related to 
differences in muscle innervation, specific inflammatory 
response or intrinsic characteristics of particular satel-
lite cells populations (Kalhovde et al.,  2005; Zimowska 
et al., 2017). A thorough characterization of satellite cells' 
activation, proliferation, and differentiation process might 
help to fully elucidate how the muscle regeneration prog-
ress unfolds in each muscle; however, such an approach is 
beyond the scope of this paper.

4.4  |  Study limitations

Our study has certain limitations. First, it was conducted 
using a particular animal model in specific time points 
selected to focus on the acute and sub-acute stages of 
lung injury (Files et al., 2012; Files et al., 2016). However, 
whether the results could be extrapolated to different mod-
els or time points is uncertain. Future research is required 
to assess the long-term effects of ALI on skeletal muscles. 
Second, reduced food intake and mobility could have con-
tributed to muscle wasting. While this makes it harder 
to determine the particular role of lung injury per se in 
skeletal muscle alterations, these factors are also com-
monly present in patients with ARDS (Reeves et al., 2014). 
However, a pair-fed group would be required in order to 
determine if any of the observed alterations are related to 
reduced food intake. Additionally, mice were not exposed 
to factors that might contribute to muscle injury in ARDS 
patients, such as mechanical ventilation, asynchronies, 
neuromuscular blockers, etc. Third, although soleus and 
EDL were selected in order to represent slow-twitch and 

fast-twitch muscles respectively, differential fiber type 
CSA was not analyzed. A more detailed analysis of differ-
ent fiber types is required to determine which fibers are 
compromised, and whether fiber type switch occurs in 
response to ALI. Finally, given the descriptive design of 
our work, further research should be conducted in order 
to uncover the underlying mechanisms of different skel-
etal muscles' compromise in ALI. Particularly, satellite 
cells response and myogenic process should be studied in 
detail through more precise methods.

CONCLUSIONS

Muscle compromise in response to ALI is heterogeneous 
in this animal model. While specific contractility was only 
transiently impaired in a single muscle type, muscle wast-
ing was observed in all the studied muscles, persisting 
even after lung injury has resolved. However, myogenic 
response varied among muscles, as suggested by a dif-
ferential expression of satellite cell-specific transcription 
factor Pax7. A more profound description of the muscle 
regeneration process in ALI remains to be performed. 
This knowledge might help to optimize muscle rehabilita-
tion in patients with ARDS.
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