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In recent years several technologies for the complete analysis of the transcriptome and proteome have reached a technological level
which allows their routine application as scientific tools. The principle of these methods is the identification and quantification of
up to ten thousands of RNA and proteins species in a tissue, in contrast to the sequential analysis of conventional methods such
as PCR and Western blotting. Due to their technical progress transcriptome and proteome analyses are becoming increasingly
relevant in all fields of biological research. They are mainly used for the explorative identification of disease associated complex
gene expression patterns and thereby set the stage for hypothesis-driven studies. This review gives an overview on the methods
currently available for transcriptome analysis, that is, microarrays, Ref-Seq, quantitative PCR arrays and discusses their potentials
and limitations. Second, the most powerful current approaches to proteome analysis are introduced, that is, 2D-gel electrophoresis,
shotgun proteomics, MudPIT and the diverse technological concepts are reviewed. Finally, experimental strategies for biomarker
discovery, experimental settings for the identification of prognostic gene sets and explorative versus hypothesis driven approaches
for the elucidation of diseases associated genes and molecular pathways are described and their potential for studies in veterinary
research is highlighted.

1. Background

The molecular aetiology and mechanisms of the many neo-
plastic, inflammatory, and degenerative veterinary diseases
are largely unknown. This information deficit is caused by
several constraining factors such as the lack of the complete
genomic information or the unavailability of molecular
tools, for instance, species-specific antibodies.

Due to this lack of a critical mass of knowledge on the
disease mechanisms in veterinary medicine, hypotheses on
the pathogenesis of veterinary diseases are often based on the
knowledge on homologous human diseases. This approach
doubtlessly helped to elucidate the aetiology of several vet-
erinary diseases, such as the impact of mutations in the c-kit
receptor for some canine mast cell tumours [1]. However, in
at least the same number of studies, this approach failed to
identify identical mechanism in human and animal diseases,
most probably due to interspecies differences or plainly be-
cause of the absence of comparable human diseases.

An alternative approach to develop and test hypotheses
is to study known cellular molecular mechanisms or genes
whose dysfunction may theoretically cause the clinical symp-
toms and morphologic lesions. This includes the analysis of
the mutational DNA status and the RNA and protein expres-
sion levels of these specific genes to elucidate their role in the
disease. However, due to the redundancy of gene functions
and the complexity of molecular pathways, the chances are
rather low to identify “the” disease-associated genes or mo-
lecular pathways by this approach. Furthermore, it becomes
more and more evident that most diseases and notably the
carcinogenesis of veterinary tumours are only rarely caused
by a mutation in a single gene but are rather caused by dys-
function of a wider array of multiple genes [2].

In case the above-mentioned hypothesis-driven ap-
proaches fail, non-hypothesis-driven, explorative studies are
feasible alternatives. This approach, however, needs tech-
nologies which facilitate the concurrent analysis of a large
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Figure 1: Traditional analytical tools for quantification of DNA, RNA, or proteins are restricted to the sequential analysis of one biomolecule
specimen at a time. Research based on these tools is therefore strictly hypothesis driven. In contrast, transcriptomics tools permit the parallel
quantification of thousands of biomolecules and therefore allowing for explorative, non-hypothesis-driven studies.

scale of the genome, the transcriptome, or the proteome in
diseased versus nondiseased tissues (Figure 1).

The so-called “-omics” technologies, which made much
headway in the last ten years, enable such an approach to
answer hitherto inaccessible scientific questions. The tran-
scriptome [3] which constitutes the complete set of RNA
specimen within a tissue, and the proteome [4] the complete
set of proteins in a tissue, have been named in analogy
to the genome, the complete set of genes of an organism.
In addition to these three dominating fields, several other
groups of biochemical elements have been coined in analogy
to the genome, such as the metabolome [5], the complete set
of metabolic intermediates, or the glycome [6], the complete
set of cellular sugars, free or in more complex molecules.

This review aims to summarize the current state of the
art of technologies in transcriptome and proteome research.
Furthermore, the strengths and weaknesses of the technolo-
gies will be described, and potential applications in veteri-
nary science will be depicted.

2. Methods in Transcriptomics

The term transcriptome embraces all types of complemen-
tary RNA synthesized during transcription of the genome at
a given time point [3]. Of these, microRNA (miRNA) and
messenger RNA (mRNA) momentarily are the RNA types
of greatest interest in transcriptome research. The mRNA
expression levels directly reflect the gene activity of a cell,
while differences in miRNA expression levels, a major post-
transcriptional regulator of gene activity, are thought to be
associated with several cellular functions and diseases
[7]. Three common methods for the multiplex detection
and quantification of miRNA and mRNA at a large scale are

momentarily used: microarrays, deep sequencing (RNA-
Seq), and quantitative reverse transcription (RT) PCR arrays
(Table 1).

2.1. Microarrays. A microarray is a multiplex, high-through-
put screening method which uses a two-dimensional ar-
rangement of nucleotide probes on a glass slide or a thin sili-
con chip [8]. One array can contain ten thousands of nucleo-
tide sequences or hypothetically the complete transcriptome,
which is covalently bound to the chip’s surface or fixed in
parallel rows in microfluidic channels [8, 9]. Depending on
the scientific questions asked, these nucleotide sequences
may represent short fragments (probes) with exon sequences
to analyse the presence and the quantity of specific mRNA
or miRNA in expression profiling experiments. Alternatively,
genomic DNA sequences with allelic variants, known muta-
tions, or single nucleotide polymorphism (SNP) is spotted
on the chips to identify the mutational status of a tissue
in comparative genomic analysis or SNP assays [10]. Inde-
pendent from the spotted sequences, pairwise hybridization
of the given sequences on the chip with complementary
DNA or cDNA sequences (targets) in a tissue lysate under
high-stringency conditions is the general principle of all
microarray-based experiments [11]. Successful hybridization
is visualized by labelling of bound target oligonucleotides
with fluorescent dyes. Fluorescence intensity of the respective
spot on the chips is subsequently used to determine the
presence or absence of a mutation or SNP or the level of
mRNA or miRNA expression in a tissue, respectively [11].

The resulting large data sets on the expression level of up
to ten thousands of genes represent a challenge to the com-
monly used statistic methods. These challenges include the
subtraction of background noise, the normalization of data
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Table 1: Advantages and limitations of transcriptomics technologies.

qPCR arrays Microarrays Ref-Seq

Advantage Highest sensitivity/specificity
Costume-made assays available
less expensive than Ref-Seq

Combination of quantitative and sequence
information

Limitation
Only few hundreds of targets
measurable in parallel

Less sensitive and specific than qPCR
Less sensitive and specific than qPCR
Expansive

to allow for the comparison of different microarrays and
microarray experiments with each other, and the identifica-
tion of statistically significant changes in large data sets [12].
For the latter, the common statistical test, t-test, ANOVA,
and Mann-Whitney test have been adjusted to consider the
multiple comparisons and permit cluster analysis [13, 14].
However, in most instances, the number of variables is larger
than the observational units. Principal component analysis
and partial least squares have been used for dimension reduc-
tion and to visualize microarray data sets [15]. Furthermore,
clustering methods like hierarchical and fuzzy clustering
are used to identify differences in gene expression profiles
associated with different disease states or treatment response
[16].

Ready-to-use whole genome cDNA microarrays are com-
mercially available for several species including human,
mouse, and rat (Affymetrix, Illumina, Agilent) but also for
canine, bovine, porcine, sheep, equine, chicken, rhesus ma-
caque, salmon, and zebrafish (Affymetrix, Agilent). However,
costume-made microarrays with any given DNA of interest
are provided by several local and international suppliers.
These arrays can be adjusted to each experiment in terms of
gene number or type of interest and may therefore represent
a low-cost alternative to expensive full-genome microarrays.

Similar to other analytic tools, microarray experiments
require technical and biological replicates. In addition, sev-
eral initiatives are launched to standardize microarray exper-
iments, whose outcome is strongly influenced by tissue and
RNA handling, the assay protocols and the microarray plat-
form on the resulting data. For instance, the “minimum
information about a microarray experiment (MIAME)”
and the “microarray quality control (MAQC) project” are
becoming the gold standard of how detailed information on
an experiment should be included in a publication [17, 18].

In summary, microarrays are well established and valu-
able tools to get a first impression on the genetic activity or
the genomic composition of a specific tissue under physi-
ologic and pathologic conditions. Despite the high quality
of prefabricated microarrays, one has to keep in mind that
cross-hybridization and low sensitivity when compared to
quantitative PCR are intrinsic problems of this valuable
method and may lead to false positive or negative results [19].
Microarray data can therefore in most circumstances not be
considered as final and conclusive information but have to
be confirmed by other methods such as quantitative PCR or,
optimally, on the protein level or by functional cell assays
[17, 18].

2.2. Deep Sequencing (RNA-Seq). RNA-Seq is a new approach
to obtain complete information on the RNA expression levels

in a tissue sample [20]. This approach utilizes the tremen-
dous progress in the development of next generation se-
quencing technologies, which allow to sequence millions of
base pairs in a relatively short time [21]. Initially, these meth-
ods were used for whole-genome sequencing of organisms
[22] or tumours [23]. Within the past 2-3 years, second-
generation sequencing has been applied to cDNA sequenc-
ing to obtain information on the full set of all tran-
scribed RNA sequences within a given tissue, that is, the
complete transcriptome in so-called RNA-Seq experiments
[24, 25].

RNA-Seq uses a cDNA library, which is reverse tran-
scribed from the total RNA in a single tissue or cell culture
[20]. Small fragments from each of these cDNA molecules
are then sequenced using the different technology platforms
Illumina IG [24], Applied Biosystems SOLiD [26], Roche 454
Life Science [27], or Helicos Biosciences tSMS [28].

Although subsumed under the name “next generation”
or “deep” sequencing, the three main technologies are based
on different principles. Pyrosequencing, which has been de-
veloped by 454 Life Sciences, is based on the emulsion
amplification of a single DNA sequence attached to a primer-
coated bead, on which a clonal DNA colony is formed in a
picotitre well [29]. The sequencing procedure employs lucif-
erase to generate light for indication of the addition of one
of the four consecutively added dNTP types to the newly
synthesised DNA in each well [29].

In contrast, the reversible dye-terminator-based technol-
ogy of Ilumina employs amplification of DNA fragments to
clonal DNA colonies on a glass slide. During each sequencing
step, one of the four types of dNTP is added, and the addition
of the fluorescently labelled nucleotides is detected by a
camera at the respective spot [30]. After each step, the dye
is chemically removed, and the next cycle is started.

The SOLiD technology of Applied Biosystems is based on
sequencing by ligation. Similar to pyrosequencing, DNA is
amplified by emulsion PCR, and the resulting bead with a
clonal DNA colony is positioned on a glass slide [31, 32].
The mismatch sensitivity of the DNA ligase is then used to
identify the nucleotide present at a given position in a DNA
sequence.

The sequences retrieved from any of these technologies
are aligned to the reference genome, and the resulting infor-
mation can be used to analyze both genomic and posttran-
scriptional mutations and the mRNA expression level of each
gene. RNA-Seq therefore extends the information obtained
with microarrays by a second dimension, the sequence of the
mRNA transcripts [20]. This may permit the identification
of disease-associated mutations or SNP in the actively tran-
scribed genes [26].
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Another advantage of RNA-Seq is potential analysis of
genomes from organisms without complete genomic se-
quence information, although further data analysis in these
cases is often hampered by the lack of gene annotation or the
lack of a sequenced genome [33]. This is in strict contrast
to the microarray approach that requires knowledge on the
sequences to be detected [34]. Finally, RNA-Seq also has a
large dynamic range of quantification levels which allows the
quantification of very low and high quantities in contrast to
the low sensitivity and reduced dynamic range of microarrays
[35].

A major disadvantage of this technology is the relatively
high costs for a high coverage analysis of a complex mam-
malian genome [36]. Still, the price per nucleotide is signifi-
cantly lower than for classic sequence; a reasonable RNA-Seq
run requires the analysis of several million bases, making it
still an expansive technology for most scientific questions.

2.3. Quantitative Real-Time PCR Arrays. Quantitative real-
time PCR (qPCR) arrays are, although less complex, still
a very valuable method for the quantification of the gene
expression of up to 600 genes [37]. At the moment, qPCR
arrays are a commonly used method for the quantification
of the “miRNA transcriptome” [37]. This is mainly based
on two facts. First, the number of miRNA types per species
can be considered at level of hundreds and is therefore much
lower than the number of mRNA types (see http://www.mir-
base.org/, [38–40]). Second, the high similarity between the
different miRNA types makes the development of microar-
rays difficult due to the high risk of cross-hybridization [41].
In contrast, Taq-Man- or SYBR-Green-based qPCR assays
permit a specific and sensitive quantification of miRNA and
are a commonly used method in veterinary sciences for
the detection of mRNA and miRNA [42–46]. Arranged in
an array, qPCR assays are therefore an efficient and highly
reproducible method to quantify the miRNA transcriptome.

3. Methods in Proteomics

Transcriptome analysis gives useful information on the tran-
scriptional activity of a cell. However, due to posttran-
scriptional gene regulation and the different stabilities and
biological half-lives of RNA and protein specimens including
miRNA, the correlation between mRNA levels and the corre-
sponding protein is often poor [47]. Transcriptome analysis
therefore requires confirmation of the results on the protein
level for most scientific questions. The analysis of the cellular
proteome is, however, a much greater challenge than the
transcriptome due to the high chemical diversity of the cellu-
lar proteins [48]. Despite these difficulties, proteome analysis
has become an important tool for explorative analysis of
molecular mechanisms in physiology and pathology [49].
There is a great variety of approaches applied in proteome
research that can be grouped into two broader categories:
gel-based assays and shotgun proteomics (Table 2).

3.1. Gel-Based Proteomics. One of the major problems of
proteome analysis is the complexity of proteins in tissues and

Table 2: Advantages and limitations of the two major proteomics
approaches.

2D-DIGE
Shotgun Proteomics
(MudPit)

Advantage

Moderate costs for
necessary equipment
(separation phase)
Good protein separation

Industrialized work
processes
Almost all protein types
analyzable

Limitation

Gel-based variability
Hydrophobic
(membrane) proteins
difficult to measure

Difficult quantification of
low abundance proteins
in complex protein mixes
High costs for equipment

cell lysates. Two-dimensional gel electrophoresis (2D-GE)
which combines two dimensions of physical protein sepa-
ration is a common method to separate proteins by their
chemical properties [50, 51]. In the first dimension, the
proteins are separated by their isoelectric point (IP), that is,
they are arranged on a linear gel with an immobilized pH-
gradient according to their content of basic or acidic amino
acids [51, 52]. In the second dimension, IP-separated pro-
teins are separated by their molecular size similar to a con-
ventional SDS-Page [51, 53]. The orthogonal combination of
both techniques results in a two-dimensional arrangement
of proteins with a high resolution of single protein types
(Figure 2).

The separated proteins can be visualized on the gel by dif-
ferent staining methods, for instance, Compassion brilliant
blue [54], silver (Figure 2) [55], or fluorescent stainings [56].
Each of the detected spots on the acrylamide gel theoretically
consists of one protein species, and each cell or condition of a
cell is theoretically associated with a specific pattern of these
spots on the gel. Changes in this spot pattern should there-
fore reflect changes of the cellular proteome, for example,
its metabolism and gene activity under diseased or healthy
condition [51].

Two approaches have been developed to compare spot
presence and intensity in 2D-GE gels. In the original single
channel approach, all gels containing one protein sample, are
stained with same stain and scanned independently [57].
This approach is, however, prone to the technical intergel
variability and has difficulties to normalize spot intensity.
The multiplex approach of two-dimensional differential gel
electrophoresis (2D-DIGE) uses gels which contain up to
three protein samples stained with three different fluorescent
dyes to reduce the gel number [58]. One of the three samples
on each gel usually represents an internal standard, which
allows for normalization of spot intensity between different
gels [58].

Detection of the differences in spot intensity even be-
tween only two gels usually overstrains the human eyes ca-
pacity independent from the method used. Comparison or
quantification of spot intensity and presence therefore re-
quires automated digital image analysis [59]. Despite the
high efficiency of the available software, comparison of pro-
tein expression pattern on polyacrylamide gels is still the ma-
jor challenge and weakness of gel-based proteome analysis.

http://www.mirbase.org/
http://www.mirbase.org/
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Figure 2: Gel-based proteomics reduces the complexity, of protein
lysates by two-dimensional separation of proteins, that is, separa-
tion by size and pH. This leads to a high resolution of single protein
which facilitates the quantification of their spot size and the ex-
traction of single proteins for subsequent mass spectrometry-based
identification of the protein identity.

Even with highest accuracy and long experience of the exper-
imenter, preparation of 2D-GE gels without technical arte-
facts is not assured mostly due to random polymerization
artefacts in nonmanufactured gels. Commercially available,
machine-made gels are an interesting but costly alternative
that reduces most of these gel-based artefacts [60].

Once protein spots with a significant difference in inten-
sity between the two disease states are identified, the protein
type has to be identified using mass spectrometry. To this
end, the spots with the respective protein are picked and
eluted from the gel and fragmented for mass spectrom-
etry by trypsin-digestion [61]. The molecular weight of
the trypsin digested protein fragments is then determined
using, for instance, Matrix-assisted Laser Desorption/Ioni-
zation (MALDI) [62]. This approach uses trypsin fragment
pattern, the so-called “peptide fingerprint” (PF), to identify
the regulated protein in open source protein databases [63].
With this PF, protein data bases are searched to determine the
peptide/protein with the highest accordance according to sta-
tistical calculations. However, PFs for animal proteomes are
far from being complete, and PFs obtained from proteome
studies in animals are in most cases compared with peptide
masses of human protein in the versatile human data bases.
This may lead to low sequence coverage [64], and peptide
sequencing is required for Mascot MS/MS Ions Search (C.
Weise, Freie Universität, personal communication).

In summary, gel-based proteomics is still an acceptable
and commonly used approach to analyze the cellular pro-
teome. Its main advantage is the relatively low costs for
equipment when compared to non-gel-based approaches.
Disadvantages are the restriction on hydrophilic proteins
with a pH between 3 and 10, difficult standardization of the
gel preparation, the limited dynamic range, and the limited
sensitivity [65–69].

3.2. Shotgun Proteomics (MudPIT). The term shotgun pro-
teomics is applied due to its similarities with DNA shotgun

sequencing, which sequences multiple short DNA fragments
in complex mixtures and recombines them in silico [48].
Similarly, shotgun proteomics analyses trypsin-digested pro-
tein fragments in complex mixtures by mass spectrometry
after separation by liquid chromatography. This so-called
multidimensional protein identification technology (Mud-
PIT) combines at least two chromatography separation steps
with tandem mass spectrometry (Figure 3) [70, 71]. The
combination of two chromatographic methods allows for
the separation of digested peptide fragments by at least two
features, for example, charge and hydrophobicity, to reduce
the overall protein complexity [72]. The selection of two
coupled, thus two-dimensional chromatography methods
depends on the scientific question asked and the experience
of the experimentator. Microcapillaries packed with strong
cation exchange material, reverse phase material, or other
affinity-based chromatographic material are most commonly
used. In addition, separation before mass spectrometry may
also include isoelectric focussing and capillary electrophore-
sis which enables a high resolution and narrow analyte bands
[73].

The different peptide fractions are eluted from the chro-
matography columns by alternating salt pulses or organic
mobile gradients. They are subsequently stored or, more
commonly, directly applied to the mass spectrometer [71,
74]. MudPIT approaches commonly use electrospray ion-
ization (ESI) mass spectrometers since the chromatography
eluate can be directly “online” analyzed with a connected ESI
mass spectrometer [75].

Most proteome experiments do not exclusively aim at
identifying the general protein composition in the tissue
lysates but require comparative protein quantification. Iso-
topic labelling or label-free methods have been developed
and successfully applied in MudPIT experiments [74]. A sim-
ple method for label-free quantification is the spectral
counting [76]. It uses the observation that the total number
of spectra from a peptide correlates well with the original
abundance of the protein in lysates [77]. However, relative
quantification by spectral counting is limited to prefraction-
ated, less complex samples [76], while analysis of complex,
unfractionated samples and low abundant proteins may
result in reduced accuracy [78].

Stable isotope labelling is an alternative strategy to quan-
tify proteins in MudPIT experiments. Stable isotope labelling
with amino acids in cell culture (SILAC) is a metabolic label-
ling strategy that has been applied to both cell cultures and
small mammals [79, 80]. It relies on metabolic incorporation
of “light”, native amino acids in one experimental group
or “heavy” amino acids with substituted isotopic deuterium
13C in the other group [80]. A typical experimental design
therefore includes a cell line which is grown in cell culture
medium with light or heavy amino acids but under otherwise
identical conditions. This leads to the complete replacement
of the native amino acids in the “heavy” isotope group after
a decent incubation period [81], marking the proteome of
this cell unequivocal. After the intended experiment, this
labelling facilitates the mixture of equal amounts of protein
lysates from both experimental groups and parallel analysis
by mass spectrometry, thus reducing technical artefacts
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Figure 3: Shotgun proteomics or MudPIT uses multidimensional chromatographic separation to reduce complexity of protein lysates.
The selection of the type of chromatographic columns depends on the question asked and the technical equipment. The different protein
lysate fractions obtained by chromatographic separation ideally contain only one protein type which is subsequently identified by mass
spectrometric analysis and data base search.

during the spectrometric quantification. The different iso-
tope mass in the amino acids of the two groups leads to twin
peaks which can be quantified relatively according to their
intensity ratios [81].

Isotope-coded affinity tags (ICAT) and isobaric tag for
relative and absolute quantisation (iTRAQ) rely on the chem-
ical labelling of protein samples after the experiment but
before mass spectrometry [82, 83]. ICAT and iTRAQ assays
label proteins with reactive groups which contain either
heavy or light isotopes, which allows the direct quantification
of proteins by mass spectrometry similar to SILAC [82, 83].
In contrast to ICAT and SILAC, the isobaric labelling by
iTRAQ does not increase the complexity of the protein lysates
and labelling of all peptides in a mixture after the biological
experiment [74]. ICAT and iTRAQ therefore enable the
proteome quantification in tissue samples of larger mammals
which cannot be fed with substituted amino acids only.

In summary, shotgun proteomics analyses the proteome
of complex protein lysates in an industrialized manner with-
out gel-based artefacts. It permits the analysis of a wider
range of proteins including hydrophobic membrane proteins
and strongly acidic and basic proteins. Limitations are the
restriction of this method to specialized and appropriately
equipped laboratories and the relatively high costs (Table 2).

4. Questions to Be Asked in
Transcriptomics and Proteomics

The “-omics” technologies enable the parallel analysis of sev-
eral thousands of biomolecules in a sample instead of the

traditional sequential approach. The comprehensive paral-
lel approach naturally interferes with the sensitivity and
specificity of detection and quantification. However, these
technologies are now on a technological level that facilitates
their application for explorative, descriptive pilot studies
on biological phenomena when the present knowledge is
not sufficient to establish a substantiated hypothesis on its
molecular basis. Furthermore, they may also be applied to
overcome deadlocked views and paradigms and to approach
well-known diseases unbiased again.

In the following, three major research fields are intro-
duced where “-omics” technologies are successfully applied:
biomarker discovery, identification of complex, prognostic
gene expression patterns, explorative and hypothesis-driven
proteome, and transcriptome analysis (Figure 4).

4.1. Biomarker Discovery. A biomarker can be DNA, mRNA,
miRNA, proteins, or any other biomolecule associated with
a specific state of the cell or tissue [84]. These markers are
synthesized by the diseased tissue itself or by nondiseased
cells in response to the neoplastic or inflammatory disease.
Biomarkers are further subdivided in diagnostic marker
which enable the detection of the disease, prognostic markers
which in turn allow for a prediction of the disease course
when the initial diagnosis has been established, and strati-
fication markers which predict a response to a specific treat-
ment (reviewed in [84]).

The ideal biomarker therefore permits the diagnosis and
classification of a disease with a cheap, sensitive, and specific



The Scientific World Journal 7

Biomarker discovery

Which biomolecule indicates

Transcriptomics/proteomics technologies

Prognostic gene

expression patterns

Which set of biomolecules
indicates a poor prognosis/

Explorative analysis

What happens in the cell at all?
the disease in vivo?

a good therapeutic response?

Figure 4: The three main fields for the application of transcriptomics and proteomics technologies and the basic questions behind these
applications.

assay in a tissue sample which is obtained by a microinva-
sive intervention such as serum samples or small tissue bio-
psies.

Several, well-established biomarkers are used in clinical
biochemistry in daily diagnostic routine. For instance, enzy-
matic activity of alkaline phosphatase (ALP) and other en-
zymes in serum samples are used for the evaluation of the
hepatic function or thyroxin, and sex steroid levels are used
to identify endocrine diseases. Tumor (bio-) markers are a
field of specific interest in the search for biomarkers, and
several of them have been introduced in human routine diag-
nostic, for instance, alpha-fetoprotein and carcinoembryonic
antigen [85, 86]. In contrast, several, mostly immunohisto-
chemical but also serum tumor markers have been suggested
in veterinary medicine but are in most cases not routinely
used in the prediction of disease outcome mostly due to low
specificity and sensitivity (reviewed in [87]).

The complete sequencing of the canine, feline, bovine,
equine, and chicken genome, the availability of manufac-
tured genome microarrays, and the reduction in costs of
transcriptomics and proteomics technology will however
accelerate the search biomarker in veterinary sciences, and
progress in this filed can be expected in the near future
[88–92]. However, biomarker identification is, despite the
technological progress, still difficult and requires structured
and expansive analysis and comprehensive evaluation of the
results.

The first and in most cases a tremendous hurdle for bio-
marker studies in veterinary medicine is the need for well-
preserved, clinical samples with comprehensive clinical data
on disease outcome. The appropriate number of samples
from a well-defined study population taken with a standard
protocol usually requires multicentred efforts to gain the
critical mass. Once a sufficient and statistically relevant num-
ber of clinical samples are available, biomarker discovery is
usually based on a simple comparison of tissue samples from
patients with and without the disease (diagnostic biomark-
ers), certain disease outcomes (prognostic biomarkers), or
different responses to therapy (stratification biomarkers).
Most biomarker studies are therefore based on the assump-
tion that specific proteins are present in the blood of a patient
with a particular disease, disease outcome, or reaction to
a drug. However, knowledge on the composition and the
biodynamics of the blood proteome or specific proteins in
healthy individuals is still far incomplete, and unless these

gaps of knowledge are filled, important biomarkers may be
possibly missed [93].

Whether proteins, DNA, miRNA, mRNA, or other bio-
molecules are searched as candidates for biomarkers in these
samples depends on the available samples the concurrent
knowledge on disease mechanisms, and the general require-
ments of the intended final assay. Nonetheless, there is a clear
trend towards proteomic approaches on easily accessible
body fluids like serum to identify biomarkers for clinical
routine diagnostics. This is supported by the growing content
of the public protein data bases (SwissProt, UniProt, RCSB)
for human, murine but also other farm and companion
species which facilitates the first biomarker discovery studies
in veterinary science.

The work plan for biomarker discovery projects is long
and complicated (reviewed in [93]). Briefly, the early detec-
tion research network (EDRN) has proposed a five-phase
process for the development and testing of disease biomark-
ers [94].

Explorative preclinical, proteome or transcriptome stud-
ies are proposed as initial first phase steps in biomarker
discovery. Which of the “-omics” strategies is utilized is in
most circumstances determined by the available equipment
and the amount of preexisting knowledge of molecular
disease mechanisms (reviewed in [84]). Nevertheless, mass-
spectrometry-based profiling by MudPIT proteomics of low
molecular weight proteins (peptidome) in the clinical serum
samples has been given special attention due to the easy
and microinvasive obtainment of such samples in a clinical
environment [95]. In contrast, the cancer biomarker-family
approach is based on the hypotheses that “if a member of
protein family is a biomarker, other members of that family
might also be good biomarkers” [84]. Finally, the secreted-
protein-based approach hypothesizes that a good serological
biomarker should be a secreted protein, and biological
fluids with contact to the tumor site may help in primary
identification of these markers [84, 93].

The initial preclinical, explorative phase of the biomarker
discovery which includes proteome or transcriptome profil-
ing of the complete set of proteins has to be followed by the
development of clinical assays for the identified few candi-
dates. The assays are tested retrospective longitudinally and
prospectively to evaluate their sensitivity and specificity for
disease detection in phases two to four [94]. Finally, in phase
five, the established assays have to be evaluated in a large
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patient population to ensure their clinical efficiency and
impact, another phase which requires multicenter collab-
oration to obtain sufficient patient numbers [84, 93]. All
of these stages are influenced by several variables that have
been carefully planed or standardized by standard operating
procedures but are beyond the scope of this review (reviewed
in [93]).

Costs are another critical factor of biomarker discovery at
each of the discovery phases. In the initial exploratory phase,
the high costs of modern instrumentations and reagents for
proteome and transcriptome analysis are a limiting. Costs for
commercial proteome analysis are dropping. In the proceed-
ing phases, costs are mainly driven by the development and
validation of marker-specific assays, for example, ELISA. The
cost for the development of the assays varies but numbers
of 100,000 up to 1,000,000$ have been suggested [96]. In
addition, experience shows that only a small fraction of the
total candidates successfully make good clinical biomarkers
[96]. The high developmental costs for specific biomarker
detection assays and only to a minor extent the costs for ex-
plorative “-omics” technologies are therefore considered as
the current bottleneck in biomarker discovery [97, 98].

4.2. Detection of Prognostic Gene Expression Patterns by Super-
vised Gene Expression Profiling. Especially in tumor biology,
it becomes more and more evident that for most cancer types
a malignant phenotype is associated with specific, complex
changes in gene expression levels and not based on the
expression levels of single genes [99, 100]. This perception
has changed the search for prognostic factors in oncology. In
recent years, expression profiling has been used to identify
complex, prognostic gene expression patterns [100–102].
Ideally, gene expression profiling focuses on protein expres-
sion levels, since mRNA or miRNA expression levels do not
fully reflect the protein expression pattern and the biologic
activity of a cell. However, the technological head start of
mRNA assays like microarrays and next generation sequencer
makes these methods superior to proteome analysis for the
identification of prognostic gene sets. In addition, prognostic
gene expression patterns do not have to reflect the true
biologic state of the cell. Their only function is to diagnose
a disease or predict a disease outcome even if they are based
on biologically irrelevant, phenotypic mRNA patterns.

Two major approaches for gene identification are com-
monly used, supervised and unsupervised classification
(Figure 5) [103]. The principle of supervised gene expression
profiling studies is rather simple [99]. According to the diag-
nostic questions, the complete mRNA of tissue samples from
“training” groups of patients with and without the disease or
the intended or not intended therapy outcome are analyzed
to identify genes whose expression level is significantly
associated with the respective group [99]. Thus, the tissue
samples are first divided by their disease status, and the data
analysis aims at identifying the differences in the gene expres-
sion profile behind these clinically observed differences
[99]. In contrast, the unsupervised method differentiates
tissue samples according to their gene expression profile
without preceding information on their diseases status. This
approach aims at identifying molecular phenotypes within

a by then phenotypically homogeneous disease which may
be of interest for treatment and prognosis. Another method
is to apply experimentally obtained information on gene
expression profiles associated with the activation of cer-
tain molecular pathways to classify tumour samples. This
hypothesis-driven gene expression profiling approach aims
at differentiating tumours that depend on these molecular
pathways and may be treated accordingly [99].

The diagnostic value of the gene sets identified with
supervised clustering has to be tested in a second, indepen-
dent “test” group to confirm its usefulness. This group again
consists of a large population of patients with and without
the disease or the different therapeutic outcomes. In an
unsupervised approach, the prognostic gene set is now used
to assign tissue samples to one of the groups. According to
the ability to attribute clinical samples to the respective
group, that is, false negative and false positive results, the
specificity and sensitivity of the gene set are determined.

In 2002, van’t Veer et al. published one of the first studies
that identified a prognostic set of 70 genes for human breast
cancer [100]. In a supervised classification approach, they
compared lymph-node-negative breast cancer samples with
short intervals to distant metastases with samples with long
intervals to distant metastasis. By this approach, the authors
identified a prognostic set of 70 genes that predicts distant
metastases and allows a patient-tailored therapy strategy to
identify patients which benefit from the application of adju-
vant therapy from [100]. Of interest, first gene expression
profiling studies on canine mammary tumours show that
similar prognostic gene set may exist for malignant canine
mammary tumours although their prognostic relevance has
not been tested in larger patient populations yet (Figure 6)
[101, 102, 104–107]. It can however be assumed that similar
prognostic gene sets will be identified for veterinary diseases
in the near future, given that affordable molecular tools like
microarrays are now available for the most relevant species
in veterinary science.

Unsupervised cluster analysis and hypothesis-driven
gene expression profiling are less successful and promising
strategies to identify prognostic gene expression profiles but
may help to understand disease-associated molecular mech-
anisms in explorative and hypothesis-driven transcriptome
and proteome studies.

4.3. Explorative and Hypothesis-Driven Transcriptome and
Proteome Analysis. Ideally, scientific progress is a continuous
hypothesis-driven process by which new ideas are based on
and refine recent findings. However, occasionally the pre-
existing knowledge is insufficient to establish a substantial
hypothesis. In these cases, transcriptome and proteome
analyses are a promising, explorative approach to obtain
first exploitable information on potential molecular disease
mechanisms. Both supervised and unsupervised gene expres-
sion clustering using microarray technology and compara-
tive proteome analysis have been used in veterinary science
to explore the molecular basis of various, mostly neoplastic
diseases [64, 104, 105, 108–110]. All these studies compared
diseased and nondiseased tissues in a supervised approach to
identify genes or molecular pathways with significant disease
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Identification of the molecular basis of the

different outcomes by transcriptomics tools

Treatment option 1 Treatment option 2 Prognostic and predictive gene set

Disease outcome 1 Disease outcome 2

Figure 5: Two major approaches for the identification of disease-relevant gene expression profiles are supervised and unsupervised clas-
sification. Unsupervised classification is used to identify different molecular mechanisms in tissues from patients with clinically similar
disease phenotypes. Clustering of these tissues according to their molecular phenotype may lead to the identification of different molecular
phenotypes behind the identical clinical behaviour. This knowledge may finally lead to diverse therapy protocols of these molecular subtypes.
In contrast, during supervised clustering, molecular mechanisms behind different disease outcome or phenotypes are analyzed. Two tissue
groups with clinical differences are therefore compared, and the differences in gene expression are thought to be relevant for the distinct
clinical behaviour. The resulting set of genes may also serve prognostic markers for the prospective classification tissue samples.
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association. These disease-associated proteins are now to
be tested in further hypothesis-driven experiments to prove
their relevance as primary disease causes or to identify them
as pure phenotypic and secondary effects.

Unsupervised clustering of microarrays data has been
used in human oncology to subclassify histologically identi-
cal cancer samples by their molecular phenotype. This strat-
egy is based on the general hypothesis that a clinically and
morphologically uniform disease may be caused by different
molecular mechanisms, that is, that different molecular
mechanisms can lead to the same disease or clinical picture.
In one of the first studies using this strategy, Perou et al.
investigated the gene expression patterns in breast cancer by
unsupervised hierarchical cluster analysis [111]. They were
able to divide malignant high-grade breast cancer tissue
samples into four diverse subgroups with differential gene
expression profiles. In several ensuing studies, these sub-
groups were refined, and their prognostic and therapeutic
relevance has been confirmed [112]. Similar studies with
impact on the classification of veterinary tumours are lacking
but hopefully will be available in the near future.

Hypothesis-driven gene expression profiling is the com-
plete opposite strategy to unsupervised, explorative gene
expression profiling. This strategy uses gene expression sig-
natures which either have been identified during in vitro or
in vivo experiments using models of the disease of interest
or theoretically by comparison with other diseases, species,
or consideration of known gene functions [99]. The relevant
set of genes or rather “functional” gene expression profiles
are applied on preexisting microarray data to subcategorize
the tissues according to the activity of the relevant genes.
For instance, it has been hypothesized that carcinogenesis is
a chronic inflammatory process, and a tumor can therefore
be considered as nonhealing wound [99, 113, 114]. Based
on this idea, the gene expression profiles of serum-activated
fibroblasts were applied to the gene expression profiles of
different tumours [113]. It has been shown that signature was
an independent prognostic factor and showed a strong pre-
diction of metastasis and overall survival and may therefore
represent a hypothesis-based prognostic gene set [115].

Hypothesis-driven gene expression profiling studies on
veterinary diseases are not available momentarily, most prob-
ably to the delayed accumulation of necessary gene expres-
sion data in experimental models. However, due to the
successful application of this approach on human diseases,
it can be expected that similar studies will be available in the
near future.

5. Summary

Transcriptome and proteome analyses have been introduced
as a research tool in most fields of biomedical research. They
permit the identification of prognostically relevant biomark-
ers, gene expression profiles, and the understanding of com-
plex molecular mechanisms in cell physiology and pathology.

Methods to analyze the transcriptome have made the
greatest advancement so far. cDNA microarrays have been
and are widely used to analyse disease mechanisms and to

identify prognostic gene sets. With the availability of species-
specific, commercially available and affordable microarrays,
it is expectable that its use is becoming even more relevant
in veterinary science in the next years. However, due to
the intrinsic cross-hybridization and sensitivity issues of the
microarray technology, there are tendencies towards Ref-Seq
or deep sequencing technologies, respectively, as an alterna-
tive method for the analysis of the transcriptome. Ref-Seq
expands transcriptome analysis by the parallel information
on the mutational status of the quantified mRNA types and
is less dependent on the full genome coverage of a species
in a database. Especially, the latter fact indicates that Ref-
Seq will be helpful in areas of veterinary science with deal
with rather rare species, where microarrays are commercially
not available. A major but most probably temporary disad-
vantage of Ref-Seq is the relatively high costs and the need
of computational power and biostatistical expertise required
to appraise the resulting data masses. The questionable rele-
vance of mRNA expression levels on the biology of a tissue
is, however, a general problem of transcriptome analyses,
independent from the applied technology.

Proteome analysis is therefore considered the ultimate
method for the analysis of disease-associated mechanisms.
Momentarily, the two competing methodical approaches
are 2D-gel electrophoresis-based proteomics and shotgun
proteomics. While 2D-gel electrophoresis allows protein
separation with less expansive equipment and experience,
chromatography-based proteomics seems to be of greater
development potential in terms of mechanisation and stan-
dardization. General hurdles of proteome analyses itself that
still need further development are problems to standardize
the analysis of chemically and biochemically highly diverse
proteins when in tissue lysates, that is, to cover the full
proteome in each case. Furthermore, there are still sensitivity
issues in mixtures of high-and low-abundance proteins and
the general instability of proteins in tissue samples.

Biomarker discovery is a constantly growing scientific
field which attracted high investments and efforts in the
recent years. Although it can be based on all kinds of biologic
elements, that is, RNA, metabolites, it is commonly based on
proteome analysis of tissue samples or body fluids. Despite
the initial euphoria, the revenues of the enormous invest-
ments in biomarker discovery are moderate, scientifically
and commercially. In addition, biomarker discovery in vet-
erinary science is hampered by lack of appropriate tissue
banks with proper clinical data, the high costs for initial
proteome analysis, and the high costs for the establishment
and evaluation of subsequent diagnostic tests.

In terms of data analyses, supervised and unsupervised
clustering analysis are the dominating approaches to identify
disease-associated gene expression. Supervised clustering
allows the identification of prognostic gene sets that may
predict disease and treatment outcome and has already been
successfully applied in veterinary science. It is based on the
comparison of gene expression profiles of tissue samples
with a known disease outcome. In contrast, unsupervised
clustering is used to elucidate molecular mechanisms behind
morphologically and clinically similar diseases. Application
of this approach on veterinary diseases will certainly refine
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or even change our perception of many diseases. Hypothesis-
driven gene expression profiling is a less frequently used but
promising approach which experimentally derived expres-
sion profiles to identify molecular pathways with relevance
in clinical tissue samples.

In summary, “-omics” technology has made it to a stan-
dard method in human and to a minor extend also in vet-
erinary biomedical research. They are useful tools for the
explorative studies and allow the analysis of complex gene
expression patterns. Given that the costs for these methods
will further drop, it can be expected that the results of numer-
ous transcriptomics and proteomics studies will contribute
to the understanding of several veterinary diseases in the near
future.
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