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Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated
to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative
structure-activity relationship (3D-QSAR) model. In the 2D-QSARmodel, the support vector machine (SVM) classifier combined
with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction
accuracy of the 2D-QSARmodel was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test.Then,
in the 3D-QSAR model, the model with 𝑞2 = 0.565 (cross-validated correlation coefficient) and 𝑟2 = 0.888 (non-cross-validated
correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and
test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the
interaction between EGFR inhibitors and EGFR.

1. Introduction

Epidermal growth factor receptor (EGFR), a transmembrane
glycoprotein, is classified to the prototype of receptor tyrosine
kinases (TKs) family that includes EGFR, ErbB-2, ErbB-3,
and ErbB-4. EGFR is activated by its cognate ligands via
forming a homodimer or heterodimer with othermembers of
the EGFR family, such as epidermal growth factor (EGF) and
transforming growth factor alpha (TGF-𝛼) [1]. Several signal
transduction cascades are initiated when EGFR is activated
and then lead to DNA synthesis and cell proliferation [2, 3].
While EGFR is amplified or mutated, DNA synthesis and cell
proliferation will be abnormal and lead to cancer. Currently,
the amplification or mutation of EGFR has been found in
human solid tumors, such as glioma, lung cancer, ovarian
cancer, and breast cancer. Hence, EGFR is also considered to
be a potential anticancer target in this disease [4–8]. Many
EGFR inhibitors have been developed and approved by the

FDA, such as lapatinib, which has been applied for the treat-
ment of breast cancer [9]. Moreover, other EGFR inhibitors
like temozolomide, lomustine, erlotinib, and gefitinib, are
approved by the FDA for the treatment of glioma [10, 11].
However, the existing EGFR inhibitors are beyond people’s
expectation due to selectivity, toxicity, and side effect. Hence,
it is necessary to design and synthesize new potential EGFR
inhibitors.

Quantitative structure-activity relationship (QSAR)was a
valuable tool for many different applications, including drug
discovery, predictive toxicology, and risk assessment [12–14].
The applicability domain of QSAR models, defined by the
Organization for Economic Co-operation and Development
(OECD) according to Principle 3, includes the physicochem-
ical, the structural, and the biological domain [15–17]. Ini-
tially, two-dimensional quantitative structure-activity rela-
tionship (2D-QSAR) was widely explored and used inmedic-
inal chemistry study. However, some limitations spurred
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the appearance of three-dimensional quantitative structure-
activity relationship (3D-QSAR). In the 3D-QSAR study, the
correlation between 3D steric and electrostatic fields and
biologically activity draws attention. For the molecular field
study, CoMFA was widely used preliminarily. However, the
time-consuming limit stimulates the advent of TopCoMFA.
TopCoMFA overcomes the weakness and uses an objective
method to fragment and align the molecules. In addition,
the fragmentation process is automated except for some
specific bonds that should be cleaved manually. Of course,
TopCoMFA and CoMFA also have similarity that they both
share QSAR PLS analysis. The details about TopCoMFA and
CoMFA are in [18].

Drug development is a long process, and it requires
a vast amount of material and financial resources. QSAR
and molecular docking technology have been extensively
employed in drug virtual screening and potential molecular
targets prediction, which may shorten the cycle of the drug
development [19–22]. In this work, 2D-QSAR model was
employed to determine EGFR inhibitor, and the 3D-QSAR
model was used to predict the activity. Finally, molecular
docking was applied to investigate the binding sites.

2. Materials and Methods

2.1. CfsSubsetEval Method and Greedy Stepwise Algorithm. A
data set containing 𝑛 vectors has 2𝑛 possible combinations of
features for the subset. A useful subset which can correctly
predict other compounds is one of 2𝑛 combinations.The best
way to find an optimal subset is to try all the possible feature
combinations. However, this strategy is difficult to carry out
due to the huge computation. In this study, the CfsSubsetEval
(CFS) search method combined with Greedy Stepwise (GS)
algorithmwas employed to search the optimal feature subset.
Themain idea of the GS algorithms is to make the best choice
when selecting good features. The CFS method was used to
evaluate the attribute. Thus, the CFS method, combined with
the GS algorithm, was employed to select the optimal subset
from these 2𝑛 combinations. Additional details about the CFS
method and the GS algorithm could be found in [23–25].

2.2. SVM. Support vector machine (SVM), a supervised
learning algorithm, is usually used for pattern recognition
classification [26]. SVM was employed for the classification
and sensitivity analysis in our study due to its high perfor-
mance in many studies [25, 27, 28].

2.3. Topomer CoMFA. Topomer CoMFA, possessing both
the topomer technique and CoMFA technology, can over-
come the alignment problem of CoMFA [18, 29]. Partial
least squares (PLS) regression is employed to build the
topomer CoMFAmodel, and the leave-one-out (LOO) cross-
validation is used to evaluate the model. Additional details
about the topomer CoMFA can be found in [29–31].

2.4. Data Preparation. 100 inhibitors derived from the lit-
erature and 185 noninhibitors downloaded from the DUD
database (http://dud.docking.org) were collected [32–41]. For

2D-QSAR study, the data set containing inhibitors and
noninhibitors was randomly divided into three training sets
which accounted for 75%, 70%, and 50%of thewhole data set,
respectively (see Supplementary Material 1, available online
at https://doi.org/10.1155/2017/4649191). For 3D-QSAR study,
the 100 inhibitors were randomly divided into a training set
(77 molecules) and an independent test set (23 molecules).

2.5. Molecular Descriptor Calculation. Molecular descriptor
can reflect physicochemical and geometric properties of the
compounds. In this study, forty-five molecular descriptors
calculated by the ChemOffice were applied to represent
compounds [42]. First, three-dimensional structures of the
molecules were optimized by MM+ force field with the
Polak-Ribiere algorithm until the root-mean-square gradient
became less than 0.1 Kcal/mol. Then, quantum chemical
parameters were obtained for the most stable conformation
of each molecule by using PM3 semiempirical molecular
orbital method at the restricted Hartree-Fock level with no
configuration interaction.

2.6. Validation Methods for Prediction Results. In this study,
tenfold cross-validation test and independent set test were
applied to evaluate the prediction ability of the 2D-QSAR
model. For the tenfold cross-validation test, the data set
was divided into ten subsets. Nine subsets were used as the
training set and the left subset was predicted. In turn, each
subset was omitted in order to be predicted, and the correct
rate was obtained from each trial. The average of the correct
rate from ten trials was used to estimate the accuracy of the
algorithm [43–45].

2.7. Prediction Measurement. Sensitivity (SN), specificity
(SP), overall accuracy (ACC), andMatthew’s correlation coef-
ficient (MCC) were employed to evaluate the 2D prediction
model. The SN, SP, ACC, and MCC can be represented as

SN = TP
[TP + FN]

,

SP = TN
[TN + FP]

,

ACC = [TP + TN]
[TP + TN + FP + FN]

,

MCC

=
TP × TN − FP × FN

√(TN + FN) × (TN + FP) × (TP + FN) × (TP + FP)
.

(1)

TP, TN, FP, and FN are true positives, true negatives, false
positives, and false negatives, respectively.

In the topomer CoMFA model, 𝑞2, 𝑟2, and MAE were
applied to evaluate the model [46]. The cut-off value of 𝑞2 is
0.5. The MAE of the test set was less than 0.1 × training set
range and MAE + 3 × 𝜎 according to the MAE based criteria.
The optimized model was determined by the highest 𝑞2, and
the validity of the model depends on 𝑟2 value [47].

http://dud.docking.org
https://doi.org/10.1155/2017/4649191
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Table 1:The results of prediction accuracy for different data sets containing 9 molecular descriptors using SVM classifier. DS and EP present
data set and evaluation parameters, respectively.

EP DS
Train set (75%) Train set (70%) Train set (50%) Test set (30%)

SN (%) 97.22 98.55 91.94 96.77
SP (%) 98.59 99.23 90.67 98.18
ACC (%) 98.13 98.99 91.24 97.67
MCC 0.958 0.978 0.824 0.950

Table 2: Results from two topomer CoMFA model studies.

Dataset Topomer CoMFA model 1 Topomer CoMFA model 2

Cutting model

𝑞2 0.483 0.565
𝑟2 0.773 0.888

2.8. Steric and Electrostatic Field Analysis. Topomer CoMFA
analysis is an effective approach which has been applied in
drug design for HIV, central nervous system diseases, and
other tumors [48–50]. In the topomer CoMFA model, there
are two different ways to calculate the molecular field. One
way is to reduce the field contributions of fragmenting atoms;
the other way is to calculate the steric and electrostatic fields
on a regularly spaced grid. For detailed information, see
[51]. Topomer CoMFA analysis is used to calculate the steric
field and electrostatic fields of R1 and R2 groups. Steric and
electrostatic field analysismay help design novel EGFRdrugs.

2.9. Molecular Docking. SYBYL X-2.0 was used for molec-
ular docking based on its Surflex-Dock module [52]. The
crystal structure of EGFR with the resolution of 2.6 Å was
downloaded from the Protein Data Bank (PDB ID: 1M17)
[53]. Protein was prepared with protein structure preparation
module of the SYBYL X-2.0. All the water molecules and
ligands were deleted, and hydrogen atoms were added to the
crystal structure. In addition, positive and negative charges
were added to N-terminal and C-terminal regions of the
EGFR which became NH3+ and COO−. EGFR inhibitors
were minimized at physiological pH 7.0 with hydrogen atoms
and charge by using Powell energy gradient method and the
Gasteiger-Huckel system.

3. Results

3.1. Feature Selection and the 2D-QSAR Prediction Model. A
feature subset containing nine molecular descriptors (DPLL,
H,HF,HOMO,MR, Pc, TIndx, VP, andWIndx) was obtained

based on CFS combined with GS algorithms. Sensitivity
analysis was applied to these nine descriptors to evaluate how
they affected the activity of EGFR inhibitors (see Figure 1).

Based on the optimal features subset, the SVM classifier
method was used to build the 2D-QSAR prediction model.
As a result, the prediction accuracy of these models whose
data set accounted for 75%, 70%, and 50% of the whole
data set was 98.13%, 98.99%, and 91.24%, respectively, by
tenfold cross-validation test. The sensitivity, specificity, and
overall accuracy of these three models were more than 90%,
which indicated that changing the size of the training set
had a little impact on the quality of the 2D-SAR models
(see Table 1). The model built via the data set accounting
for 70% of the whole data set was chosen finally due to its
higher prediction accuracy and smaller size. Although the
result of the tenfold cross-validation test was well, it was not
good enough for evaluating the classifier as the SVMclassifier
might be overfitted. To validate the reliability of the classifier,
an independent test set was further employed in this study.
As a result, the prediction accuracy of the independent set
test was 97.67%.

3.2. 3D-QSAR Prediction Model. The training set was
employed to build the topomer CoMFA model by fragment-
ing EGFR inhibitors into R1 and R2 groups. Two topomer
CoMFA models were generated by two cutting ways. The
topomer CoMFA model 2 with higher 𝑞2 and 𝑟2 values was
selected to analyze and predict EGFR inhibitors’ activities
(see Table 2).

The experimental and predicted activities of the training
set and the independent test set were listed in Table 3 and
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Figure 1: (a) Activity value versus DPLL. (b) Activity value versus H. (c) Activity value versus HF. (d) Activity value versus HOMO. (e)
Activity value versus MR. (f) Activity value versus Pc. (g) Activity value versus TIndx. (h) Activity value versus VP. (i) Activity value versus
WIndx.

Figure 2. As a result, the MAE and 𝑟2 of the training set were
0.308 and 0.888, respectively. The training set range was 7.32.
To estimate the reliability of model 2, the independent set test
was used to evaluate the model. The MAE and 𝑟2 of the test
set were 0.526 and 0.681, respectively. The MAE of the test
set was less than 0.732 (0.1 × training set range) and 1.903
(MAE(training set) + 3 × 𝜎).

Additionally, steric and electrostatic contour maps of R1
and R2 groups were obtained. Compound 33 was selected
to study how to redesign EGFR inhibitors due to the highly
activity (see Figure 3). From Figure 3, it could be concluded
that large volume and positively charged groups were added,
which can increase compound activity.

3.3. Molecular Docking. Compounds 27, 28, 30, 31, 32, and
33 were used for molecular docking with EGFR. As a

result, these compounds have hydrogen bonds at Thr766
and Met769 which were in ATP binding sites (see Figure 4).
These compounds interact with EGFR kinase at binding sites
and the quinolone ring bound to the hydrophobic pocket of
EGFR, instead of the purine ring of ATP.

4. Discussion

4.1. 2D-QSAR Model. Feature selection via removal of some
unnecessary features is required for a precise prediction
model [25, 54, 55]. A subset containing nine features was
obtained to build the 2D-QSAR prediction model. The
prediction accuracy of the model was well for the training
set and independent test set. This result indicated that the
original data contained some redundant features, and feature
selection was a helpful step in building a prediction model.
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Table 3: Experimental and predicted PIC50 for topomer CoMFA
model 2.

Compound Exp Pre
Training set

2 7.64 6.62
4 6.24 6.2
5 6.04 6.45
7 6 6.16
8 8 8.15
10 7.25 7.05
11 6.11 6.62
13 7 6.31
15 6.09 6.06
16 6.26 6.14
17 7.53 8.02
18 9.5 9.06
20 8.39 8.28
22 7.92 8.01
23 8.32 7.59
24 8.15 8.05
25 7.92 8.22
26 7.95 7.78
27 9.16 8.64
29 8.42 8.87
30 8.18 8.3
31 7.82 8.03
32 7.6 7.26
33 9.76 9.6
34 9.01 8.05
36 8.11 7.94
37 7.74 7.43
38 7.35 7.31
40 8.01 8.59
41 8.36 8.46
42 7.45 7.71
43 7.88 7.7
45 6.6 6.36
46 7.39 7.84
47 8 7.5
48 7.04 6.87
50 6.88 6.82
51 6.17 6.08
53 5.74 6.36
54 5.31 5.72
55 6.07 7.21
56 6.92 7.4
57 7.39 6.9
58 7.29 7.14
60 6.9 7.15
61 8.58 8.47
63 6.16 5.85

Table 3: Continued.

Compound Exp Pre
64 6.02 6.36
65 7.28 6.86
66 6.48 6.54
67 6.58 7
69 7.08 7.57
70 8.82 8.38
71 9.11 8.97
72 9.02 8.97
73 8.42 8.96
75 8.53 9.2
76 8.63 8.35
77 6.42 6.97
78 7.76 7.78
79 8.36 8.34
80 8.63 8.39
81 6.19 6.8
82 8.52 7.97
83 8.05 8.04
85 7.1 7.16
86 7.5 7.57
87 7.26 7.52
88 6.04 6.06
90 4.33 4.35
91 4.66 4.62
92 5 5.52
94 7.19 7.17
95 6.23 5.89
97 4.14 3.98
98 8.05 7.54
99 6.97 6.79

Test set
1 6.46 5.58
3 7.57 7.72
6 6.45 6.16
9 7.25 6.44
12 6.24 7.24
14 5.21 5.87
19 9.05 9.14
21 7.07 7.41
28 6.79 7.33
35 7.46 7.23
39 8.5 8.53
44 7.4 8.31
49 5.43 6.4
52 5.27 6.36
59 7.39 7.25
62 8.63 8.41
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Table 3: Continued.

Compound Exp Pre
68 7.88 7.81
74 9.09 8.98
84 6.72 7.69
89 5.94 5.67
93 7.17 6.68
96 5.01 6.82
100 6.2 6.18
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Figure 2: Scatterplot of experimental data versus predicted data
from topomer CoMFA model 2.

Although the accuracy of the prediction model with a
subset containing nine features (DPLL, H, HF, HOMO, MR,
Pc, TIndx, VP, and WIndx) was reliable, it was difficult
to analyze the relationship between these descriptors and
the activity of EGFR inhibitors as the prediction model
is nonlinear. Thus, sensitivity was further applied for this
problem [56]. Figure 1(a) shows the relationship between
the Dipole length and activity. When the Dipole length is
approximately 2 and 6.5, the activity levels are at minimum
and maximum, respectively. Figure 1(b) shows the relation-
ship between Henry’s law constant and activity. The activity
increases alongwithHenry’s law constant from 0 to 30.When
Henry’s law constant is more than 30, the activity has a
rising trend. Figure 1(c) shows the relationship between the
Heat of Formation and activity. When the Heat of Formation
ranges from −700 to 600, the activity increases. When the
Heat of Formation is more than 600, the activity has a rising
trend. Figure 1(d) shows the relationship between theHOMO
energy and activity. When the HOMO energy ranges from
−9.25 to −8.25, the activity increases. When the HOMO
energy is approximately −8.25, the activity peaks. When the
HOMO energy is greater than −8.25, the activity decreases.
When the HOMO energy is more than −7.25, the activity
has a decreasing trend. Figure 1(e) shows the relationship
between the Molar refractivity and activity. When the Molar

refractivity is approximately 10 and 14, the activity levels
are at minimum and maximum, respectively. Figure 1(f)
shows the relationship between the critical pressure and
activity. When the critical pressure ranges from 0 to 60,
the activity increases. When the critical pressure is more
than 60, the activity has a rising trend. Figure 1(g) shows
the relationship between the molecular topological index
and activity. When the molecular topological index ranges
from 0 to 60,000, the activity decreases. When the molecular
topological index is more than 60,000, the activity has a
decreasing trend. Figure 1(h) shows the relationship between
the Vapor pressure and activity. When the Vapor pressure
ranges from 0 to 1.4, the activity decreases. When the Vapor
pressure was more than 1.4, the activity had a decreasing
trend. Figure 1(i) shows the relationship between the Wiener
index and activity.When theWiener index and activity range
from 0 to 9,000, the activity decreases. When the Wiener
index is more than 9,000, the activity has a decreasing trend.

4.2. 3D-QSAR Model. Molecules in the topomer CoMFA
models can be split into two, three, four, and more groups as
needed [51, 57]. In this study, compounds were divided into
two groups (R1 and R2). EGFR inhibitors’ activity was related
to the completeness of the pharmacophore. In topomer
CoMFA models, the pharmacophore is related to cutting
[44, 48, 58], which plays an important role in the model’s
predictive performance of the model [58]. In the topomer
CoMFA analysis, all molecules of the training set are cut into
two fragments. While the fragmentation was complete, the
input structures were standardized and the topomers were
generated. They all shared the same identical substructure. If
the same identical substructure was recognized by the test set,
the model’s predictive ability was promising.

It could be found that model 2 added an 𝑁 element
in R1 based on model 1, which contributed to the model’s
predictive ability (see Table 2). Thus, it is speculated that R1
and R2 in model 2 are the same identical substructures. The
independent set test was used for evaluating model 2 (see
Figure 2). It was observed that the predicted pIC50 of some
compounds was poor, such as compound 9 and compound
34 (see Table 3). We guess this is because the same identical
substructures of the two compounds (see Figure 5) were
different from the other compounds. The poor predicted
pIC50 of compounds may cause high MAE. According to
Roy et al.’s report [46], the 3D-QSAR model in our study
was reliable as the MAE of the external validation was both
less than 0.1 × training set range and MAE (training set) +
3 × 𝜎. It is well known that the presence of systematic error
in predictions may easily be identified from the difference
in mean error and mean absolute error. It is important
to analyze prediction errors of compounds in test set in
order to search any possible systematic error. In Roy et
al.’s study [59], various metrics, including the number of
positive prediction errors (NPE), the number of negative
prediction errors (NNP), the absolute value for average of
prediction errors (AE), the average of absolute prediction
errors (AAE), the mean of positive prediction errors (MPE),
and the absolute value for mean of negative prediction errors
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(a) (b)

(c) (d)

Figure 3: 3D contour maps of topomer CoMFA model for R1 and R2 of compound 33. (a) and (c) present steric contour map. (b) and (d)
present electrostatic field map. Green, yellow, blue, and red represent large volume, small volume, positively charged, and negatively charged
groups, respectively.

(MNE), were employed to analyze the prediction’s error. If
prediction error is complied with principles I–V defined by
Roy, the results were recommended. In our study, the NPE,
NNP,AE,AAE,MPE, andMNEwere 12, 11, 0.219, 0.526, 0.713,
and −0.321, respectively. ABS (MPE/MNE) and 𝑅2 (𝑌 versus
residuals) were 2.2 (threshold = 2) and 0.67 (threshold = 0.5),
respectively. Hence, it was regarded that our 3D-QSARmodel
is reliable.

In addition, topomer CoMFA model provides opinions
on modifying EGFR inhibitors in order to design potential
highly selective and highly active EGFR inhibitors. Com-
pound 33 (see Figure 5) was chosen to study the effect of R1
and R2 groups on activity due to its high activity. In R1 group,
large group with a positive-charge in the yloxyethyl increases
the compound’s bioactivity (see Figure 3). In R2 group, small
groups with a positive-charge in the benzene ring may also
increase the compound’s bioactivity.

4.3. Molecular Docking Analysis. Molecular docking was
applied to predict the interaction sites between compounds
and EGFR. As the structure of compound 33 is similar
to erlotinib, EGFR also interacts with compound 33 at
Thr766 and Met769 [50]. Interestingly, it is observed that
the binding modes of compound 33-EGFR and erlotinib-
EGFR were different despite the similar structure after calcu-
lation. Quinolone ring of erlotinib competitively binds to the
hydrophobic pocket of EGFR kinase. For erlotinib, the aniline
group reached into the pocket, and substituent groups of site
6 and site 7 were located outside of the hydrophobic pocket.
For compound 33, it interacts with the EGFR by substituent
groups of site 6 and site 7 in the hydrophobic pocket. In
the steric and electrostatic fields, large volume group and
positively charged group in site 6 and site 7 of compound
33 may increase inhibitor activity (see Figure 3). Then, the
similar chemical series of compound 33was selected to study
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(a) (b)

(c) (d)

(e) (f)

Figure 4:The docking result of the EGFR inhibitors with EGFR. (a)The binding site of compound 27 with EGFR isThr766. (b)The binding
site of compound 28 with EGFR is Met769. (c) The binding site of compound 30 with EGFR is Met769. (d) The binding site of compound 31
with EGFR is Met769. (e)The binding site of compound 32with EGFR is Met769. (f)The binding sites of compound 33with EGFR isThr766
and Met769.

the docking site. As a result, compounds 28, 30, 31, and 32
interact with EGFR at Met769, and compound 27 interacts
with EGFR at Thr766. Thus, we considered that the Thr766
and Met769 played a crucial role in the EGFR activity.

Many studies performed the QSAR on kinase inhibitors,
and the result was helpful for drugs design. In Farghaly et
al.’s study [60], QSAR model was built, and the RMSE and
𝑟2 were applied to evaluate the model. After calculating,
they selected out three predominant descriptors affecting
the anticancer activity, and five anticancer agents were
screened finally. Sharma showed the 2D-QSAR studies of c-
Src tyrosine kinase inhibitors with 𝑞2 = 0.755 and 𝑟2 =
0.832 [61]. Sharma et al. reported QSAR studies of Aurora

A kinase inhibitors [62]. 𝑞2 is 0.762 and 𝑟2 is 0.806. The
difference in the number of samples causes the difference
in 𝑞2 and 𝑟2. When 𝑞2 and 𝑟2 are more than 0.5 and 0.8,
respectively, the model has statistical significance. In our
QSAR study, 𝑞2 is 0.565 lower than these two studies, but 𝑟2
is higher (see Table 4). In addition, steric and electrostatic
field and molecular docking analysis were applied in our
study to explore the activity development and predict the
interaction between inhibitors and protein, which is not
showed in these studies. In conclusion, QSAR combined
with molecular docking provides better insight into the
future design of more potent EGFR inhibitors prior to
synthesis.



BioMed Research International 9

Compound 9 Compound 27 Compound 28 Compound 30

Compound 34Compound 33Compound 31 Compound 32

HN HN
HN

HN

HNHNHNHN

F

N

N N N

N
N

N
N

N

N

NNNN

N N N

N

Br
Br

Br

BrBrBr

H Cl

Cl

OO

O O O

．／2．／2

（2．
（2．

（2．

Figure 5: Structures of compounds 9, 27, 28, 30, 31, 32, 33, and 34.

Table 4:The comparison of metrics between other studies and ours
in QSAR study of the kinase inhibitors.

Metric
QSAR study

c-src tyrosine kinase
inhibitors [61]

Aurora inhibitors
[62] Our study

𝑞2 0.755 0.762 0.565
𝑟2 0.832 0.806 0.888

5. Conclusion

In this study, 2D-QSAR and 3D-QSAR prediction models
were built to analyze EGFR inhibitors. Firstly, the 2D-QSAR
model was built to predict whether a compound was an
inhibitor or a noninhibitor. The accuracy of the 2D-QSAR
model using the tenfold cross-validation test and indepen-
dent set test was 98.99% and 97.67%, respectively. Then, the
topomer CoMFAmodel was built based on EGFR inhibitors.
Two models were obtained by cutting different molecular
bonds. As a result, model 2 with higher 𝑞2 value and 𝑟2
values was selected to predict EGFR inhibitors. Finally, a
series of similar chemical inhibitors were selected to study the
interacting sites between EGFR and EGFR inhibitors using
molecular docking tool. As a result, Thr766 andMet769 were
received by studying the docking result. Thus, we considered
that Thr766 and Met769 played a crucial role in the EGFR
activity.
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