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Schistosoma japonicum (S. japonicum) is one of the etiological agents of schistosomiasis,

a widespread zoonotic parasitic disease. However, the mechanism of the balanced

co-existence between the host immune system and S. japonicum as well as their

complex interaction remains unclear. In this study, 16S rRNA gene sequencing,

combined with metagenomic sequencing approach as well as ultraperformance liquid

chromatography–mass spectrometry metabolic profiling, was applied to demonstrate

changes in the gut microbiome community structure during schistosomiasis progression,

the functional interactions between the gut bacteria and S. japonicum infection in BALB/c

mice, and the dynamic metabolite changes of the host. The results showed that both

gut microbiome and the metabolites were significantly altered at different time points

after the infection. Decrease in richness and diversity as well as differed composition

of the gut microbiota was observed in the infected status when compared with the

uninfected status. At the phylum level, the gut microbial communities in all samples

were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres,

while at the genus level, Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides,

Staphylococcus, and Alloprevotella were the most abundant. After exposure, Roseburia,

and Ruminococcaceae UCG-014 decreased, while Staphylococcus, Alistipes, and

Parabacteroides increased, which could raise the risk of infections. Furthermore, LEfSe

demonstrated several bacterial taxa that could discriminate between each time point

of S. japonicum infection. Besides that, metagenomic analysis illuminated that the

AMP-activated protein kinase (AMPK) signaling pathway and the chemokine signaling

pathway were significantly perturbed after the infection. Phosphatidylcholine and

colfosceril palmitate in serum as well as xanthurenic acid, naphthalenesulfonic acid, and

pimelylcarnitine in urine might be metabolic biomarkers due to their promising diagnostic

potential at the early stage of the infection. Alterations of glycerophospholipid and purine

metabolism were also discovered in the infection. The present study might provide

further understanding of the mechanisms during schistosome infection in aspects of
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gut microbiome and metabolites, and facilitate the discovery of new targets for early

diagnosis and prognostic purposes. Further validations of potential biomarkers in human

populations are necessary, and the exploration of interactions among S. japonicum, gut

microbiome, and metabolites is to be deepened in the future.

Keywords: Schistosoma japonicum, gut microbiome, metagenomics, metabolomics, 16S rRNA, UPLC-MS 3

INTRODUCTION

Schistosomiasis is a zoonotic parasitic disease mainly caused
by the infection of Schistosoma japonicum (S. japonicum),
Schistosoma mansoni (S. mansoni), and Schistosoma
haematobium (S. haematobium), which seriously damages
human and animal health and hinders socio-economic
development. This neglected tropical disease affects∼200million
people, and ∼779 million are at risk of infection worldwide (1).
S. japonicum is distributed principally in East Asia, especially in
China, the Philippines, and Indonesia, with more than 1 million
people infected and ∼46 million people at risk (2). In China, S.
japonicum is endemic in mainly 12 provinces along the middle
and the lower reaches of the Yangtze River and regions south of it.
The life cycle of S. japonicum is complex and consists of asexual
generation in the intermediate host and sexual generation in
the definitive host, including the seven developmental stages of
egg, miracidium, mother sporocyst, daughter sporocyst, cercaria,
juvenile schistosomulum, and adult worm (3). Different stages
of S. japonicum cause various damages to the host, and complex
immune pathological reactions lead to diverse clinical symptoms.
Larval worms induce Th1 responses with elevated levels of the
inflammatory cytokines IFN-γ, IL-12, and TNF-α in the early
phase of schistosomiasis and cause diarrhea, fatigue, and anemia,
while adult worms become mature and lay eggs; parasite eggs
that deposit in the liver and colon of infected hosts elicit Th2
responses and then upregulate the serum cytokine levels of
IL-4, IL-5, IL-13, and TGF-β, leading to portal vein hypertension
syndrome, ascites, and liver fibrosis (2, 4, 5). During S. japonicum
infection, egg deposits in the tissues are a determining factor
that shifts the Th1 response to the Th2 response (5). To protect
against eggs, delayed-type hypersensitivity reactions of the host
are triggered but lead to the formation of circumoval granuloma
in livers and colons, followed by fibrosis, which is the main cause
of death (5). Immunological downregulation occurs to both,
protecting the host from inflammatory damage and preventing
the parasites from being eliminated during late chronic infection
(4). However, the mechanism of this balanced co-existence
between the host’s immune system and S. japonicum as well as
their complex interaction remains unclear.

At present, schistosomiasis is diagnosed by a clinical history
of contact with fresh water from endemic foci, followed by both
direct methods and indirect tests in the clinical laboratory. The
former includes using the Kato–Katz technique to examine the
feces under light microscopy for detection of eggs, while the latter
includes using immunological approaches, such as detecting
soluble antigens secreted from eggs via the antigen–antibody
reaction (2, 6, 7). Imagingmethods, for instance, ultrasonography

(US), CT scan and MR, scan, are established to inspect the
presence of periportal fibrosis (7). Nevertheless, these diagnostic
methods are not sensitive or specific enough and are not suitable
for early diagnosis; therefore, a well-suited approach with high
sensitivity and specificity is urgently required to detect acute
stage infection.

Metabolomics is a quantitative measurement of multi-
parametric metabolic responses of multi-cellular systems
and aims to identify and quantify numerous small molecules
(<1,200 Da) present in various biological samples or specific
physiological states; metabolomics can provide a comprehensive
systems-level study of the relationships between host genetic
and environmental factors with high-density data and
multivariate mathematical modeling (8–10). Nuclear magnetic
resonance (NMR) spectroscopy, liquid chromatography–
mass spectrometry (LC–MS), and gas chromatography–mass
spectrometry are the most widely used analytical techniques for
metabolomic analyses. Due to the main advantages of much
better sensitivity and resolution, more coverage of metabolites,
and high-throughput capacity (11), MS-based techniques have
been implemented more frequently than NMR. Metabolomics
has already been widely applied in parasitological studies,
with comprehensive characterizations of the host metabolic
responses to infections by several parasites, such as Plasmodium
falciparum (12–14), Trypanosoma brucei (15–17), Toxoplasma
gondii (18–20), and S. japonicum (2, 6, 21). Hence, metabolomics
is a suitable diagnostic tool to provide novel insights into the
mechanisms underlying the progression of schistosomiasis,
clearly revealing the resistance mechanism between the host
and S. japonicum and thus leading to the discovery of potential
metabolic biomarkers that are useful for early diagnosis.

The gut microbiota, consisting of diverse microbial
communities, has a profound impact on influencing host
physiology by the composition, density, and activities of
colonizing microorganisms as well as on animal evolution
through the interplay between host and microbial communities
(22). Once the balance in proportions among core bacterial
communities breaks down, dysbiosis occurs, which may alter
host interactions and lead to numerous diseases, such as
inflammatory gut disorders, diabetes, and obesity (23). S.
japonicum adult worms live in the mesenteric veins of the host
and can cause intestinal schistosomiasis with symptoms of
mucosal granulomatous inflammation, superficial bleeding, and
pseudopolyposis (24). However, the interaction between the
host, S. japonicum, and the microbiota and the potential effects
of helminths on shaping the host–microbiota composition
and structure are unclear; therefore, further investigation
is warranted.
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Previous studies have shown that infection with S. japonicum
modified both bacterial richness and bacterial community
composition (25), reduced the levels of tricarboxylic acid cycle
intermediates, increased the levels of amino acids, choline, and
urinary 3-ureidopropionate, and perturbed lipid metabolism,
glycolysis stimulation, tricarboxylic acid cycle, and a series of
microbial-related metabolites (2, 6). Nevertheless, the alterations
of microbiome and metabolome in the time course of infection
progression have not been described yet; therefore, the aim
of the current study is to investigate the dynamic alteration
of gut microbiome community structure and the metabolite
profile of the hosts infected with S. japonicum, and the
correlations between host metabolism and gut microbiome
after the infection by omics-based and systems-level approaches
involving metabolic profiling with ultraperformance liquid
chromatography–mass spectrometry (UPLC–MS), 16S rRNA
gene sequencing, and shotgun metagenomics sequencing. To our
knowledge, employing metagenomic sequencing and untargeted
metabolic profiling to investigate the effects of infection with S.
japonicum in BALB/c mice would allow a better understanding
of the mechanisms during schistosomiasis development and
potentially reveal new targets for early diagnosis and prognosis.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted strictly in accordance
with the guidelines of the National Institutes of Health on animal
care and the ethical guidelines. The protocol was approved by
the Animal Care and Use Committee of Sun Yat-sen University
[permit no. SYXK (Guangdong) 2017-0081]. All efforts were
made to minimize the suffering of the animals.

Mice and Cercariae
Seventy specific-pathogen-free 6- to 8-week-old female BALB/c
mice (18 ± 2 g body weight) were purchased from the Animal
Experiment Center at Sun Yat-sen University (Guangzhou,
China) and were housed in plastic cages with free access to
autoclaved chow and water under controlled temperature and
humidity and a 12-h light/12-h dark cycle. The animals were
randomly divided into seven groups, with 10 mice in each
group. After the mice acclimated to the new environment, 60
of them were infected with 30 ± 2 S. japonicum cercariae per
individual via the shaved abdominal skin. The cercariae were
obtained from infected Oncomelania, which were provided by
the National Institute of Parasitic Diseases, Chinese Center for
Disease Control and Prevention (Shanghai, China), that were
placed in dechlorinated water and exposed to artificial light for
more than 2 h. The other mice were left uninfected and served
as controls.

Sample Collection
The mice in each group were sacrificed by chloral hydrate
asphyxiation and cervical dislocation either before infection or
at 3, 7, 14, 21, 28, and 42 days post-infection (dpi). Blood samples
were drawn from orbital veins and centrifuged at 3,000 ×g for
10min to collect the serum after clotting. The serum was stored

at−80◦C until further analysis. Urine and feces samples were
collected the day before the mice were sacrificed by placing them
individually in metabolic cages, which can separate feces from
urine using different small plastic tubes embedded at the bottom
of the cages. Dry ice was placed around the collection tubes to
prevent oxidation or degradation of metabolites. At least 0.5ml
of urine and 1 g of feces were obtained; then, the samples were
transferred into Eppendorf tubes and stored in a freezer at−80◦C
for further testing.

Genomic DNA Extraction and 16S rRNA
Gene Sequencing
Nucleic acid extraction of thirty fecal samples of the 0, 7,
14, 21, 28, and 42 dpi groups (five samples per group)
was carried out using a QIAamp Fast DNA Stool Mini kit
(cat. no. 51604, QIAGEN, Hilden, Germany), following the
manufacturer’s instructions. The concentration of DNA was
measured on a NanoDrop (Thermo Scientific, Waltham, MA,
USA), and 1% agarose gel electrophoresis was used to assess
the integrity and the purity of DNA. After that, extracted
DNA was diluted to a concentration of 1 ng/µl and used as
a template to amplify the V3–V4 regions of the 16S rRNA
gene, utilizing the primers 343F (5′-TACGGRAGGCAGCAG-
3′) and 798R (5′-AGGGTATCTAATCCT-3′) with barcodes in
combination with HiFi Hot Start Ready Mix (cat. no. KK2501,
Kapa Biosystems, Boston, MA, USA). Polymerase chain reaction
(PCR) amplicon product quality was demonstrated through
agarose gel electrophoresis, and PCR amplicons were purified
with Agencourt AMPure XP beads (cat. no. A63881, Beckman
Coulter, Brea, CA, USA), followed by another round of PCR
amplification. The final amplicons were quantified with a Qubit R©

dsDNA HS Assay Kit (cat. no. Q32854, Life Technologies,
Waltham, MA, USA) after a subsequent clean-up, as described
above. Afterwards, the purified amplicons from each sample were
pooled in equal amounts for subsequent 16S rRNA sequencing on
the Illumina MiSeq platform.

Metagenome Sequencing
Two microliters of DNA (10 ng/µl) from nine fecal samples
of the 0, 21, and 42 dpi groups (three samples per group) was
fragmented to ∼300–500 bp with a Covaris S220 (Covaris,
Woburn, MA, USA) individually. Subsequently, library
construction was performed using a TruSeq Nano DNA LT
Sample Preparation Kit (cat. no. FC-121-4001, Illumina, San
Diego, CA, USA) according to the manufacturer’s instructions,
and then a TruSeq PE Cluster Kit v3-cBot-HS (cat. no. PE-401-
3001, Illumina, San Diego, CA, USA) was used for bridge PCR.
The resulting DNA was then pooled and quantified by Kapa
Library Quantification Kits (cat. no. KK4824, Kapa Biosystems,
Boston, MA, USA) and sequenced using the Illumina HiSeq
platform with a TruSeq SBS Kit v3-HS (cat. no. FC-401-3001,
Illumina, San Diego, CA, USA).

16S rRNA Gene Analysis
Paired-end reads were reprocessed using Trimmomatic software
(26) to detect and cut off ambiguous bases from the N terminal.
Low-quality sequences with an average quality score lower than
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20 were removed by the sliding window trimming approach.
After trimming, the paired-end reads were assembled using
Fast Ligation-based Automatable Solid-phase High-throughput
software (version 1.2.11) (27). Only sequences with 10 base pairs
(bp) of minimal overlapping, 200 bp of maximum overlapping,
and 20% of maximum mismatch rate were assembled according
to their overlap sequence. Reads with ambiguous, homologous
sequences and a total length of <200 bp were abandoned, while
reads with 75% of bases above Q20 were retained. Next, the
sequences were checked by Quantitative Insights Into Microbial
Ecology (QIIME) software (version 1.8.0) (28) for the following
criteria: the maximum length of a homopolymer run was six,
the maximum number of mismatches in the primer was two,
the maximum number of errors in the barcode was zero, and
reads with chimeras were detected and removed. After that, clean
reads were obtained, followed by subjecting to primer sequence
removal and clustering to generate operational taxonomic units
(OTUs) using UPARSE software (version 6.1.351) with 97%
sequence similarity cutoff (equal to bacterial species level) (29).
All representative reads were chosen from each OTU by selecting
the most abundant sequence with the QIIME package. High-
quality representative sequences were annotated and blasted
against the Silva database (version 123) on the basis of the
Ribosomal Database Project classifier (the confidence threshold
was set as 70%) (30).

Alpha diversity (within-sample diversity) was estimated for
each group using the number of observed species, Chao1
richness estimator, Shannon–Wiener index, and phylogenetic
diversity index, while beta diversity (between-sample diversity)
was monitored with two-dimensional and three-dimensional
principal coordinate analysis (PCoA) plots on the basis of
weighted UniFrac distance metrics. Bar plots were generated
to visualize the relative abundances and alterations over time
in bacterial communities for fecal samples from each group.
To distinguish significant differences in microbial communities
at different taxonomic levels between healthy mice and S.
japonicum-infectedmice, one-way analysis of variance (ANOVA)
was performed; statistical significance level was set at p < 0.05.
Linear discriminant analysis (LDA) coupled with effect size
(LEfSe) measurement1 was implemented to illuminate microbial
taxa that were differentially represented between the groups, in
order to discover the potential markers at different time points.
Pearson correlation coefficients between the top 30 dominant
gut bacteria at the genus level were calculated, and bacterial
genera with high correlations and p < 0.05 were used to build
an associated network with Cytoscape software (version 3.6.1)
to find correlations between gut microbiota changes and explore
the ecological significance related to each other. Unless otherwise
stated, statistical analyses and plots were carried out using R
software (version 3.5.1).

Metagenomic Analysis
Next-generation sequencing quality control (QC) Toolkit
(version 2.3.2) (31) was used to discard raw metagenomic reads
with 70% of bases below Q20 and remove reads from the 3′ end

1http://huttenhower.org/galaxy

until reaching the first nucleotide with a minimum quality score
cutoff of 20 and if either read was shorter than 70 bp or contained
“N” bases or ambiguous bases. Afterwards, sequences of Mus
musculus2 were filtered out by Burrows–Wheeler Alignment
(version 0.7.9a) (32). After the scaffold sequences from all
samples were assembled with Short Oligonucleotide Analysis
Package Denovo3 (version 4.5.4) (33), open reading frames
(ORFs) were predicted and translated into amino acid sequences
by prodigal4 (version 2.6.3) (34). Cluster Database at High
Identity with Tolerance5 (version 4.5.4) was implemented to
build non-redundant gene sets for all predicted genes and to
cluster ORFs with more than 95% identity and more than 90%
coverage. The gene with the longest full length from each cluster
was selected as the representative read of each gene set. For
further analysis, annotations were performed with the gene set
representative reads by using Blastp6 (Blast version 2.2.28+)
alignment (E-value < 0.00001) between ORFs and the protein
databases of the Kyoto Encyclopedia of Genes and Genomes7.

Metabolic Profiling
Sample Processing for Metabolomics
Each 10-µl serum sample was thawed on ice and diluted 1:10
in methanol. After that, the mixture was vortexed briefly and
incubated overnight at 4◦C to precipitate proteins thoroughly,
followed by centrifugation at 10,000 ×g for 10min, and ∼80-
µl aliquots of the supernatant were then transferred to a vial
for analysis. The urine samples were prepared by diluting 50
µl of urine with 450 µl of Milli-Q water and centrifuging for
10min at 10,000 ×g at 4◦C to remove particulates. A 200-
µl volume of supernatant was collected and transferred into a
glass vial afterwards. Liver and colon samples were processed
following a modified version of the method of Elizabeth et al.
(35). Briefly, frozen tissue (50 ± 0.5mg) was added to 1.5ml
of prechilled methanol/water (1:1, v:v) solvent, which was
subsequently completely homogenized in an ice bath. The
suspension was centrifuged at 16,000 ×g for 10min, and the
resulting supernatant was transferred into an Eppendorf tube
and then processed through vacuum freeze-drying to obtain an
aqueous extract. The dried residue was redissolved in 120 µl
of methanol/water (1:1, v:v) and centrifuged at 13,000 ×g for
10min to remove particulates. Thereafter, the clear supernatant
was transferred to a sampling vial. For each type of specimen,
QC samples were prepared by mixing an equal volume of all
individuals into the vial to ensure the repeatability and the
stability of the analysis.

Ultraperformance Liquid Chromatography Conditions
An ACQUITY UPLC-I Class System (Waters Ltd., Milford,
MA, USA) was used to perform chromatographic separations.
Each sample was injected onto an ACQUITY UPLC C18 BEH
column (2.1× 100mm, 1.7µm;Waters, Milford, MA, USA) in a

2http://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.23
3http://soap.genomics.org.cn/
4https://github.com/hyattpd/Prodigal
5http://www.bioinformatics.org/cd-hit/
6http://blast.ncbi.nlm.nih.gov/Blast.cgi
7http://www.genome.jp/kegg/pathway.html (KEGG)
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random order at 38◦C, while QC samples were detected every 10
specimens throughout the injection.

For the serum samples, mobile phase A was water mixed with
0.1% formic acid, while mobile phase B was 70% isopropanol and
30% acetonitrile containing 0.1% formic acid. The serum samples
were eluted under gradient conditions at a flow rate of 400µl/min
with 1% B, which was held for 1min and then was ramped up
from 1 to 40% B for 2min, from 40 to 75% B for 5min, from 75
to 85% B for 4min, and from 85 to 99% B for 6min, held at 99%
B over 4min, and then returned to 1% B for 3min. The volume
of the sample injected onto the column was 1.000 µl.

For the urine samples, the gradient solvent system included
water (A) and acetonitrile (B), each containing 0.1% formic acid.
The injection volume of the urine samples was set to 0.300 µl;
the separation gradient was held at 3% B for 1.2min, ramped up
from 3 to 45% B over 8.8min and from 45 to 98% B for 4min,
held at 98% B over 2min, and then returned to 3% B for 3min,
with a flow rate of 400 µl/min.

For the liver supernatant, the injection volume was 0.400 µl;
the mobile phase was held at 2% B for 2min, increased from
2 to 45% B over the next 8min, followed by 45 to 98% B over
3min, held at 98% B for 2min, and decreased to 2% B, which
was held for 2min, at a flow rate of 400 µl/min. However, the
injection volume of the colon supernatant was set to 1.500µl; the
separation gradient was held at 25% B for 0.5min, ramped from
25 to 50% B over 4.5min, from 50 to 65% B for 7min, and from
65 to 95% B for 4min, held 95% B for 2min, and then returned
to 25% B over 3min, with a flow rate of 400 µl/min. The gradient
solvent systems used for the liver and the colon supernatants were
the same as that used for the urine samples.

Quadrupole-Time-of-Flight Mass Spectrometry

Conditions
Mass spectrometry data were collected by a SYNAPTG2-Si High-
Definition Mass Spectrometer with an electrospray ionization
(ESI) source (Waters Ltd., Milford, MA, USA) in both positive
and negative ion modes for the serum and the urine samples,
whereas only negative ion mode was used for the liver and colon
aqueous extracts due to the limited valuable compounds detected
in the positive ion mode. Nitrogen gas was set as desolvation and
cone gas. The capillary voltage was set at 2.5 kV, nebulizer gas
at 6 bar, cone voltage at 35 kV, cone gas flow at 30 L/h, source
temperature at 110◦C, desolvation gas temperature at 350◦C, and
desolvation gas flow at 700 L/h. The eluted compounds were
scanned from mass/charge (m/z) 50 to m/z 1,200 at a rate of
0.3 s per scan for both MS mode and MSE mode. The collision
energy was set from 20 to 50 eV for MSE mode. To ensure mass
accuracy and reproducibility, leucine enkephalin was used to
correct data (m/z 556.2720 in positive mode and m/z 554.2615
in negative mode) at a concentration of 1 ng/µl and a flow rate of
5 µl/min continuously.

Data Analysis
The raw data were acquired by Masslynx (version 4.1,
Waters, Manchester, UK) and imported into Progenesis QI
(version 2.1, Nonlinear Dynamics, Waters, Manchester, UK)
for data preprocessing, including peak alignment, picking, and

normalization as well as compound identification. Normalized
and scaled datasets were imported into SIMCA-P (version 13.0,
Umetrics, Umea, Sweden) and MetaboAnalyst 4.08 (36, 37) to
carry out statistical analyses. The statistical significance between
experimental groups was determined by one-way ANOVA, with
p < 0.05. Principal component analysis (PCA) and partial least
squares-discriminatory analysis (PLS-DA) were used to visualize
natural separation and trends among the groups by score plots,
while orthogonal partial least squares-discriminatory analysis
(OPLS-DA) was conducted to find the maximum separation
between healthy mice and S. japonicum-infected mice. Advanced
statistical and visualization tools, such as variable importance
in projection (VIP) and S-plots, were performed to reveal
underlying trends in data. The discriminated metabolites were
selected based on significant changes, including VIP scores that
were taken from comparisons in OPLS-DA models >2, p < 0.05,
and QC samples’ coefficient of variation (CV) <30 and were
putatively identified by searching databases such as the Human
Metabolome Database9 (38) and METLIN10 (39) with accurate
mass spectral data and MS/MS spectra. Furthermore, receiver
operating characteristic (ROC) curve analysis was carried out
to evaluate the early diagnostic capability of identified potential
biomarkers. Metabolite set enrichment analysis (MSEA) and
pathway analysis were performed by MetaboAnalyst 4.0 to
investigate the most significant metabolic pathways involved in S.
japonicum infection. Finally, correlations between the dominant
gut bacteria changes and shifted metabolites were calculated in R
software (version 3.5.1) by a hierarchical clustering algorithm to
determine the relationships between them.

RESULTS

Gut Microbiome Community Structure
Changes in Mice Infected by S. japonicum
High-throughput sequencing of the 16S rRNA gene was
implemented to illustrate the alterations in the gut bacterial
compositions of BALB/c mice associated with S. japonicum
infection. A total of 1,210,516 valid reads were retained from 30
fecal samples, with an average of 40,350 sequences per sample, for
further processing after filtering, which generated 19,868 OTUs
at 97% similarity level (Supplementary Table 1) and 56 OTUs
shared among all samples (Supplementary Figure 1). Most of
the shared OTUs are members of the families Lachnospiraceae,
Ruminococcaceae, and Bacteroidales S24-7 group. The four
different alpha diversity estimators mentioned above increased
over time among all groups but to a lesser extent in the
infected mice than in the uninfected mice, whereas the least
diversity presented at 21 dpi, indicating that the infection of
S. japonicum reduced the alpha diversity of host gut bacteria,
especially at 21 dpi (Supplementary Figure 2). However, the
differences were not statistically significant (p > 0.05). A three-
dimensional PCoA plot based on weighted UniFrac distances
(Supplementary Figure 3) showed the variations of the gut

8http://www.metaboanalyst.ca
9http://www.hmdb.ca
10http://metlin.scripps.edu
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bacterial communities of BALB/c mice, with 49.84, 18.29, and
7.12% variation explained by principal component (PC) 1, PC2,
and PC3, respectively. The difference was observed between the
0-dpi group and the 42-dpi group, which demonstrated that
the effect of S. japonicum infection in the late stage on the gut
microbiome composition of the host was relatively stronger.

Perturbed Gut Bacteria in Mice With
S. japonicum Infection
To observe S. japonicum infection effects on the gut microbiome
of BALB/c mice, bar plots were generated according to the
relative abundance of the 15 most abundant gut bacterial
phyla (Figure 1A) and genera in different groups (Figure 1B).
Subsequently, one-way ANOVA was applied to identify
significant alterations in the composition of the host gut
microbiota at the phylum and the genus levels during infection.
It is obvious that Firmicutes and Bacteroidetes were the
most abundant gut bacterial phyla, with total average relative
abundances over 90% in all groups, and the abundances of
Proteobacteria and Deferribacteres were altered according
to the time of infection but with no statistical significance
(p > 0.05, Supplementary Table 2). At the genus level,
Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides,
Staphylococcus, and Alloprevotella were the most prevalent
gut microbiome in BALB/c mice, but only alterations of the
relative abundances of Staphylococcus, Parabacteroides, Alistipes,
Roseburia, and Ruminococcaceae UCG-014 showed statistical
significance in the top 15 most important gut genera (p <

0.05, Supplementary Table 3). Notably, Staphylococcus, with a
relative abundance of 14.46% in the 21-dpi group, was almost
undetectable in other groups (Figure 2A). Furthermore, the
average relative abundance of Parabacteroides was decreased
before 7 dpi, but it was increased after that (Figure 2B); Alistipes
was significantly more abundant in the infected groups than in
the uninfected group (Figure 2C). In contrast, Roseburia and
Ruminococcaceae UCG-014 (Figures 2D,E) were reduced after
infection with S. japonicum,while the average relative abundance
of the latter increased approximately twofold at 7 dpi.

To determine the taxa ranging from the phylum to the
genus level that discriminated between each time point of S.
japonicum infection, LEfSe, with an adjusted p < 0.05 and LDA
score threshold >6.0, was performed. Bacteria from the phyla
Firmicutes and Saccharibacteria, in addition to Alistipes and
other taxa, were significantly associated with the 7-dpi group,
while only Parabacteroides and Lachnospiraceae UCG-005 were
significantly related to the 14-dpi group. Some members of the
phyla Firmicutes and Proteobacteria were significantly enriched
in the 21-dpi group, but the most significant was Staphylococcus.
The Gammaproteobacteria class significantly distinguished the
28-dpi group from the other groups. Over-abundances of
other members from the phyla Firmicutes, Bacteroidetes, and
Proteobacteria were significantly linked to the 42-dpi group.
However, no discriminative gut flora was found in the 0-dpi
group. It is worth noting that Lachnospiraceae UCG-005 was
related to the 14-dpi group, whereas Lachnospiraceae UCG-010
was associated with the 42-dpi group (Figure 3). The cladogram

in Figure 4 showed the most relevant clades among each group,
which was in accordance with the above mentioned results.

Correlations between the top 30 dominant bacterial genera
are demonstrated in Figure 5, with either a positive or a negative
Pearson correlation coefficient (p < 0.05). The gut bacteria were
divided into four clusters, and the most connected bacteria
were Anaerotruncus, Coprococcus 1, Parabacteroides, Bacteroides,
Erysipelatoclostridium, and Odoribacter, while Odoribacter had
the maximum connections with other genera. It is interesting
that significant negative correlations were only found in
Odoribacter and Lachnoclostridium, as well as Enterorhabdus and
Lachnospiraceae UCG-001, whereas the remaining bacteria were
significantly positively related to each other.

S. japonicum Infection-Induced
Metagenome Changes
Metagenomic analysis was used in this study to identify
genes of host gut microbiota involved in specific pathways
or functions during S. japonicum infection. An average of
56,686,511 valid reads per sample was obtained after removing
sequences of the host, and then a non-redundant gene catalog
that contained 1,048,575 clusters assembled into bacterial
genes was constructed for further annotation. Afterwards,
annotated metagenomic data were obtained by mapping to
KEGG orthologs (kos), and the ko number was implemented
to correspond to the KEGG pathway to indicate which genes
were associated with specific metabolic pathways or functions
(Supplementary Table 4). A hierarchical clustering heat map
constructed based on the results from analysis of KEGG at level
3 demonstrated a remarkable ability to discriminate between
healthy mice and infected mice in 14 different KEGG pathways
(Figure 6). The 0-dpi group showed seven enriched pathways
including transport and catabolism (regulation of mitophagy—
yeast ko04139, regulation of autophagy ko04140), signal
transduction (mTOR signaling pathway ko04150), immune
system (RIG-I-like receptor signaling pathway ko04622),
metabolism of terpenoids and polyketides (sesquiterpenoid and
triterpenoid biosynthesis ko00909), xenobiotic biodegradation
and metabolism (steroid degradation ko00984), and biosynthesis
of other secondary metabolites (aflatoxin biosynthesis ko00254)
(p < 0.05). Additionally, signal transduction (AMPK signaling
pathway ko04152), immune system (chemokine signaling
pathway ko04062), metabolism of terpenoids and polyketides
(biosynthesis of vancomycin group antibiotics ko01055),
metabolism of other amino acids (beta-alanine metabolism
ko00410), biosynthesis of other secondary metabolites (penicillin
and cephalosporin biosynthesis ko00311), and substance
dependence (cocaine addiction ko05030) were significantly
perturbed in the 42-dpi group (p < 0.05), whereas biosynthesis
of other secondary metabolites (betalain biosynthesis ko00965)
was altered significantly in the 21-dpi group, with p < 0.05.

Multivariate Statistical Analysis of
Metabolite Profiling
In PCA score plots, QC samples that applied to test analytical
repeatability and instrument performance and stability were
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FIGURE 1 | Relative abundances of the top 15 most important gut microbiota constituents at the phylum level (A) and genus level (B) across different time points as

assessed by 16S rRNA sequencing. Each column represents the composition of the microbial taxa in one group.

tightly clustered, which demonstrated high reproducibility of the
instrument (Supplementary Figure 4). Representative base peak
intensity chromatograms of all types of specimens at seven time
points are shown in Supplementary Figures 5–8. Differences in
peaks and peak heights were observed among all groups, which
indicated that the composition of metabolite profiles of BALB/c
mice was changed during S. japonicum infection.

Initially, PCA, which is an unsupervised method of pattern
recognition aiming to identify the overall clustering patterns and
trends in a data set without considering groups, was implemented
to obtain a global view and determine whether the metabolites
from these seven groups of mice differed. Based on the top three
principal components, the PCA results showed distinguished
classifications between the control mice and the mice with
different statuses of S. japonicum infection from serum and
urine samples separately in both ESI modes, indicating that S.
japonicum infection had significant effects on mouse metabolism
(Figure 7). However, the 0-dpi group and early infection groups
appeared to be partially overlapping, and the latter were closer
than the late infection groups to the controls in the PCA score
plots, whereas themost profound differences were found between
the 0-dpi group and the late infection groups, which illustrate
that the changes in metabolite profiles were miniscule at the early
stage of infection and then became significant in the later stage.

However, samples derived from liver and colon aqueous extracts
demonstrated unclear classifications between healthy mice and
infected mice of different time periods of S. japonicum infection
with PCA in negative ion mode. This finding is evident in the
PCA score plots in Figure 7F, which revealed that the effects of S.
japonicum infection on mouse metabolism were not as evident in
tissue as they were in body fluids.

Subsequently, in order to enhance the separation among the
different classes of samples, a supervised method, PLS-DA was
performed. For serum, urine, and liver aqueous extracts, PLS-
DA models were constructed for all time points of S. japonicum
infection separately, and all groups could be readily clearly
differentiated from each other by PLS1, PLS2, and PLS3 in both
ESI modes; high values of R2 and Q2 of each model reflected
the data stability and the good fit of the model parameters
(Figure 8, Supplementary Table 5). These results revealed that
the biochemical perturbations and the metabolic profiles of the
infected groups were distinct from those of the uninfected group.
Furthermore, notable separation was found between control
mice and infected mice during the process of schistosomiasis.
Nevertheless, colon aqueous extract samples from all groups still
clustered together in the PLS-DA score plot.

Finally, OPLS-DA was applied to reduce the dimension
and produce the clearest separation between two groups as
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FIGURE 2 | Relative abundances of significantly altered top 15 most important gut genera associated with Schistosoma japonicum infection. Each column represents

one group. (A) Staphylococcus. (B) Parabacteroides. (C) Alistipes. (D) Roseburia. (E) Ruminococcaceae UCG-014. The top and the bottom whiskers indicate the

maximum and the minimum values, respectively, and the hyphen represents the median value (*p < 0.05, **p < 0.01, ***p < 0.001).

well as identifying metabolites that drive group distinction
with one predictive and one orthogonal component
(Supplementary Figures 9–14). The S-plots obtained from
OPLS-DA were used to find out the meaningful and reliable
variables that were attributable to the separation between two
groups; the ions farther from the origin in the plot represent
higher VIP values and were selected as potential metabolite
biomarkers (Supplementary Figures 9–14).

Biomarker Identification and Analysis
A total of 42 unique compounds were identified in serum
extracts, 53 unique compounds were identified in urine
samples, and 24 unique compounds were identified from
liver and colon aqueous extracts on the basis of the S-
plot, VIP scores >2, p < 0.05, and QC samples’ CV <30
(Supplementary Table 6). Themajority of thesemetabolites were
lipids, glucose, organic acids, nucleic acids, and amino acids. As
shown in Supplementary Figure 15, hierarchical cluster analysis
demonstrated the trends of significantly identified compounds
for seven time points from all individuals. Most of the lipids were
downregulated persistently during S. japonicum infection, while

some phospholipids were upregulated in medium-term infection
or late infection. However, several phospholipids were altered in
only early- and medium-term infection, with downregulation.
In addition, glucose and some organic acids were increased at 3
dpi but dropped to the uninfected levels after that. We picked
out five potential biomarkers related to the early diagnosis of
schistosomiasis (at 3 dpi) based on VIP value >5 and the value of
the area under the ROC curve (AUC) >0.9. Phosphatidylcholine
(PC) (22:6/18:0) and colfosceril palmitate in serum as well as
xanthurenic acid, naphthalenesulfonic acid, and pimelylcarnitine
in urine demonstrated promising diagnostic potential between
the uninfected group and the 3-dpi group, with an AUC value
of 0.9–1, while xanthurenic acid and naphthalenesulfonic acid
exhibited the most discriminatory power since the sensitivity
and the specificity were both 100% (Figure 9B). Therefore,
xanthurenic acid and naphthalenesulfonic acid may be the
most powerful targets for early diagnosis of schistosomiasis.
The abundance of xanthurenic acid, PC (22:6/18:0), and
colfosceril palmitate were significantly reduced at 3 dpi,
whereas naphthalenesulfonic acid and pimelylcarnitine levels
rose extremely at 3 dpi (Figure 9A).
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FIGURE 3 | A histogram with linear discriminant analysis scores showing

differentially abundant gut bacteria during the course of Schistosoma

japonicum infection. Taxa highlighted in different colors indicate

over-representation in the corresponding groups.

MSEA and Pathway Analysis
TheMSEA results indicated that two sets of identifiedmetabolites
extracted from serum (Figure 10A) and six sets of identified
metabolites in liver aqueous extracts (Figure 10C) were different
between the uninfected group and the infected groups; among
these, purine metabolism, caffeine metabolism, pyrimidine
metabolism, and galactose metabolism were significantly
enriched (p < 0.05). Moreover, the metabolites were grouped
based on the KEGG database by pathway analysis, while
purine metabolism (ko00230), sphingolipid metabolism
(ko00600), and glycerophospholipid metabolism (ko00564)
were significantly related to the process of schistosomiasis (p <

0.05) (Figures 10B,D). Among pathways of serum metabolites,
glycerophospholipid metabolism and purine metabolism showed
the impact factors of 0.18 and 0.04, respectively (Figure 10B),
while purine metabolism demonstrated the impact factor of 0.03
in pathways of liver aqueous metabolites (Figure 10D), which
indicated that these two pathways were disturbed mostly during
S. japonicum infection.

Relationships Between Host Metabolome
and Gut Microbiome
To investigate the functional correlation between the altered
metabolites from the colon and fecal flora alterations, correlation

analysis was conducted by calculating the Pearson’s correlation
coefficient. As shown in Figure 11, clear correlations between
altered metabolic profiles and gut microbiome were observed;
however, more metabolites were negatively correlated with fecal
flora, whereas two compounds exhibited significant positive
correlations with some bacterial groups (p < 0.05). Of
particular note is that LysoPC (20:1), which decreased in the
colon of S. japonicum-infected BALB/c mice, was positively
correlated with the reduction of Lachnospiraceae NK4A136
group and Roseburia. Additionally, cortolone, which increased
in the colon of S. japonicum-infected BALB/c mice, was
positively correlated with the elevation of Bacteroides as well
as Parabacteroides. In summary, S. japonicum infection induced
significant perturbation in both the gut microbiome and the
metabolomic profile of the host, which were interactive during
the process of schistosomiasis.

DISCUSSION

Parasitic infection can impact the gut microbiota composition of
the host, and the underlying mechanism is its effect on the host
immune system, which could break the balance between the gut
microbiome and the host that has already been established (40).
In this study, 16S rRNA sequencing was applied to demonstrate
the dynamic alteration in the gut microbiome of BALB/c mice in
response to S. japonicum infection and to identify bacteria that
are crucial in the complex host-parasite interplay. The result of
diversity analysis showed an overall reduction in alpha diversity
and a relative increase in beta diversity of host gut bacteria after
S. japonicum infection; beta diversity analysis also demonstrated
strong associations between the gut microbiota composition and
stage of infection, especially in the late stage, which was in
conformity with previous studies of S. japonicum and S. mansoni
(25, 41). As we have known, the schistosomula enter the venous
blood vessels and are transported to the lungs where they become
lung schistosomula at 3 dpi. At 7 dpi, the schistosomula enter the
arterial circulation and then migrate to the mesenteric veins of
the liver and become mature a week later. At 21 dpi, the worms
migrate to the mesenteric veins of the bowel, and gametes of
both the female and the male worms occur. Then, the female
worm produces immature eggs at 28 dpi. At 42 dpi, mature eggs
deposit in the liver of the host through the bloodstream or pass
through the intestinal wall and are excreted in the feces. Thus,
the gut microbiome community structures of the host are altered
variously by S. japonicum infection due to the varying parasitic
sites of the worm at different time points, and the gut microbiota
of each individual respond differently according to the degree of
homeostasis disruption. While the decrease in richness of the gut
microbiota is harmful to the healthy individual who is infected by
the parasite because the gut microbiome is crucial in providing a
protective environment (42), for the individual with autoimmune
diseases, such as Crohn’s disease, ulcerative colitis (UC), and
coeliac disease, parasites may actively contribute to reinstating
gut homeostasis with quantitative and qualitative modifications
of the gut microbiota, which can profoundly influence immune
cell development and function in the intestine (43–46).

Firmicutes, Bacteroidetes, Proteobacteria, and
Deferribacteres, which are common in the mouse (47), were also

Frontiers in Immunology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 569727

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hu et al. Gut Microbiome and Metabolite Profiling

FIGURE 4 | A cladogram showing the discriminated taxa in different groups. Regions with different colors represent different groups. Differently colored nodes in the

branches represent the microbial groups that play an important role in the corresponding groups, whereas yellow nodes indicate bacterial groups that are insignificant

in all groups.

the dominant gut bacterial phyla in both infected and uninfected
BALB/c mice, but no statistically significant differences were
observed during the infection. Similarly, previous research has
shown that Firmicutes decreased relatively and Bacteroidetes and

Proteobacteria increased relatively in response to S. japonicum
infection in C57BL/6 mice, whereas the same variations were
not found in BALB/c mice (25). These results illustrated
that the alteration in gut microbiome composition after S.
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FIGURE 5 | Significant relationships among the top 30 abundant bacterial genera were detected by Pearson correlation coefficient (p < 0.05). The nodes in the

interaction network represent the dominant genus, the connection between them shows an association between the two genera, and the red line indicates a positive

correlation, whereas the green line indicates a negative correlation. The size of a node is proportionally positive to the degree of the node, and the color of the node is

related to the clustering coefficient, that is, the color gradient from dark colors to bright colors corresponds to the value of the aggregation coefficient from low to high.

FIGURE 6 | Hierarchical clustering heat map constructed using annotated metagenomic data on the basis of the Kyoto Encyclopedia of Genes and Genomes

(KEGG). Samples are shown in columns, and KEGG pathways are shown in rows.

japonicum infection was closely related to the host itself. The
abundance of some prevalent genera, including Staphylococcus,
Parabacteroides, Alistipes, Roseburia, and Ruminococcaceae
UCG-014, was changed significantly during the infection. Both
Parabacteroides and Alistipes are members of Bacteroidetes and
were relatively abundant in response to infection, while members

of Firmicutes, Roseburia, and Ruminococcaceae UCG-014 were
decreased after the infection, which indicated that although no
significant differences were found at the phylum level, significant
differences were observed at the genus level, and the change
trend of different genera from the same phylum was consistent
in the course of the infection. Earlier studies have illustrated
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FIGURE 7 | Three-dimensional score plots of principal component analysis from healthy mice and infected mice at different time points. Each point represents an

individual. (A) Serum samples in positive electrospray ionization (ESI+) mode. (B) Urine samples in ESI+ mode. (C) Liver aqueous extracts in negative electrospray

ionization (ESI-) mode. (D) Serum samples in ESI- mode. (E) Urine samples in ESI- mode. (F) Colon aqueous extracts in ESI- mode.

that Alistipes can produce anti-inflammatory metabolites,
which would promote the differentiation of anti-inflammatory
Treg/Tr1 cells in the gut of mice, and Alistipes can also protect
mice suffering from the effects of dextran sulfate sodium (48, 49).
Hence, depletion of Alistipes was found in Salmonella-infected
mice, porcine epidemic diarrhea virus-infected piglets, and
chronic hepatitis B patients (50–52). Nevertheless, Alistipes was
reported to result in the increase of trimethylamine N-oxide
and the decrease of short-chain fatty acids (SCFA) production,
which led to the destruction of the intestinal barrier (51, 53). The
enhanced abundance of Alistipes during S. japonicum infection
may be caused by the stress reaction of the hosts. Furthermore,
as probiotic-type bacteria, which are able to prevent pathogen
infection, a reduction in the diversity and the abundance of
Parabacteroides was observed in mice infected with intestinal
helminth parasites in an earlier study (54), which was found at
only 7 dpi of S. japonicum; however, the increased abundance
of Parabacteroides after 7 dpi might be a consequence of stress
response because some bacteria belonging to Parabacteroides
were involved in the metabolism of amino acid. Consistently,
previous studies have suggested that Roseburia, one kind of
SCFA-producing bacteria that is essential for maintaining the
gut function of humans and animals (55), was significantly
decreased both in chronic kidney disease and in end-stage
renal disease patients (56, 57), so the intestinal homeostasis was

broken. Similarly, some members of Ruminococcaceae were
butyrate producers, and the abundance of Ruminococcaceae
UCG-014 reduced in a UC carcinogenesis model and even in
a hypertriglyceridemia-related acute necrotizing pancreatitis
model (58, 59). Interestingly, Staphylococcus, a classical non-
enteric pathogen, was also found in the gut microbiome and
increased in cystic fibrosis patients (60, 61), which was evident at
21 dpi of S. japonicum.

Using LEfSe, we noted that Alistipes (phylum Bacteroidetes)
showed great abundance at 7 dpi and that another member
from Bacteroidetes, Parabacteroides, was significantly associated
with 14 dpi of S. japonicum. Furthermore, LEfSe identified
a greater differential abundance of Staphylococcus (phylum
Firmicutes) at 21 dpi, before the female adults laid eggs, while
the greater differential abundance of Gammaproteobacteria
was highlighted by LEfSe at 28 dpi, after the female adults laid
eggs. Conversely, a significant over-representation of the class
Gammaproteobacteria (phylum Proteobacteria) was identified
in Clostridium difficile infection patients and children with acute
diarrhea (62, 63). However, since we did not study bacteria
with low abundance, we cannot draw a more precise conclusion
based on the results of LEfSe. Correlation analysis of the top
30 dominant genera in the course of S. japonicum infection
illustrated that most genera were positively related to each other,
which showed that the co-occurrence relation was general in
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FIGURE 8 | Three-dimensional score plots of partial least squares-discriminatory analysis from healthy mice and infected mice at different time points. Each point

represents an individual. (A) Serum samples in positive electrospray ionization (ESI+) mode. (B) Urine samples in ESI+ mode. (C) Liver aqueous extracts in negative

electrospray ionization (ESI-) mode. (D) Serum samples in ESI- mode. (E) Urine samples in ESI- mode. (F) Colon aqueous extracts in ESI- mode.

the gut microbiome for those who would work together even
though they may belong to different phyla. Regardless, co-
exclusion relationships were observed in Odoribacter (phylum
Bacteroidetes) and Lachnoclostridium (phylum Firmicutes)
as well as in Lachnospiraceae UCG-001 (phylum Firmicutes)
and Enterorhabdus (phylum Actinobacteria). Odoribacter
and Lachnospiraceae UCG-001 became more abundant,
while the others became relatively less abundant during S.
japonicum infection.

The results of the 16S rRNA gene-based analysis clarified the
dynamic changes in the host gut microbiome in response to
S. japonicum infection and the interactions between dominant
genera. Subsequently, metagenomics sequencing was performed
to search for altered pathways or functions at 0, 21, and 42 dpi
of S. japonicum, which might enable us to generate hypotheses
about the mechanisms underlying the infection. Consistent
with the alterations in the gut microbiota, the functional
metagenome was also changed significantly. In particular, the
only ko category significantly enriched among the microbiome of
BALB/c mice at 21 dpi was the biosynthesis of betalain, and the
involved gene was tyrosinase (K00505), a kind of oxidoreductase.
Betalain biosynthesis plays a crucial part in response to osmotic
adjustment and salt resistance, and betaine is vital to enhance
stress resistance (64), so the activation of betalain biosynthesis
was helpful to the gut microbiome to resist stress while S.
japonicum migrates to the mesenteric veins. Other particularly

notable signaling pathways associated with S. japonicum
infection at 42 dpi were the AMPK and the chemokine signaling
pathways. The former was activated by calcium/calmodulin-
dependent protein kinase exclusion β (CaMKK β, K07359), one
of the upstream kinases, which reflected the elevated AMP/ATP
ratio in response to the infection. Once activated, AMPK
would lead to a concomitant inhibition of energy-consuming
biosynthetic pathways, including the synthesis of glycogen and
cholesterol. Chemokines play an important role in protective
host response, and the upregulation of the chemokine signaling
pathway at 42 dpi showed that the gut microbiota was sensitive to
the infection and chemokine receptors were activated to produce
an inflammatory immune response. In summary, we hypothesize
that the gut microbiota in the host provide signals that resist the
parasites and enhance the immune response of the host. These
findings from the functional metagenome analysis offered a more
detailed view of specific microbiome-encoded functions that are
associated with S. japonicum infection and may facilitate further
studies on the interaction between specific genes.

To describe the metabolic profile of BALB/c mice after S.
japonicum infection, an untargeted UPLC–MS/MS-based high-
resolution metabolomics analysis was performed in the present
study. Both PCA and PLS-DA revealed differences between
uninfected and infected mice, and the differences increased over
time; however, more obvious variances were observed in body
fluids than in tissues, which indicated that body fluids were
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FIGURE 9 | Overview of selected representative metabolites from serum and

urine associated with schistosomiasis. (A) Box plots showing the abundance

of selected biomarkers. Each column represents a time point. (B) The receiver

operating characteristic curve for selected biomarkers. The x-axis represents

the specificity, while the y-axis represents the sensitivity.

affected more severely than cells during S. japonicum infection
and that is why more differential metabolites were obtained in
the former than in the latter. This result is expected because S.
japonicum does not parasitize the host cell.

In response to S. japonicum infection, the significantly
different metabolites were lipids, and the result is consistent

with the prior study on S. japonicum and T. brucei rhodesiense
(T. b. rhodesiense) (2, 16). Lipids are the major constituents
of membranes and are important in reserving energy; they are
also highly biologically active metabolites that are involved or
even play a part in signaling and a range of inflammatory
processes (65). As the major structural lipids that form cellular
membranes, phospholipids participate in the regulation of
nutrient transport as well as toxic host-cell effector molecules;
they are synthesized to support the growth of cells in the
course of infection, and phospholipid biosynthetic pathways are
the targets of drugs (66–68). Our results demonstrated that
most of the altered lipids belonged to glycerophospholipids,
which are structural components of biological membranes (69),
followed by sphingolipids and diacylglycerol. The majority of
glycerophospholipids were significantly reduced in response
to the infection, such as PC, phosphatidylethanolamine (PE),
phosphatidylserine, phosphatidylinositol, and LysoPC. However,
the concentration of some PCs was elevated in S. japonicum-
infected mice, which was different from the results in S.
haematobium-infected patients, where high levels of PC and PE
were found (70). It is believed that the abundance of PC and
PE in bladder endothelial cells may be one of the mechanisms
for inducing cancer in chronic urogenital schistosomiasis (70);
nevertheless, the different variations presented in PC after S.
japonicum infection remain unclear, and future studies should
address this question.

An endogenous phospholipid, LysoPC, which is derived from
PC, has various stimulating or modulating effects on immune
cells and possesses pro-inflammatory activities as well as anti-
inflammatory properties; a heightened level of LysoPC in the
plasma was considered as a marker for cell membrane injury
(71, 72). Besides that, LysoPC participates in the elimination of
dead eukaryotic and prokaryotic cells and controlling bacterial
growth during infection (72, 73). Earlier studies have proven
that LysoPC has direct antibacterial activities against methicillin-
resistant Staphylococcus aureus as well as the ability to enhance
neutrophil antimicrobial ability to remove ingested bacteria (74–
76); however, our results illustrated that LysoPC does not inhibit
all bacteria because LysoPC (20:1) was positively correlated with
Lachnospiraceae NK4A136 group and Roseburia, the genera that
are beneficial to the host during S. japonicum infection.

It cannot be ignored that some sphingomyelin (SM) species
were reduced after infection, while the concentration of ceramide
(Cer) was elevated, especially at the late stage of infection;
the variation trend of SM and Cer was also observed in T.
b. rhodesiense human African trypanosomiasis patients (16).
Sphingolipids not only are components of the membrane that
are able to protect the cell from harmful environmental factors
but also are involved in cellular signaling as a second messenger
(77, 78); the significant observations in sphingolipids (SM and
Cer) may offer the basis and foundation for revealing the
resistance mechanism between hosts and S. japonicum since
infection can trigger the generation of Cer, which is generated
in part by sphingomyelinase enzymes, leading to cell autophagy
and apoptosis, additional pro-inflammatory cytokines, and
chemokine synthesis, as well as other metabolic disorders (16, 79,
80). It is more interesting to note that the metagenomic analysis
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FIGURE 10 | Summary of metabolite set enrichment analysis (MSEA) and pathway analysis. (A) Summary plot for MSEA in serum is ranked according to Holm

p-value. (B) Pathway analysis of serum metabolites shows key nodes in metabolic pathways that have been significantly changed during an infection. The x-axis

represents increasing metabolic pathway impact from pathway topology analysis, whereas the y-axis represents unadjusted p-value by pathway enrichment analysis.

Greater pathway enrichment and higher pathway impact values are exhibited in larger sizes and darker colors, respectively. (C) Summary plot for MSEA in liver

aqueous extracts is ranked according to Holm p-value. (D) Pathway analysis of liver aqueous metabolite shows key nodes in metabolic pathways that have been

significantly changed during an infection. 1, glycerophospholipid metabolism; 2, purine metabolism.

revealed that the chemokine signaling pathway was upregulated
at 42 dpi, which suggests that inflammatory effects existed in gut
bacteria also; the host and the gut microbiota collaborate with
each other to eliminate the parasites.

Surprisingly, the levels of two kinds of carnitine species
(acetylcarnitine and oleoylcarnitine) were significantly lower
in infected mice than in uninfected mice, while another two
kinds of carnitine species (hydroxyisovaleroyl carnitine and
pimelylcarnitine) were increased at 3 dpi. Carnitine plays
a crucial role in fat metabolism and energy production in
mammals, and it can support the production of CD4+ and CD8+

T cells during infection (81, 82); a prior study has shown that the
levels of carnitine and several acylcarnitines were elevated in S.
japonicum-infectedMicrotus fortis (M. fortis) and C57BL/6 mice,

but the phenomenon was more obvious in M. fortis (21). Hence,
we suggest that host responses to S. japonicum infection vary and
that the protective reaction against S. japonicum is relatively less
strong in BALB/c mice.

Pathway analysis illuminated that both sphingolipid
metabolism and glycerophospholipid metabolism were altered in
the process of schistosomiasis, which is consistent with an earlier
study of S. haematobium (70). In fact, sphingolipids and their
derivatives have recently presented as promising drug targets for
controlling infectious and inflammatory disease; however, how
sphingolipid-mediated pathologies and how the host modifies
sphingolipid metabolism to benefit itself remain unclear, and
a better understanding of these mechanisms may provide new
insights into new therapeutic strategies (83).
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FIGURE 11 | Correlation plot showing the relationship between the altered metabolites from the colon and the top 15 abundant gut bacteria. The correlations

between them are exhibited by colors; blue indicates a positive correlation, red indicates a negative correlation, and a darker color illustrates a stronger correlation (*p

< 0.05, **p < 0.01, ***p < 0.001).

Nevertheless, because of the absence of age-matched
uninfected BALB/c mice in this study, the alterations of gut
microbiome and metabolites could be partially related to the age
effect rather than the progression of S. japonicum infection alone.

CONCLUSIONS

In the present study, we applied 16S rRNA gene sequencing
combined with a metagenomic sequencing approach and UPLC–
MS metabolic profiling to highlight three aspects of the
interrelationships between S. japonicum, the gut microbiome,
and metabolites. We demonstrated that both the gut microbiome
and the metabolites were significantly altered in S. japonicum-
infected BALB/c mice; moreover, they were also associated
with the time course of S. japonicum infection. In response
to S. japonicum infection, not only the richness and diversity
of gut microbiota were decreased but also the composition
of the microbiota which differed obviously from that present
during the uninfected status. In summary, the abundance of
some bacteria that could produce SCFA was decreased, while
those of some opportunistic pathogens that could raise the
risk of infections were increased. In addition, metagenomic

analysis revealed that the AMPK and chemokine signaling
pathways were significantly perturbed after infection. The
metabolic biomarkers that we identified in this study were
found in serum or urine, with little or no invasiveness, and
could distinguish S. japonicum infection from non-infection
at 3 dpi with high sensitivity and specificity. Additionally,
alterations in glycerophospholipid and purine metabolism were
discovered in S. japonicum infection. As a result, these findings
may provide a novel understanding of the mechanisms during
schistosomiasis development regarding aspects of the gut
microbiome and metabolites and facilitate the discovery of new
targets for early diagnosis and prognosis. Nevertheless, further
validations of potential biomarkers in human populations are
essential, and the exact mechanisms of interactions between
S. japonicum, the gut microbiome, and metabolites also await
future research.

DATA AVAILABILITY STATEMENT

The sequencing data of 16S rRNA gene and metagenome have
been deposited in the NCBI Sequence Read Archive under the
project number PRJNA602960 and PRJNA602878.

Frontiers in Immunology | www.frontiersin.org 16 October 2020 | Volume 11 | Article 569727

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hu et al. Gut Microbiome and Metabolite Profiling

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Care
and Use Committee of Sun Yat-sen University.

AUTHOR CONTRIBUTIONS

ZL conceived and designed the study. ZL, YH, and JC drafted
the manuscript. YH and JC carried out the experiments. YX,
HoZ, PH, YM, MG, SC, and HaZ participated in data analysis.
HaZ participated in study design, technological guidance, and
coordination. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by grants from the National Natural
Science Foundation of China (grant nos. 81572023 and
81371836), the Science and Technology Planning Project
of Guangdong Province (grant no. 2019B030316025), the
Natural Science Foundation of Guangdong Province (grant
no. 2019A1515011541), the National Key Research and
Development Program of China (grant nos. 2016YFC1202000
and 2016YFC1200500), the Project of Basic Platform
of National Science and Technology Resources of the
Ministry of Sciences and Technology of China (grant
no. TDRC-2017-22), the 111 Project (grant no. B12003),
the Undergraduates Innovation Training Program of
Guangdong Province (grant no. 201601084), and the
Teaching Reform Project of Guangdong Province (grant
no. 2017001).

ACKNOWLEDGMENTS

We would like to thank Mrs. Tingchan Liang for polishing
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.569727/full#supplementary-material

Supplementary Figure 1 | A flower plot showing unique and common

operational taxonomic units among all samples.

Supplementary Figure 2 | Rarefaction plots of 16S rRNA gene sequences

obtained from fecal samples across multiple time points based on alpha diversity

analyses. Lines represent the means, and the standard deviations are shown by

error bars. (A) Observed species. (B) Chao1. (C) Shannon–Wiener index. (D)

Phylogenetic diversity index.

Supplementary Figure 3 | Principal coordinate analysis (PCoA) plots showing

beta diversity differences on the basis of 16S rRNA gene sequencing during S.

japonicum infection. Figures were calculated using weighted UniFrac distance,

and each point represents an individual. (A) Two-dimensional PCoA plot. (B)

Three-dimensional PCoA plot.

Supplementary Figure 4 | Three-dimensional score plots of principal component

analysis from quality control and samples. (A) Serum samples in positive

electrospray ionization (ESI+) mode. (B) Urine samples in ESI+ mode. (C) Liver

aqueous extracts in negative electrospray ionization (ESI-) mode. (D) Serum

samples in ESI- mode. (E) Urine samples in ESI- mode. (F) Colon aqueous

extracts in ESI- model.

Supplementary Figure 5 | Base peak intensity chromatograms of serum

samples from different time points in ESI+ mode (A) and ESI- mode (B) as

analyzed by quadrupole-time-of-flight mass spectrometry with a full scan.

Supplementary Figure 6 | Base peak intensity chromatograms of urine samples

from different time points in ESI+ mode (A) and ESI- mode (B) as analyzed by

quadrupole-time-of-flight mass spectrometry with a full scan.

Supplementary Figure 7 | Base peak intensity chromatograms of liver aqueous

extracts from different time points in ESI- mode as analyzed by

quadrupole-time-of-flight mass spectrometry with a full scan.

Supplementary Figure 8 | Base peak intensity chromatograms of colon aqueous

extracts from different time points in ESI- mode as analyzed by

quadrupole-time-of-flight mass spectrometry with a full scan.

Supplementary Figure 9 | Orthogonal partial least squares-discriminatory

analysis (OPLS-DA) of serum extracts in ESI+ mode at different stages of

Schistosoma japonicum infection. Each point represents one sample in score

plots. OPLS-DA loadings S-plot combined with the covariance and the correlation

loading profile indicate the variable importance. Each point represents a variable.

Supplementary Figure 10 | Orthogonal partial least squares-discriminatory

analysis (OPLS-DA) from serum extracts in ESI- mode at different stages of

Schistosoma japonicum infection. Each point represents one sample in score

plots. OPLS-DA loadings S-plot combined with the covariance and the correlation

loading profile indicate the variable importance. Each point represents a variable.
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Supplementary Figure 12 | Orthogonal partial least squares-discriminatory

analysis (OPLS-DA) from urine extracts in ESI- mode at different stages of

Schistosoma japonicum infection. Each point represents one sample in score

plots. OPLS-DA loadings S-plot combined with the covariance and the correlation

loading profile indicate the variable importance. Each point represents a variable.
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