
Structural bioinformatics

ProQ2: estimation of model accuracy

implemented in Rosetta

Karolis Uziela1 and Björn Wallner2,3*

1Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm,

Sweden, 2Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University,
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Abstract

Motivation: Model quality assessment programs are used to predict the quality of modeled protein

structures. They can be divided into two groups depending on the information they are using: en-

semble methods using consensus of many alternative models and methods only using a single

model to do its prediction. The consensus methods excel in achieving high correlations between

prediction and true quality measures. However, they frequently fail to pick out the best possible

model, nor can they be used to generate and score new structures. Single-model methods on the

other hand do not have these inherent shortcomings and can be used both to sample new struc-

tures and to improve existing consensus methods.

Results: Here, we present an implementation of the ProQ2 program to estimate both local and glo-

bal model accuracy as part of the Rosetta modeling suite. The current implementation does not

only make it possible to run large batch runs locally, but it also opens up a whole new arena for

conformational sampling using machine learned scoring functions and to incorporate model accur-

acy estimation in to various existing modeling schemes. ProQ2 participated in CASP11 and results

from CASP11 are used to benchmark the current implementation. Based on results from CASP11

and CAMEO-QE, a continuous benchmark of quality estimation methods, it is clear that ProQ2 is

the single-model method that performs best in both local and global model accuracy.

Availability and implementation: https://github.com/bjornwallner/ProQ_scripts

Contact: bjornw@ifm.liu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein structure modeling represents a fundamental challenge in

structural bioinformatics and is crucial for a detailed understanding

of the biological function of molecules. It can be used to guide and

explain experiments, as well as for prediction of proteins whose

structure for the most part is unknown (�105k known structures vs.

50 000k known sequences). A common technique in structure mod-

eling is to generate many alternative models and then use a program

to estimate the model accuracy to select the best model.

Alternatively, the estimated accuracy can also be used to assess the

absolute quality of a single model, i.e. a measure that is related to

similarity to true native structure (Wallner and Elofsson, 2003; Z.

Wang et al., 2009).

ProQ2 (Ray et al., 2012) is a single-model method that estimates

model accuracy using a support vector machine (SVM) to predict

the quality of a protein model by combining structural and sequence

based features calculated from the model. The structural based fea-

tures are contacts between 13 different atom types, residue-residue

contacts grouping amino acids into six different groups (hydropho-

bic, positively charged, etc.) and surface accessibility using the same

residue groups. The sequence-based features are calculated from in-

formation predicted from sequence, i.e. secondary structure, surface
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accessibility and sequence profiles. For example, one such feature is

predicted secondary structure agreement with the actual secondary

structure in the model, and there is also a similar feature for pre-

dicted surface accessibility. To calculate all the features needed for a

prediction ProQ2, used many different external programs such as

PSI-BLAST (Altschul et al., 1997), PSIPRED (McGuffin et al., 2000)

ACCpro (Cheng et al., 2005), Naccess (Hubbard and Thornton,

1993), ProQres (Wallner and Elofsson, 2006), Stride (Frishman and

Argos, 1995) and SVM-light (Joachims, 2002). These dependencies

made it difficult to distribute the program, to run large batches and

to incorporate in novel modeling protocols.

Here, we remove the dependency on Naccess, ProQres, Stride

and SVM-light by incorporating ProQ2 as scoring function in the

Rosetta modeling suite. We also provide scripts to run the remaining

packages (see Availability), and to prepare input files to ProQ2,

making the setup as smooth as possible. If you for instance already

have a version of Rosetta installed the only step needed to use

ProQ2 is to download the scripts that will prepare the input files. A

further advantage of the new implementation is that it enables usage

of the modeling capabilities of Rosetta, and allows for easy integra-

tion with existing Rosetta protocol. Here, demonstrated by the

novel method ProQ2-refine, which uses the ability of Rosetta, to re-

build side-chains followed by selection based on ProQ2 score.

2 Methods

2.1 Implementation
ProQ2 (Ray et al., 2012) was implemented as scoring function in the

Rosetta modeling software (http:/www.rosettacommons.org).

ProQ2 uses two sets of features, one that is calculated from the

model sequence and one from the structural model. The sequence-

based features are calculated once for a given sequence and used as

input to Rosetta. The structural features, i.e. contacts, surface areas

and secondary structure, and the final prediction using linear SVM

weights are all calculated by Rosetta during scoring. There is still

some dependency on external programs to calculate the sequence-

based features predicted from sequence. For the structural-based fea-

tures we adapted an already existing implementation of DSSP

(Kabsch and Sander, 1983) and Naccess (Hubbard and Thornton,

1993) to assign secondary structure and calculate exposed residue

surface. The atom–atom and residue–residue contacts previously

calculated by ProQres (Wallner and Elofsson, 2006), were imple-

mented directly in Rosetta as well as the functionality to read and

predict SVM models. To account for implementation details, the

SVM weights, used previously by ProQ2, were retrained using the

original ProQ2 training set.

2.2 Data sets
Data from the Quality Assessment category in CASP11 was down-

loaded from the CASP11 website. Targets were split into EASY

and HARD based on the official CASP definitions as follows: targets

in Template Based Modeling (TBM) to EASY and targets in Free

Modeling (FM) into HARD, the borderline TBM-hard category

was put in EASY if the average model quality as measured by

GDT_TS (Zemla et al., 1999) was >40 otherwise in HARD (see

Supplementary Table S1). To be able to assess if any given selection is

better than random, GDT_TS scores for each model were converted

to Z-scores by subtracting the mean GDT_TS and divide by the

GDT_TS standard deviation over all models for each target. After fil-

tering cases where any method lacked predictions there were 89 tar-

gets, from 13 232 models containing 3 171 799 residues.

CAMEO-QE data for the period 2014.06.06–2015.05.30 was

obtained from the Protein Model Portal (Haas et al., 2013).

CAMEO is an ongoing community effort in which all newly solved

PDB structures are used as targets for structure prediction severs, as

in CASP there is also a quality estimation part, CAMEO-QE. All the

public methods, i.e. ModFOLD4 (McGuffin et al., 2013), ProQ2

(Ray et al., 2012), QMEAN (Benkert et al., 2008), Verify3D

(Eisenberg et al., 1997), Dfire (Yang and Zhou, 2008) and

Naı̈ve_PSIBLAST (Haas et al., 2013), that participate in CAMEO-

QE were used. After filtering cases where any method lacked predic-

tions there were 395 targets, from 2574 models containing 642 694

residues.

3 Results

The ProQ2 version implemented in Rosetta participated in CASP11

with two methods, ProQ2 and ProQ2-refine. ProQ2 is only using

the ProQ2 score, while ProQ2-refine does 10 side-chain repacks to

calculate the optimal ProQ2 score given the current backbone. This

has previously been shown to improve model selection by finding

good backbones with sub-optimal side-chain packing (Wallner,

2014).

Based on the official CASP11 assessment (Kryshtafovych et al.,

2015) and from Table 1 it is clear that both ProQ2 versions are

among the best if not the best single-model program to estimate glo-

bal model accuracy, with ProQ2-refine being slightly better overall

and on the easy targets, while VoroMQA and MULTICOM-

NOVEL (Cao et al., 2014) are better on the hard targets. It is

interesting that in terms of model selection the pure clustering meth-

ods are much worse than single-model methods. In particular for

hard targets where the Z-score for the pure clustering methods

Pcons and DAVIS-QAconsensus is almost random (RZhard¼3.9 and

RZhard¼6.5), compared to the much higher Z-score for the best sin-

gle-model methods (RZhard>40). For easy targets the clustering

Table 1. Model selection in CASP11

Method RZall RZeasy RZhard #

MULTICOM-CONSTRUCT1 100.5 59.2 41.3 89

Wallner2 99.6 59.5 40.1 89

ProQ2-refine 91.3 51.4 40.0 89

Pcons-net3 90.8 59.5 31.4 89

VoroMQA 89.6 43.1 46.4 89

MULTICOM-NOVEL1 89.1 45.2 43.9 89

ProQ2 86.2 50.7 35.6 89

MULTICOM-CLUSTER1 80.0 43.0 37.0 89

RFMQA4 74.8 37.9 36.9 88

myprotein-me 73.3 40.3 33.0 88

nns4 63.1 45.4 17.6 89

ModFOLDclust25 62.1 52.3 9.8 89

MUFOLD-Server6 60.7 55.4 5.2 89

Wang_SVM 60.1 27.7 32.4 89

Pcons* 58.6 52.2 6.5 89

DAVIS-QAconsensus7 54.7 50.8 3.9 89

The summed Z-score for the first ranked model selected by each method,

for all, easy and hard targets. Single-model methods in bold, pure clustering

in italics, and the others are using a combination of single-model and

clustering.

*This method was added after CASP as a reference. Refs: 1(Cao et al.,

2014), 2(Wallner and Elofsson, 2005), 3(Wallner et al., 2007), 4(Manavalan

et al., 2014), 5(McGuffin and Roche, 2010), 6(Q. Wang et al., 2011),
7(Kryshtafovych et al., 2015).
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methods still have an advantage over single-model method, but over-

all the only methods that are better than the best single-model meth-

ods are methods that combine the best single-model methods with

clustering. MULTICOM-CONSTRUCT is using the MULTICOM

single-model methods and Wallner is using ProQ2 together with

Pcons, the latter improved the RZall from 58.6 to 99.6. This clearly

shows that single-model methods are very useful in model selection

in particular in combination with clustering methods.

The global quality prediction in ProQ2 is actually based on

the predicted local error. The local error estimates from ProQ2

was recently combined with Phaser to enable molecular replace-

ment for more targets and using poorer models (Bunk�oczi et al.,

2015), clearly demonstrating the added value of local model

error prediction for solving crystal structure by molecular

replacement. The local model prediction accuracy for the

CASP11 targets was assessed using ROC curves with a 3.8 Å cut-

off for correct residues (Fig. 1A). Here, ProQ2 is clearly much

better than all other single-model methods identifying 30% more

correct residues compared to the second best, Wang_deep_3,

at 10% FPR, and over twice as many for the methods that

performed equally well or in some cases even better than ProQ2

in model selection. There is a similar trend for the CAMEO

data (Fig. 1B), but the margins up to the reference consensus

method ModFOLD4 (McGuffin et al., 2013) and best other sin-

gle-model method, Qmean_7.11 (Benkert et al., 2008) are

smaller. For both CASP11 and CAMEO data there are no notice-

able difference between ProQ2 and ProQ2_refine on the local

level.

To conclude, there is still a performance gap between the single-

model methods and the consensus methods overall. However, the

single-model methods are clearly much better in global model selec-

tion on hard targets and they are also useful in combination with

consensus methods, demonstrated by the performance of the

Wallner method, which combines Pcons and ProQ2. Finally, among

the methods benchmarked in CASP11 and CAMEO, ProQ2 is cur-

rently the single-model method that performs best in both global

and local model accuracy prediction.

Conflict of Interest: none declared.
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