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Abstract

Multiplex networks describe a large number of complex social, biological and transportation

networks where a set of nodes is connected by links of different nature and connotation.

Here we uncover the rich community structure of multiplex networks by associating a com-

munity to each multilink where the multilinks characterize the connections existing between

any two nodes of the multiplex network. Our community detection method reveals the rich

interplay between the mesoscale structure of the multiplex networks and their multiplexity.

For instance some nodes can belong to many layers and few communities while others can

belong to few layers but many communities. Moreover the multilink communities can be

formed by a different number of relevant layers. These results point out that mesoscopically

there can be large differences in the compressibility of multiplex networks.

Introduction

The current Big Data explosion requires the development of new algorithms and theoretical

methods to extract information from large datasets. Often in this context, it is advantageous to

combine information coming from different sources and to represent the data by a multiplex

network [1–5]. A multiplex network is formed by a set of nodes connected in different layers

by links indicating interactions of different types. Multiplex networks are ubiquitous spanning

from complex infrastructure networks [4, 6, 7], to social [8–11] biological [8, 12] and transpor-

tation networks [13, 14]. For instance, individuals can be related by different type of social ties,

neurons can interact through chemical synapses and electrical gap junctions, and two locations

can be connected by different means of transportation.

A multiplex network tends to have a richer structure than single networks and this richness

is reflected in its communities [9, 10, 15–17]. The communities of a multiplex network cannot

be obtained by considering its layers individually. Some communities might exist only in one

layer, other communities can overlap on many layers and finally there are communities that

only exist when considering the whole structure of the multiplex network. Several algorithms

[9, 18–22] have been recently proposed to detect multilayer communities. These include meth-

ods based on multilayer modularity optimization [9, 20], diffusion properties on multilayer

networks [18, 21] and consensus clustering [22]. All these techniques are node-based
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community detection methods where each node or each replica-node (realization of a node in

a given layer) is classified in one community. Interestingly in the framework of single-layer

community detection [23, 24] it has been observed that link-based community detection

methods [25, 26] can be very fruitful to describe the mesoscale organization of networks when

nodes belong to several communities at the same time [27]. The need to extend the link com-

munities to multiplex network is rather pressing. For instance if we consider individuals inter-

acting through different on-line social network platforms, say Twitter and Facebook, it might

be misleading to think that an individual or an account (a Twitter or Facebook account) might

belong just to a single community. In fact, influential Twitter of Facebook accounts tend to

reach more than one community of the same online platform.

In simple networks any two nodes can be either connected or not connected by a link, in

multiplex network any two nodes can be connected in multiple ways. We say that two nodes

are connected via a multilink [3, 11], where the multilink describes the pattern of connections

between two nodes. In this work we propose a multilink community detection method for

multiplex networks which extends link communities to the multiplex network framework.

Our community detection method is based on the similarity of incident multilinks. In order to

reduce unnecessary layer-information, the similarity between two multilinks is measured by

comparing the local structure of the multiplex against a local, maximum entropy null model.

To avoid introducing bias via the null model, the null model describes our state of knowledge

of the multiplex in a way that is maximally noncommittal to the layered structure.

Here we show that using the proposed multilink community detection method not only we

are able to extract relevant information on the mesoscale structure of multiplex networks, but

also we can contribute to the scientific debate about the compressibility of the multiplex net-

work structures. Recent research on multiplex networks questions whether it is opportune to

aggregate or disaggregate their layers. Aggregation of layers could be useful for removing

redundant information. De Domenico et al. [28], have shown that for the vast majority of mul-

tiplex networks there is trade-off between the information content and the minimization of

their total number of layers. The case of disaggregating a single network to a multi-layer net-

work has been considered by Vales-Catala et al. in Ref. [29]. According to their results some

single networks are better represented as multiplex networks because they are effectively the

result of a blind multiplex network aggregation procedure. Finally, Peixoto [30], using a statis-

tical inference approach, has revealed that there is no clear answer, the benefits of the aggrega-

tion or disaggregation of the layers are dependent on the system under study.

Here we show that actually the optimal answer to the question whether it is more appropri-

ate to aggregate or disaggregate a general multiplex network might not be global but meso-

scale. Our analysis of social, biological and transportation networks reveals that in multiplex

networks there is a very rich interplay between their mesoscale organization and their multi-

plexity. Multilinks communities can include connections of only one layer or of multiple lay-

ers. Additionally we observe that not always the layer activity (in how many layers a node is

connected) correlates with the community activity (in how many communities a node can be

found). For example there can be nodes that are connected in many layers (high layer activity)

but belong only to few multilink communities (low community activity) and nodes belonging

to few layers (low layer activity) but belonging to many multilink communities (high commu-

nity activity). The first possibility suggests that mesoscopically the network could be com-

pressed while the second possibility suggests that mesoscopically the network could be

expanded into many layers making a case for a definition of a mesoscale compressibility of the

multiplex network.

Multilink communities of multiplex networks
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Materials and methods

Multiplex network

Let us consider a multiplex network formed by N nodes and M layers α = 1, 2, . . ., M. The mul-

tiplex network is the set of M networks ~G ¼ ðG½1�;G½2�; . . . ;G½a�; . . . ;G½M�Þ where each network

G[α] = (V, E[α]) is formed by the same set of N nodes V = {i; i = 1, 2, . . ., N} and by the set of

links E[α] which describe the connections in layer α. We assume that all these networks are

undirected and we represent each layer α = 1, 2, . . ., M by the adjacency matrix a½a�. The whole

multiplex network can be expressed via its multilinks [3, 11]. Every pair of nodes (i, j) is con-

nected by a multilink

~mij ¼ ðm
½1�

ij ;m
½2�

ij ; . . . ;m½a�ij . . .m½M�ij Þ; ð1Þ

with m½a�ij ¼ a½a�ij indicating in which layers of the multiplex network the two nodes are con-

nected. The vector ~mij specify what we call the multilink composition, i.e. in which layers node i
and node j are connected. Whenever node i and node j are connected at least in one layer, i.e.

~m 6¼~0; we say that they are connected by a non-trivial multilink. To decide if a non-trivial

multilink exist, it is convenient to construct the aggregated network Ĝ formed by the N nodes

of the multiplex. The adjacency matrix A of the aggregated network Ĝ has elements

Aij ¼ y
XM

a¼1

a½a�ij

 !

; ð2Þ

where θ(x) is the step function θ(x) = 1 if x> 0 and θ(x) = 0 if x� 0. We indicate with

L = ∑i < j Aij the total number of links of the aggregated network, or equivalently the number

of non-trivial multilinks.

In a multiplex network the nodes might not be connected in each layer. The number of lay-

ers in which a node is connected (or active) is called the node activity [8, 31] and reveals rele-

vant coarse grained information about the node.

Multilink similarity

In the context of single networks several community detection methods use hierarchical clus-

tering applied either to a similarity matrix between nodes [32] or between links [25, 26]. Here

we construct a hierarchical clustering of multiplex networks based on a measure of similarity

between incident multilinks. By defining the similarity between multilinks here we generalize

the link communities previously defined for single layers [25, 26] to multiplex networks.

In a similar spirit to the use of the modularity function for detecting node communities

[33], the similarity between incident multilinks is evaluated by comparing simultaneously the

cohesiveness and the multiplexity of their neighborhood to a maximum entropy null model.

To every pair of multilinks connecting nodes i and k and nodes j and s we assign the simi-

larity Sik,js. The similarity Sik,js is non-zero only between incident multilinks (i.e. for s = k) and

is a function of two parameters: � and z. The parameter � 2 (0, 1) can be tuned depending on

the role that we want to assign to the composition of the two incident multilinks with respect

to their local neighborhood. The additional parameter z 2 (0, 1) evaluates the role of multi-

plexity and represent the cost we want to attribute to incident multilinks of different

composition.

Specifically the non-zero similarities Sik,jk are given by

Sik;jk ¼ �sijk þ ð1 � �Þsijnk: ð3Þ

Multilink communities of multiplex networks
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where σijk evaluates the contribution of the two incident multilinks while σij\k, evaluates instead

the contribution due to the existence of other multilinks, joining node i and node j directly or

by paths of length two excluding node k. The parameter � 2 (0, 1) tunes the relative importance

between these two contributions.

The term σijk is expressed as

sijk ¼ zbik;jk ; ð4Þ

with

bij;rs ¼ 1 �

PM
a¼1

m½a�ij m½a�rs
M

: ð5Þ

The smaller is z the larger is the “penalty” imposed to the similarity Sik,jk between non-zero

incident multilinks if node i and node j are connected in layers different from the one connect-

ing node j and k. Therefore z tunes the layer dependance of the multilink communities. A

large value of z favors communities existing only in one layer or overlapping in different layers,

while a smaller value of z allows for multilink communities of multilinks with different compo-

sition. If the multilinks connecting nodes (i, k) and (j, k) have not even a link in a common

layer then βik,jk = 1 and zbik;jk ¼ z, indicating the maximum cost attributed to multiplexity. If,

on the contrary the two multilinks have the same layer composition, that is m½a�ij ¼ m½a�jk ¼ 1 for

all α, then βik,jk = 0 and zbik;jk ¼ 1 indicating that we attribute no cost penalty to this

configuration.

The term σij\k includes contributions from paths of length one (Mij) and two (M̂ijr)

between node i and node j that pass through node r with r 6¼ k, i.e.

sijnk ¼
1

m
Mij þ

X

r 6¼k

M̂ijr

" #

; ð6Þ

where μ is a normalization constant with μ = max(1, ν) with

n ¼ min
X

r 6¼k

Air;
X

r 6¼k

Ajr

 !

: ð7Þ

Similarly to the modularity measure [33], term Mij evaluates the significance of the

observed multilink ~mij against its expectation and, M̂ijr evaluates the significance of two non-

trivial multilinks ~mir; ~mjr connecting respectively node i and node j to a common node r 6¼ k
against their expectations. These terms are

Mij ¼ ðAij � p~mij
ij Þzbij;ijdðAij; 1Þ ð8Þ

and

M̂ijr ¼ ðAirAjr � p~mir
ir p~mjr

jr Þzbir;jrdðAirAjr; 1Þ; ð9Þ

where βij,rs is given by Eq (5), and δ(x, y) is the Kronecker delta (i.e. δ(x, y) = 1 for x = y and

δ(x, y) = 0 otherwise). The term zbij;rs puts a cost to the paths that are created using different lay-

ers. The expectation of multilink ~mrs is given by the probability p~mrs
rs , which is evaluated using

maximum entropy ensembles preserving the degree of node i and node j in each layer α, and

the multilinks ~mik; ~mjk (see S1 Appendix for further details).

Multilink communities of multiplex networks
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Summing up, the parameter � can be used to tune the contribution to the similarity Sij,jk
coming from the composition of the two incident multilinks and the contribution coming

from the local clustering of the multiplex network in proximity of the wedge ijk. In particular

the smaller is � the larger is the contribution due to the local clustering of the multiplex

network.

From numerical experimentation, we observed that the time to evaluate the similarity

matrix Sik,jk using our MATLAB code grows as N3 for multiplex networks with the same num-

ber of layers and increases linearly with the number of layers M making our method suitable

for small to medium size networks (see S1 Fig).

Multilink communities

From the L × L similarity matrix Sik,js, we construct a dendrogram via single linkage hierarchi-

cal clustering. The dendrogram contains information about the multiplex structure which can-

not be obtained from the aggregated network. Finally the multilink communities are

determined by cutting the dendrogram at a height that correspond to an optimal value of a

appropriate score function.

To obtain the multilink communities we desire to use a score function that does not use

any a priori assumptions about the multilink composition. To this end we have considered a

score function used on single-layer link-community detection methods, i.e. the link modular-

ity Q [26] (see S1 Appendix for its definition). An alternative choice could be to choose the

partition density D used in [25]. The optimal partition is defined by the maximum value of Q
obtained when considering all the heights in the dendrogram (see S4 Fig for typical profiles of

this link modularity on real datasets).

Once every multilink is associated to a given multilink community we can assign to each

node a community activity given by the number of communities to which its incident multi-

links belong.

Results and discussion

A simple example

The community activity of a node resulting from the multilink community detection method

is independent on its layer activity. To illustrate this property we consider the multilayer net-

work shown in Fig 1A decomposed in three multilink communities Fig 1C) detected using the

parameters � = 0.4 and z = 0.6. Node d is active in a single layer but belongs to two multilink

communities. On the contrary node g is active in two layers but belongs to just one

community.

Additionally the communities can be formed by interactions existing only in one layer or in

multiple layers. For instance the community formed by the nodes {e, d, f} of the multiplex net-

work shown in Fig 1A, only exist due to the combination of different layers in the multiplex.

On the contrary the community formed by the nodes {a, b, c, d} include only links of a single

layer.

The dendrogram in Fig 1B shows the hierarchical structure of the link communities of the

multiplex network in Fig 1A and reveals the multilayer nature of the network also in the case

of this very symmetrical and clustered topology. In fact, the left and right communities of

Fig 1C, although they play the same role in the aggregated network, have a different decompo-

sition into multilink sub-communities. There are two factors that contribute to this difference.

The right community has a multilink formed by two layers (multilink 14) which are no present

in the other community. The second factor is more subtle and it would generate differences in

Multilink communities of multiplex networks
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the hierarchical structure even if the community on the right included only links existing in a

single layer (see S1 Appendix and S2 Fig for details).

Florentine families

The Florentine Families Multiplex Network [34] consist of M = 2 two layers, one layer

describes the business dealings between N = 16 florentine families in the XV century, the other

layer their alliances due to marriages. Fig 2A shows these relationships between the families.

Fig 2B shows the dendrogram describing the multilink communities for � = 0.5, z = 0.6 (see S3

Fig for the dependence of the number of clusters on � and z).

Fig 1. A two layer multiplex and its partition into multilink communities. (A) A simple two layer multiplex

networks where the links in blue correspond to one layer and the dark pink ones to another layer. (B) Dendrogram of

the multiplex network obtained from the multilink similarity. The dashed red line shows the maximum link

modularity used to define the link communities. (C) Panel C shows the partition of the multiplex network into three

communities revealing that communities can be formed by a single (community {a, b, c, d}) or multiple layers

(community {d, e, f}) and that the nodes communities are independent on the node activity (node d belongs to two

community and is active in one layer, node g is belongs to one community and is active in one layer). The colors of the

dendrogram branches in panel B and of the color of the multilinks of the multiplex network in panel C indicate the

different multilink communities. The multilink communities were detected using � = 0.4, z = 0.6.

https://doi.org/10.1371/journal.pone.0193821.g001

Multilink communities of multiplex networks
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The two detected single multilink communities correspond to two different scenarios

(Fig 2C). The multilink between the Strozzi and the Ridolfi family establish an interaction

between two families which have connections between different clusters; the multilink between

the Acciaiuoli and the Medici family is a leaf of the multiplex network, being the only multilink

connecting the Acciaiuoli family to the rest of the multiplex network.

For each family we compare their layer activity and their community activity (Fig 2D). We

observe that families with high community activity are powerful brokers between different

communities. Most relevantly, the Medici play a pivotal role as they are brokers between three

different communities. The Barbadori and the Guadagni family have the same community

activity as the Ridolfi and the Strozzi family but while the first two are connected in both layers

the latter two are connected to the other families exclusively in one layer (the marriage

alliances).

Multiplex connectome of C. elegans

The Multiplex Connectome of C. elegans [35, 36] has two layers M = 2, the chemical synapses

and the gap junctions describing the interactions between N = 279 neurons. As an example, we

obtained the multilink communities for � = 0.4 and z = 0.6. The multiplex has 845 multilink

communities of which 652 (about 77%) are made of single multilinks. The distribution of the

sizes of the communities is broad. (Fig 3A). The largest community is formed by 878 multi-

links followed communities including 67 links and 51 links. Although there is a large domi-

nant community in the multiplex network, the internal structure of this community can be

investigated via the dendrogram. We noticed that the ADAL and ADAR are the neurons that

cluster first with some of their neighboring neurons (Fig 3B) for all values of z.

This multiplex network has neurons which have large community activity (Fig 3C). By

ranking the neurons according to their community activity we find in the first two positions

the RIBR and RIBL neurons, which are head interneurons connected via gap junctions to mul-

tiple other neuron classes, suggesting that these neurons play a role in brokering between dif-

ferent communities (Fig 3D).

European multiplex air transport network

The European Multiplex Air Transport Network [14] comprises of N = 417 European airports

and M = 37 layers corresponding to the airlines that have flight connections between these air-

ports. The total number of multilink describing these connections is 2953. For the case that � =

0.4 and z = 0.6, our algorithm obtains 1790 multilink communities. The largest community

includes 723 nodes, about 24% of the total number of multilinks. The smallest communities

are made of single multilinks and there are 1696 of them, about 57% of the multilinks.

We observe that the main communities have very different composition in term of single

layers. Fig 4A and 4B shows the two largest communities. All the airlines (layers) contribute to

the structure of the largest community (Fig 4A). The second largest community has a very dif-

ferent structure, only few airlines contribute to this community.

Fig 2. Multinlink communities for the florentine families. (A) The Florentine Families Multiplex Network

describing the business and marriage alliances of the XV century florentine families. (B) Heat map displaying the

multilink similarity matrix and its relative dendrogram. (C) Partition of the Florentine Families multiplex network into

five multilink communities. (D) Layer and community activity of the different families. The Medici family is

characterized by achieving the maximum of the community activity. The multilink communities are detected using � =

0.4, z = 0.6.

https://doi.org/10.1371/journal.pone.0193821.g002
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When comparing the airports and their community activity, we observe (Fig 4C) that while

large layer activity, an airport serving multiple airline companies, seems to be correlated to

high community activity, there is a significant variability in the community of airports that are

active in many layers. For example Vienna (VIE) and Amsterdam (AMS) have a comparable

layer activity but very different community activity. Similarly there are airports with small

layer activity but significant community activity, for example Luton (LTN) and Bergamo

(BGY) airports. This indicates that the airports might adopt different strategies to broker

between different communities. These strategies might involve serving flights of many airline

companies or serving flights of relatively fewer airline companies.

The parameter � and z can be tuned to change the number of multilinks communities with

larger values of z penalizing communities where multilinks have different composition ~m,

while larger values of � allows to weight more the contribution to the multilink similarity com-

ing from the local neighborhood of the wedge ikj. The dependence of the number of commu-

nities with the parameters z and � for the three data sets is investigated in the Supporting

Information (S1 Appendix). Our choice of the parameters � = 0.4 and z = 0.6 is dictated by the

desire of having multilink communities that might span several layers (excluding very large

values of z) extracted from a similarity matrix significantly affected by the local neighborood

of the wedges (excluding very low values of �). Additionally these parameter values for the

Fig 3. Properties of the multilink commuities of the C. elegans. (A) Distribution of the communities sizes for the

Multiplex Connectome of C. elegans. (B) The two most similar sub-communities contained in the largest multilink

community. (C) Neurons ranked in decreasing order of their community activity. (D) Layer and community activity

for the top ranked neurons. (the contribution of communities with single multilinks is in pink while the contributions

of communities with more than one multilink is in blue). The multilink communities are detected using � = 0.4,

z = 0.6.

https://doi.org/10.1371/journal.pone.0193821.g003
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analysed real datasets lead to score function profiles with a well defined maximum (see S3 and

S4 Figs).

However we point out that � and z remain tunable parameters that can be chosen accord-

ingly to the dataset and the scientific problem under study as it is done for instance with the

resolution parameter in modularity optimization algorithms.

Composition of the multilink communities

To investigate whether the communities are formed exclusively by links of a single layer or

include links of several layers we introduce the layer specificity x½a�c which is the fraction of mul-

tilinks in a community c which include a link in layer α. Therefore x½a�c ¼ 1 indicates that all

the multilinks of a community include a link in layer α, while x½a�c ¼ 0 indicates that the com-

munity does not include any link in layer α. Note that since a single multilink can include

links of different layers, the sum of the layer specificity x½a�c for community c in general do not

add to one.

In the Multiplex Connectome of C. elegans we observe that many communities are exclu-

sively formed by one type of multilink, however, the three largest communities have a multi-

plex nature as they include different types of multilinks (see Fig 5A where the larger

communities are indicated by the labels 1, 2, 3 in order of decreasing size).

Fig 4. Community activity vs layer activity for the EU Airports multiplex. (A) Largest link community of the

European Multiplex Air Transportation Network. Lufthansa’s flights are shown in blue, the other airlines in pink. (B)

Second largest link community. Ryanair’s flights are shown in blue, the other airlines in pink. (C) Community vs. layer

activity of the EU airports. While the layer activity appears to have a positive correlation with the communities activity,

there are large differences in the communities activity between airports with large layer activity (compare for instance

Amsterdam (AMS) and Vienna (VIE)). The multilink communities are detected using � = 0.4, z = 0.6.

https://doi.org/10.1371/journal.pone.0193821.g004
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In the European Multiplex Air Transportation Network, the largest community, apart from

Flybe, contains flights from all other airlines (Fig 5B). The largest contribution comes from

Lufthansa with an specificity of 0.10 followed by Turkish Airlines with 0.07 specificity. The sec-

ond largest community has a different structure, in this case only seven airlines contribute to

the community, the largest contribution is from Ryanair with a specificity of 0.60. In this mul-

tiplex, low-cost airlines like Ryanair, Easyjet and Wideroe have high specificity (often equal to

1) in many communities. However these airlines rarely have high specificity in the same

Fig 5. Specificity of the C. elegans and the EU Airlines. (A) Specificity for the communities in the Multiplex

Connectome of C. elegans. (B) Specificity for the first and second largest communities for the European Air

Transportation Network. Both panels indicate a large variability in the layer composition of different communities.

The multilink communities are detected using � = 0.4, z = 0.6.

https://doi.org/10.1371/journal.pone.0193821.g005

Multilink communities of multiplex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0193821 March 20, 2018 11 / 15

https://doi.org/10.1371/journal.pone.0193821.g005
https://doi.org/10.1371/journal.pone.0193821


community. This is a consequence of the competition between low-cost airline companies as

they tend to differentiate each other by having unique flights to some destinations.

Conclusion

Our method reveal the richness of multiplex networks at their mesoscale structure. This is

achieved by associating to each pair of incident multilinks a similarity measure based on the

comparison of the local connectivity of two multilinks against a null model. Our intrinsically

multiplex community detection method allow us to associate to each node multiple communi-

ties independently on its layer activity. Specifically we can have nodes active exclusively in one

layer and belonging to multiple communities or active in many layers but belonging only to

few communities. The proposed method is here applied to several real datasets revealing that

the mesoscale structure of a multiplex can be organized via communities containing links in

many different layers and, at the same time, communities having one predominant layer. This

suggests that the mesoscale organization of multiplex networks has a rich mesoscale structure

that is not captured by methods that aim at compressing the information on few single layers.
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