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Many cancers show a striking increase in incidence

with age, and age is the biggest single risk factor for

many cancers. Moreover, pro-longevity interventions

that extend lifespan also tend to suppress the incidence

of cancer, underscoring the tight relationship between

aging and cancer [1]. However, the molecular basis of

this relationship, and why the incidence of cancer

increases with age, is poorly understood.

1. Cancer in the elderly is not simply
a reflection of the time taken to
accumulate oncogenic mutations

Genetic mutations are critical drivers of most cancers

[2]. Oncogenic mutations accumulate with age in many

tissues, including blood [3–6], brain [7], skin [8], esoph-

agus [9,10], colon [11], and liver [12,13]. Presaging

these recent discoveries, Doll and Armitage [14], as

well as Nordling [15], originally proposed that the age

dependence of cancer can be explained by the time

taken to accumulate multiple discrete events required

for onset of disease. Specifically, in their seminal anal-

ysis of the age dependence of cancer, Doll and Armi-

tage stated that “The data can be said to accord with

the theory that 6 or 7 successive changes in the cell are

necessary before cancer appears as a clinical entity”.

Subsequently, there has been a tendency to assume

that the age dependence of cancer results from the

time taken to accumulate the requisite genetic alter-

ations, in the appropriate cells. However, significantly,

Doll and Armitage did not assume that the “successive

changes” are necessarily genetic alterations [14].

Indeed, several lines of evidence argue against the idea

that time taken to accumulate genetic mutations is the

sole reason for age dependence of cancer.

At first glance, the so-called “Vogelgram” proposed

by Vogelstein and coworkers [16] supports the notion

that the time taken to accumulate oncogenic mutations

underpins the age dependence of cancer. This paradig-

matic model schematizes the initiation and progression

of colorectal cancer (CRC) through an idealized histo-

logical sequence linked to acquisition of recurrent

genetic alterations. Although this model was transfor-

mative for conceptualizing the origins and progression

of CRC and then other cancers, the Vogelgram is pri-

marily a model of histological progression, not time-

dependent progression. Indeed, it has been estimated

by Vogelstein and coworkers that the entire progres-

sion from normal intestinal epithelium to CRC takes

approximately 28 years [17]. CRC has an average age

of diagnosis at 68 or 72 years (men and women,

respectively; www.cancer.org), so the Vogelgram does

not adequately explain the age dependence of CRC.

More recent models have proposed a punctuated

model of cancer evolution, whereby one or a few

genetic catastrophes, encompassing many simultaneous

events, are key in genetic evolution of cancer [18–20].
These models also do not explain why genetic catastro-

phe should be a relatively late-life event.

Furthermore, contrary to the seeming inevitability

of genetic and histological progression conveyed by

the Vogelgram, more recent sequencing studies, for

example, of benign human nevi, normal human skin,

and endometrium, have revealed that oncogenic alter-

ations are surprisingly well tolerated by normal adult

human tissues [8,21,22]; why these events are seemingly

less well tolerated in aged tissues, leading to cancer, is

not known.

Contrary to the view of stochastic clonal expansion of

tumor cells in a sea of otherwise normal cells, some stud-

ies in mice suggest that old tissues are inherently at risk

of cancer, compared to young tissues. Non-alcoholic

fatty liver disease (NAFLD) is a chronic liver disease

that encompasses a progressive range of disorders of

increasing severity and risk of hepatocellular carcinoma,

from benign fatty liver (steatosis) to inflammatory non-

alcoholic steatohepatitis, fibrosis, and cirrhosis [23–25].
Old mice are more prone to high-fat diet-induced steato-

hepatitis than young mice [26–29]. Old mice also show

more fibrosis after chemical injury by CCl4 [30] and are

more susceptible to alcohol-induced liver injury, inflam-

mation, oxidative stress, and fibrosis than young mice

[31]. The aged liver promotes the clonogenic growth of

transplanted normal or pre-neoplastic hepatocytes
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[32,33]. Together these results suggest that aged hepato-

cytes and/or the aged microenvironment are inherently

pre-disposed to tumorigenesis.

Finally, many lifestyle and environmental risk fac-

tors for cancer, such as obesity and lack of exercise,

are currently not readily explained by genetic progres-

sion models [34]. Conversely, whether pro-longevity

interventions that characteristically also suppress can-

cer, for example, calorie restriction, intermittent fast-

ing, drugs such as metformin and rapamycin, along

with genetic deficiency of the growth hormone and

insulin-like growth factor pathways, act primarily by

reinforcing genetic integrity is not known [35].

2. Other potential causes of
age-associated cancer

Tomasetti and Vogelstein recently proposed that muta-

tions acquired through random errors during normal

DNA replication play a major role in origin of cancer,

together with other events triggered by environmental

and lifestyle factors and heredity [36,37]. They also pro-

posed that replication errors can explain the extreme

variation in cancer incidence across different tissues,

because the lifetime number of stem cell divisions, that

is, rounds of DNA replication, correlates with the life-

time risk of cancer in that tissue. However, these studies

did not themselves address whether the oncogenic conse-

quence of stem cell divisions is genetic (i.e., DNA muta-

tions) or non-genetic (e.g., epigenetic, inflammation,

metabolic changes or alterations to the stem cell niche).

Interestingly, most other common diseases of aging,

Alzheimer’s, cardiovascular disease, type II diabetes,

etc., are not documented to be caused by somatically

acquired genetic alterations [38]; instead, protein mis-

folding, metabolic changes, and other non-genetic

defects tend to take center stage in these diseases. And,

while cancer differs from these other diseases in impor-

tant respects (i.e., clonal expansion), it is reasonable to

propose that some shared molecular processes underlie

cancer and other diseases of aging [1].

Candidate drivers of cancer linked to aging include

the “hallmarks of aging” [35,38], known to be dysregu-

lated with age in diverse tissues and organisms. As well

as genetic mutations, these hallmarks include changes

to mitochondria, the epigenome, metabolome, accumu-

lation of senescent cells, inflammation, and immune

changes. In some respects, these hallmarks of aging

parallel the hallmarks of cancer, in that both reflect

accumulation of molecular, cellular, and tissue damage

[39,40], further supporting the idea that multiple age-

associated changes within normal tissue can be drivers

of cancer (Fig. 1).

Even a consideration of genetic mutations alone raises

important questions regarding the age dependence of

cancer. As noted above, genetic mutations are critical

drivers of most cancers [2], and genetic mutations accu-

mulate with age in many tissues, including blood [3–6],
brain [7], skin [8], esophagus [9,10], colon [11], and liver

[12,13]. However, as reviewed by James DeGregori and

colleagues, the potential response of cells and tissues to

accumulated mutations in tissues is complex, ranging

from inflammation, suppression of growth or elimina-

tion of mutated cells, competitive interactions with

neighboring normal cells, tissue functional decline and,

in some cases, cancer [41].

Protein homeostasis—or proteostasis—is the process

by which the cell’s complement of proteins is maintained

in working order, by balancing and controlling protein

synthesis and degradation, protein folding, and protein

complex assembly and disassembly. The integrity of this

complex process declines with age and is thought to con-

tribute to aging in many ways [42]. For example, age-

dependent accumulation of misfolded proteins promotes

inflammation, a contributor to numerous age-related

diseases including cancer [43]. Autophagy is a central

mechanism for degradation and recycling of organelles

and proteins [44]. Dysregulated autophagy is implicated

in both aging and cancer, as reviewed by Masashi Narita

and colleagues [45].

Mitochondria play key roles in oxidative phosphory-

lation, redox balance, apoptosis, and numerous

biosynthetic pathways. Declining mitochondrial func-

tion is a hallmark of aging and has also been proposed

as a driver of aging phenotypes and disease, including

cancer [46,47]. Age-associated mitochondria dysfunc-

tion is, in part, due to accumulation of mutations

within the mitochondrial genome. The contribution of

such mutations to aging and cancer is reviewed by

Laura Greaves and colleagues [48].

Emerging evidence links the major metabolic diseases

of aging, for example, metabolic syndrome, type 2 dia-

betes, and obesity, to increased risk of cancer. This is

most obvious in the case of liver cancer, where NAFLD

is both the liver manifestation of metabolic syndrome,

linked to diabetes and obesity, and also a risk factor for

liver cancer [23–25]. More specifically, age-dependent

metabolic changes are well documented and some, for

example, nicotinamide adenine dinucleotide depletion,

induce a pseudohypoxic state and Warburg reprogram-

ming similar to cancer [49]. At least some of these

changes are likely causative of cancer. Ana Gomes and

colleagues review how age-induced metabolic program-

ming alters tissues to promote an environment that is

conducive to transformation, and also to suppress

immune surveillance and anti-tumor host defenses [50].
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Cellular senescence is caused by a range of cellular

stresses and characterized by an irreversible prolifera-

tion arrest and a potent pro-inflammatory phenotype,

the senescence-associated secretory phenotype (SASP)

[51]. Senescence-associated proliferation arrest and

SASP cooperate in tumor suppression, by arresting pro-

liferation of damaged pre-malignant cells and promot-

ing immune clearance. Although senescence is acutely

tumor suppressive, over the longer term, as a source of

chronic inflammation, SASP also promotes tissue aging

and disease, as reviewed by Rugang Zhang and col-

leagues [52] and Naoko Ohtani and colleagues [53].

Cancer initiation and progression depends on

diverse modes of innate and adaptive immune dysregu-

lation, including chronic inflammation, immune toler-

ance, and recruitment of immunosuppressive immune

cells [54]. For example, expression of immune check-

point inhibitors, for example, PDL1 and PDL2, on

tumor cells confers resistance to cytotoxic T cells [55].

Cell surface-expressed PDL1 and PDL2 interact with

PD1 on T cells, thereby downregulating T cell activity.

Similarly, CD80 and CD86 interact with T cell CTLA4

and also downregulate T cell activity. Expression of

these immune checkpoint inhibitors on tumor cells

confers resistance to cytotoxic T cells [55]. Aging is

generally associated with altered immune function and

chronic inflammation and this is thought to promote

diseases of aging, for example, through so-called

“inflamm-aging” [56].

DNA repair is essential for maintenance of DNA

integrity and function. Deficiencies in DNA repair

have been suggested to contribute to aging and cancer

in two ways: First, through accumulation of mutations

that affect genome function, and second, through

unrepaired DNA lesions that activate diverse cell stress

responses, from inflammation to senescence to apopto-

sis [57]. Important recent studies showed that rates of

mutation accumulation track inversely with lifespan,

suggesting that DNA repair mechanisms have evolved

in line with lifespan and that genome mutational load

limits lifespan [58]. As reviewed by Raul Mostoslavsky

and coworkers, targeting DNA repair pathways is a

candidate intervention for both healthy and cancer

therapy [59].

Dysfunctional telomeres can be pro-aging and tumor

suppressive by limiting cell proliferative capacity. On

Fig. 1. The link between aging and cancer. The potential causes of age-associated cancer include accumulated somatic mutations, imbal-

anced proteostasis, mitochondrial or metabolic disorders, cellular senescence, epigenetic dysregulation, immune dysregulation, DNA dam-

age, and telomere dysfunction.
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the other hand, dysfunctional telomeres, reminiscent of

DNA double-strand breaks, can also promote genome

DNA recombination events, genome instability, and

cancer [60]. Lea Harrington and colleagues discuss this

dual role of telomeres in aging and cancer, including

as targets for therapeutic interventions and potential

cross-over of healthy aging interventions and cancer

prevention [61].

3. Reducing the burden of cancer

On December 23, 1971, President Nixon signed into

law the United States’ National Cancer Act, the so-

called “War on Cancer”. Between 1971 and 2019, a

period of nearly 50 years, death rates from all cancers

declined by 27% [62]. Moreover, progress has been

uneven demographically and across cancer types.

Although a huge amount has been learned and there

have been profound therapeutic advances, as illus-

trated by much improved treatments for chronic mye-

loid leukemia, melanoma and advances in

immunotherapy, the overall impact on death rates can-

not be seen as an unqualified success story.

For virtually all cancers, the chances of survival

increase with earlier detection. For some cancers, such

as pancreatic cancer, the low survival rates can be lar-

gely attributed to challenges of early detection. Since

most adult human cancers are diseases of aging, we

can reason that understanding the role of aging in ini-

tiation and development of cancer is a key to risk

assessment and early detection. Unfortunately, the role

of aging in cancer has not been a central pillar of

research in the War on Cancer over the last 50 years.

The articles in this volume illustrate the diversity of

mechanisms by which aging contributes to cancer, and

provide glimpses of how an understanding of aging

and cancer can potentially transform risk assessment,

early detection, and even prevention.

4. Conclusions

In a small collection of this size, it is not possible to

cover all topics, and there are some notable omissions.

Stem cells occupy a special place in thinking about

aging as cancer, as relevant targets for both tissue

exhaustion in aging and dysregulated cell renewal in

cancer [63]. Age-associated epigenetic changes are well

characterized in many cells and tissues and are also

thought to promote cancer [64–67]. Even with these

gaps in the story, this series of articles hopefully con-

veys the complexity of mechanisms underlying aging

and cancer and helps to further invigorate research in

this fascinating and important topic.
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