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We present a computationally efficient reconstruction
method for the limited-data chemical species
tomography problem that incorporates projection
of the unknown gas concentration function onto a
low-dimensional subspace, and regularization using
prior information obtained from a simple flow model.
In this context, the contribution of this work is on
the analysis of the projection-induced data errors
and the calculation of bounds for the overall image
error incorporating the impact of projection and
regularization errors as well as measurement noise.
As an extension to this methodology, we present a
variant algorithm that preserves the positivity of the
concentration image.

1. Introduction
The concerted effort to create efficient energy technologies
with reduced greenhouse gas generation, and to
implement them on an industrial scale, has already
resulted in the identification of numerous pollutant
reduction strategies, such as biomass-derived fuels
and their application in aero engines, ammonia-based
energy storage, high-efficiency modes of automotive
engine operation and fuel cell technology. Many more
such options will be identified over the coming years.
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However, building innovative measurement systems to underpin the development of these
technologies depends critically upon the sensitivity and resolving power of the in situ diagnostics.
Chemical species tomography (CST) addresses this challenge by imaging quantitatively the
concentration of chemical particles in gaseous media and exhaust plumes [1].

In CST, data acquisition typically entails a dense array of collimated laser beams propagating
through the medium at various angles spanning the half circle. Measuring the intensity of
these beams at their sources and diametrically positioned detectors yields the attenuation
information within a noise margin, and that relates linearly, under some assumptions, to the
chemical species concentration profile at the measurement plane. When a dense sampling
of the domain is feasible, a large number of beams and many projection angles are used,
and the image can then be stably reconstructed using Fourier transform-based methods
like the popular filtered back-projection algorithm [2]. There are, however, harsh industrial
environments where collecting many measurements is deemed impractical, allowing only a
sparse beam arrangement and a small number of projection angles [3]. This is the paradigm
known as limited data tomography and it is typically addressed in the context of algebraic
image reconstruction and compressed sensing algorithms whenever the anticipated solution
has limited support, i.e. it has a sparse profile (see e.g. [4,5]). In this work, we focus on the
case where the number of projection data is substantially less than the degrees of freedom in
the image we seek to reconstruct, rendering the inverse problem severely underdetermined.
In addition, the sought chemical species concentration images are expected to be smooth,
almost dense as a result of the gas mixing and combustion phenomena [6]. Such imaging
problems are known to be ill-posed as they lack uniqueness, although a unique image
can still be computed subject to enforcing some form of regularization. As discussed in
some detail in [7], the choice of regularization is ultimately linked to whether the resulting
inverse problem is discrete ill-posed or rank deficient. As the underlying attenuation model
falls within the linear regime of the Beer–Lambert Law, the problem is well suited to the
Tikhonov regularization [8], as well as iterative algorithms based on the Landweber iteration,
exploiting their convergence properties in solving linear, ill-posed problems [9]. A drawback
of these methods is their computational inefficiency in handling large underdetermined
high-dimensional systems, as they still rely on inverting dense square matrices in
high dimension.

Various experimental studies [10–14] have affirmed the sensitivity of light attenuation
measurements in near and mid infrared radiation to soot and carbon dioxide particles within
a jet’s exhaust plume and motivate the application of tomography for in situ characterization.
Although the gases are in motion, high-speed or simultaneous data acquisition provides static
observation conditions, allowing for time-lapse imaging. Assuming negligible optical scattering,
the amount of beam energy absorbed at a point is thought to be proportional to the gas density
there. Effectively, the attenuation of a beam with density p > 0 along an infinitesimal segment d�

is [1]

dp = −pc(�) d�, d� ∈ �, (1.1)

where c is the two-dimensional chemical species concentration function. Let rs denote the start
point of the �th beam; typically the position of the �th source, and rd its end at the corresponding
detector such that |�| = |rs − rd| is the length of the beam. Further, let ps to be the intensity of the
beam leaving rs and pd the intensity of the beam arriving at rd, then by integrating (1.1) over the
path of the beam yields ∫

�

d�c(�) = −
∫ rd

rs

dp
1
p

= log
(

ps

pd

)
, (1.2)

where ps ≥ pd ≥ 0, and log p denotes the natural logarithm of p. The imaging problem is
then to estimate a bounded function c : Ω → �+ from a set of m noise contaminated data
{log(ps1/pd1 ), . . . , log(psm/pdm )}. Before addressing this inverse problem, we make a brief remark
on the impact of noise on the synthesized data compared with the actual measurements {psi , pdi }.
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If ps is known without uncertainty and pm contains additive noise n, then y∗ = log(ps/pd) denotes
the exact data and y = log(ps/pd + n) the noisy. Subtracting the one from the other yields

|y∗ − y| =
∣∣∣∣log

pd

pd + n

∣∣∣∣=
∣∣∣∣log

(
1 + n

pd

)∣∣∣∣≤
∣∣∣∣ n
pd

∣∣∣∣ ,

indicating that the synthesis of the logarithmic data suppresses the levels of noise in the actual
measurements. The presence of pd in the denominator suggest using a high-intensity radiation,
which is of course consistent with having a high signal to noise ratio in the measurements.
Populating the path concentration integrals in (1.2) for many beams over the range of angles
in [0, π ) yields the linear operator equation

y =Ac + n, (1.3)

where Ac is the Radon transform data of c, and n some additive noise corrupting the data. The
mathematical problem of reconstructing c from y based on (1.3) is well studied and analysed
in various textbooks, mostly in the context of X-ray computed tomography (e.g. [2,15–17]).
Its theory postulates that a reconstruction of c is feasible and stable subject to the sufficiency
of the data y. In other words, the Radon operator has a continuous inverse that leads to a
unique solution provided that there are enough data to resolve the degrees of freedom in the
image. In the limited-data paradigm, however, a stable inversion is no longer feasible without
some form of regularization [15]. In this paper, we show that an effective re-parametrization
of the unknown in conjunction with a basic regularization scheme can yield a stable, unique
solution at a significantly reduced computational cost. Our approach is fundamentally based on
projecting onto a low-dimensional image-feature subspace, an operation that inevitably incurs
some information loss. This so-called discretization error is a data component that is typically
assumed small enough to be neglected. Part of the scope of this work is to quantify its impact on
the image error, particularly when the dimension of the physical domain is large and the number
of data is very small by comparison. Discretizing the Beer–Lambert law on an N × N grid of
square pixels, with N2 � m yields an underdetermined system of linear equations

y = Ac + n, (1.4)

where A ∈ �m×N2
, with m = rank(A) and n is additive zero-mean Gaussian noise of magnitude

δ = ‖n‖, and covariance matrix Γn. Without any loss of generality we assume that the system
is normalized so that ‖A‖ = 1, and that A admits a singular value decomposition A = UΣV′
where U ∈ �m×m and V ∈ �N2×N2

are orthogonal matrices and Σ ∈ �m×N2
is a diagonal holding

the singular values of A in non-ascending order 1 ≥ σ2 ≥ . . . ≥ σm. In our notation prime denotes
transposition. Expressing V and Σ like

V = [Vm | VN2−m], Vm ∈ �N2×m, Σ = [Σm|0], Σm ∈ �m×m,

it is easy to see that A admits an expansion in a truncated basis A = UΣmV′
m. The columns

of U span the range of A, those of VN2−m its null space N (A) and Vm ∈N⊥(A). Despite being
underdetermined, we remark that the m singular values of A reduce at a slow rate and thus the
value of σm is maintained well above zero.

An appropriate method for reconstructing a unique solution from the underdetermined model
(1.4) is by formulating the Tikhonov problem, using, for example, a smoothness imposing
regularization matrix L ∈ �N2×N2

similar to that considered in [8]. This is equivalent to solving
the augmented least-squares problem

arg min
c

∥∥∥∥∥
(

A√
λL

)
c −

(
y
0

)∥∥∥∥∥
2

, (1.5)

for a positive parameter λ, whose solution

ĉλ = (A′A + λL′L)−1A′y (1.6)
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Figure 1. (a) A schematic of the FLITES experimental set-up at INTA testing facilities indicating the position of the engine, the
optical ring and the detuner for gas extraction. (b) An oblique view of the engine and the optical plane indicating the beams
from one projection angle. (Online version in colour.)

can be computed directly by inverting an N2 × N2 matrix. By contrast, our methodology yields
image reconstructions without performing any computations in N2 dimensions.

2. Model-based prior information
At the FLITES experiment [18], 126 light sources and detectors are mounted on a dodecagonal
ring structure encompassing the imaging domain of interest Ω = [−0.75, 0.75] × [−0.75, 0.75] m,
which incorporates the gas plume. The measurement plane is normal to the plume propagation
axis at a distance of 2 m from the engine’s nozzle as shown in figure 1. At the near field, the flow
is predominantly axial with a small dispersion, while the detuner positioned immediately after
the optical ring vents the engine exhaust, preventing secondary backflows in the measurement
plane. In these conditions, we may assume a free turbulent jet model and simulate an ‘expected’
plume trajectory and velocity field at the measurement plane [11,19] or indeed adopt a more
sophisticated fluid model if necessary [20]. In a recent study [7], the authors propose using a
squared exponential prior that is consistent with turbulent flow mixing models while preserving
the smoothness of the concentration profiles. The correlation between the magnitude of the
velocity and the concentration of the particles in the plume hints for making a Gaussian
assumption on the anticipated concentration profiles. The use of smoothness imposing prior
models on this particular problem was originally suggested in [21], and here we extend it to
accommodate flow-specific prior information.

This Gaussian assumption is consistent with the experimental observations reported in [10,12],
although these make reference to variant Gaussian functions modified to have a flatter top, which
motivates the use of the so-called super-Gaussian functions (figure 2)

c0(x, 
) = cmax(x) exp
[
−2

( 


x tan θ

)η]
, η > 2, (2.1)

where x > 0 is the distance along the direction of propagation, 
 is the cross-jet radial distance
from the jet’s centreline, θ > 0 is the half-angle of the plume cone and cmax is the maximum
concentration level at the centreline of the plume that is assumed to scale linearly to the plume
velocity there. From the momentum conservation principle [22], if the jet nozzle has a circular
shape with diameter d and the gas velocity there is u0 we can approximate the maximum
centreline velocity as

umax(x) = 1
x

d
tan θ

u0, x > 0, (2.2)
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Figure 2. Lateral and vertical cross sections of plume concentration profiles from the super-Gaussian prior model assuming a
circular nozzle of diameter d fixed at x = 0.1 and the measurement plane at x = 2 m (bottom images). For the three plumes,
the respective flow parameters are d = 0.3 m, θ = 0.2 rad (a), d = 0.4 m, θ = 0.2 rad (b) and d = 0.4 m, θ = 0.3 rad (c).
In all cases, the fluid velocity at the nozzle is u0 = 250 m s−1. (Online version in colour.)

indicating that umax decreases inversely proportional with the distance form the nozzle, while the
velocity away from the centreline is

u(x, 
) = umax(x) exp

[
−2

(

2

x2 tan2 θ

)]
. (2.3)

Based on this flow model, the concentration image of a certain chemical species at the
measurement plane, can be expressed as a random field from a normal probability density
function

pC(c) ∝ exp
[
−1

2
(c − c0)′Γ −1

c (c − c0)
]

, (2.4)

where c0 is the expected concentration and Γc a positive definite covariance matrix.

3. Subspace projection
The subspace projection relies on the hypothesis that there exists a potentially low-dimensional
basis of functions that captures the dominant features of the sought image, and as such this relies
explicitly on the available prior information about the solution [16,23]. Suppose c∗ ∈ �N2

is the
high-dimensional image and Π ∈ �N2×N2

the orthogonal projection operator for functions in �N2

onto a low-dimensional subspace

S .= {Φr | r ∈ �s}, s � N2,

spanned by a small number of linearly independent basis functions {φ1, . . . , φs} comprising the
columns of the tall matrix Φ ∈ �N2×s. As we discuss in the following section, there are various
options for choosing these functions, and although it is not absolutely necessary, for stability
reasons a choice of orthonormal basis is often preferred [16]. Here we consider the case for Φ ′Φ = I
and ΦΦ ′ = Π , where Π is idempotent. Further let r∗ = Φ ′c∗ be the optimal coefficients in the
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approximation of the targeted image on S and r̂ the computed solution of the projected, low-
dimensional inverse problem. Our methodology consists of two steps: the projection of the high-
dimensional image in the low-dimensional subspace inducing r∗ and the numerical solution of
the projected inverse problem yielding r̂. This process can be diagrammatically depicted as

c∗ approximation−−−−−−−−−→
error

Πc∗ = Φr∗ computational−−−−−−−−−→
error

Φ r̂, (3.1)

indicating the two sources of errors affecting the solution. The total image error ‖c∗ − Φ r̂‖
comprises the subspace approximation error, depending on the skill of the basis to express c∗,
and the computational error which reflects the performance of the image reconstruction algorithm
to approximate r∗ given the properties of the low-dimensional inverse problem and the impact
of noise in the data. To estimate this error consider that any bounded image in �N2

can be
decomposed as

c = Πc + (I − Π )c, (3.2)

where Πc = Φr for a unique r. Denoting by wc = (I − Π )c the subspace approximation error,
otherwise put the component of c that does not belong in S, the linear model for the measurements
(1.4) becomes

y = A(Πc + wc) + n, (3.3)

yielding the additional data error term Awc. To quantify this error further we project wc onto N (A)
using the orthogonal projection operator P = VN2−mV′

N2−m, such that

wc = Pwc + (I − P)wc. (3.4)

As Pwc ∈N (A) then the projected model for the low-dimensional variable r ∈ �s simplifies to

y = AΦr + Aqc + n, (3.5)

where qc = (I − P)wc. In regard to its magnitude, there is little to be said about the projection-
induced data error Aqc, aside the rather obvious upper bound

‖Aqc‖ ≤ ‖A‖‖qc‖ ≤ ‖I − P‖‖wc‖ ≤ ‖I − Π‖‖c‖ ≤ ‖c‖, (3.6)

as ‖I − P‖ = ‖I − Π‖ = 1. Ultimately, to estimate the overall image error we have

c∗ − Φ r̂ = c∗ − Πc∗ + Πc∗ − Φ r̂ = c∗ − Πc∗ + Φr∗ − Φ r̂,

and using the triangle inequality and the orthogonality of Φ we obtain

‖c∗ − Φ r̂‖ ≤ ‖wc‖ + ‖r∗ − r̂‖. (3.7)

Clearly, the first component is the subspace approximation error and it relies entirely on the
choice of basis Φ, which in turn reflects the credibility of the prior information one has about
c∗. To quantify the second term in (3.7), we must first specify r̂ by formulating an appropriate
inverse problem. Let B ∈ �m×s a low-dimensional projected model matrix with m ≤ s � N2, then
the model (3.5) is expressed as

y = Br + ε, where ε = Aqc + n, (3.8)

with B = AΦ. As ‖A‖ = ‖Φ‖ = 1 then we can see immediately that ‖B‖ ≤ 1, while from [24],
the ith singular value of B, denoted as σ̃i, relates to that of the high-dimensional A by σ̃i ≤ σi
for i = 1, . . . , m and, therefore, we can deduce that 1 > σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃m > 0. Unfortunately, this
condition does not guarantee a small condition number κ(B) despite that 1/σm is small. In fact,
it can be shown that for s < N2, κ(B) ≥ κ(A), which does not exclude B from being singular.
We now have to formulate an inverse problem for the low-dimensional variable r based on
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the projected model in (3.8) and the prior information on the high-dimensional variable c from
(2.4). The additive error ε inherits the Gaussian properties of the measurement noise n but it is
shifted in mean by an unknown Aqc. Theoretically this term can be estimated by simulation as
outlined in [17]; however, in many practical situations this tends to be neglected. The reduced
model likelihood then becomes

p(y|r) ∝ exp
[
−1

2
(Br − y)′Γ −1

n (Br − y)
]

. (3.9)

For c0 ∈ �N2
the mean of the flow-based prior probability density pC(c) in (2.4) then

Πc0 = ΠE[c] = ΠE[Φr + wc] = ΦE[r] = Φr0,

where E[c] denotes the expectation of c, and similarly

Γc = E[cc′] = E[Φrr′Φ ′] = ΦΓrΦ
′.

If Γc = λ−1I, for a positive λ then by the orthogonality of Φ we get Γr = Φ ′ΓcΦ = λ−1I, hence in
forming the posterior density of r̂ conditioned on y through Bayes’ rule, and tracing its unique
maximum a posteriori estimator, yields the low-dimensional problem

arg min
r

{‖Br − y‖2 + λ‖r − r0‖2} (3.10)

with solution

r̂λ = (B′B + λI)−1(B′y + λr0). (3.11)

The computational error ‖r∗ − r̂‖ depends on how accurately the solution of the reduced
inverse problem (3.11) approximates r∗ given the necessity of regularization and the various
noise components embedded in ε. Assuming the general case where σ̃m ≈ 0 and λ > 0, we can
investigate how the estimator r̂λ is aided by the prior knowledge of r0 and how it is corrupted by
the measurement noise and approximation errors in ε. Let y = y∗ + ε and suppose the prior guess
on the solution satisfies r0 = r∗ + δr, for an arbitrary δr, then by (3.11) we obtain

r̂λ = (B′B + λI)−1(B′y + λr0)

= (B′B + λI)−1[B′(Br∗ + ε) + λ(r∗ + δr)]

= (B′B + λI)−1[(B′B + λI)r∗ + B′ε + λδr]

= r∗ + (B′B + λI)−1(B′ε + λδr).

Rearranging, and taking norms we obtain the computational error upper bound for (3.7)

‖r̂λ − r∗‖ = ‖(B′B + λI)−1(B′ε + λδr)‖
≤ ‖(B′B + λI)−1B′‖‖ε‖ + λ‖(B′B + λI)−1‖‖δr‖

= max
i=1,...,m

{
σ̃i

σ̃ 2
i + λ

}
(‖qc‖ + ‖n‖) + λ

σ̃ 2
m + λ

‖δr‖,

as λ � σ̃m ≈ 0 and therefore

‖r∗ − r̂λ‖ ≤ max
i=1,...,m

{
σ̃i

σ̃ 2
i + λ

}
(‖qc‖ + ‖n‖) + ‖r∗ − r0‖. (3.12)

Introducing to the general error bound (3.7), we obtain

‖c∗ − Φ r̂λ‖ ≤ ‖wc‖ + max
i=1,...,m

{
σ̃i

σ̃ 2
i + λ

}
(‖qc‖ + ‖n‖) + ‖r∗ − r0‖, (3.13)
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which indicates that the overall image error in our approach is the sum of the approximation error
norm and the norm of the discrepancy between the prior-based expectation and the true image.
While the error terms ‖wc‖ and ‖r∗ − r0‖ depend exclusively on the available a priori information
and the sufficiency of the reduced basis, the error amplification term maxi=1,...,m{σ̃i/(σ̃ 2

i + λ)} > 1
can be precomputed for any choice of λ. Given the slow reduction rate in the large singular values
of B the amplification may turn out to be small. Note, however, that a small computational error
‖r∗ − r̂λ‖ does not imply a small overall error ‖c∗ − Φ r̂λ‖, as the next section demonstrates.

4. Choice of approximation basis and a special case
We have seen that projecting the unknown high-dimensional image into a low-dimensional
subspace reduces the computational complexity by replacing the large matrix A with a smaller
matrix B. This computational advantage causes an increase in the ‘noise’ of the data from n to
ε, in manifestation of the subspace approximation error wc. Moreover, this projection may lead
to a rank deficient inverse problem and a new matrix with dispersed singular values, despite
the clustering in those of the original large matrix. Choosing the basis Φ appropriately is thus
instrumental in the image reconstruction process, in the sense that it controls the approximation
error wc, but it also has an impact on the computational error. One conclusion that becomes
apparent even as early as this stage of the investigation is that the conventional local basis
functions with pixel-wise constant support, often adopted by default, might not always be the
best basis to model the unknown image when having limited measurements. We propose the use
of global basis functions, a smooth basis of orthonormal functions that satisfy the prior (2.4) [16].
Subject to a sufficiently large s, this basis can accommodate a large range of functions, whose
features include the expected concentration (see e.g. figure 3). We note that the computational
advantage of this approach compared with solving the smoothness imposing high-dimensional
Tikhonov regularization problem (1.5) may come at a cost of a higher projection approximation
error, as the admissible smoothness of the image is explicitly enforced in terms of this basis.
Moreover, other non-smoothness related priors in the context of Bayesian inference, or affine
constraints in optimization schemes, may prove challenging to cast in the form of conforming
global bases, and in those circumstances it might be easier to revert to the conventional
pixel-based basis.

Let us now look closer into computing the minimum norm solution for the high-dimensional
model (1.4) formulated as

ĉ = arg min
c∈�N2

‖c‖ such that y = Ac + n.

Our intent is to show that this is a special case of the subspace projection method with Φ = Vm

(s = m) in which case κ(B) = κ(A) = σ−1
m , Π = P⊥, and thus the basis is optimal in terms of the

computational error. Effectively,

Aqc = A(I − P)wc = AΠwc = 0,

and hence the measurement error due to the subspace approximation error vanishes leaving ε = n.
This unique estimator can be computed rather efficiently, and stably, by inverting only an m ×
m square matrix B = AVm. Given that AA′ is invertible by virtue of κ(A) being small, then ĉ =
A′(AA′)−1y can alternatively be computed by solving the low-dimensional least-squares problem

r̂ = arg min
r∈�m

‖AVmr − y‖2.

If Σm ∈ �m×m is the non-zero block of Σ that holds the singular values of A, then it is
straightforward to show that r̂ = Σ−1

m U′y and therefore ĉ = Vmr̂. Note that in this case the
computational error attains its minimum possible value ‖r∗ − r̂‖ = τδ. To see this recall that
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Figure 3. (a) A high-dimensional image c∗ and next its projection errors wc in s= 64 (b) and s= 144 (c) discrete cosine
transform functions. The relative errors ‖c∗ − Π c∗‖/‖c∗‖ are 2 × 10−3 and 3 × 10−4, respectively. (Online version
in colour.)

r∗ = V′
mc∗ and

r̂ = Σ−1
m U′y = Σ−1

m U′(AVmr∗ + A(IN2 − P)wc + ε)

= Σ−1
m U′(UΣmV′

mVmr∗ + UΣmV′
m(I − P)wc + ε)

= r∗ + V′
m(I − P)wc + Σ−1

m U′ε

= r∗ + κ(A)n,

hence combining with the approximation error we have

‖c∗ − Φ r̂‖ ≤ ‖c∗ − Πc∗‖ + ‖Vm(r̂ − r∗)‖ ≤ ‖c∗ − Πc∗‖ + κ(A)δ.

Choosing the basis Φ = Vm is thus optimal for minimizing the computational error, as ‖r̂ − r∗‖ →
0 as δ → 0, and no regularization error occurs. Unfortunately, this advantage is diminished by
the fact that the basis Vm is unsuitable for reconstructing the anticipated smooth solutions, see
for example, the projection of an image into this basis in figure 4, and results in a very large
approximation error ‖c∗ − Πc∗‖.

5. A variant algorithm to impose positivity
Having reduced the dimension of the inverse problem through the projection to a low-
dimensional basis, we proceed to suggest a modification that precludes the solution from
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Figure 4. (a) A target image c∗ consistent with the prior flow-concentration model (2.4) and (b) its projection VmV′
mc

∗. The
relative approximation error‖c∗ − Π c∗‖/‖c∗‖ is 0.66with s= m= 126 functions and the condition number of the square
matrix B= AVm is κ (B)= 2.5. (Online version in colour.)

attaining non-positive values. This is aimed at preserving the feasibility of the images, as chemical
concentration is by definition non-negative. In particular, the attenuation model is reformulated
in terms of the logarithm of the unknown concentration function [25]. In this context, denoting
z = log c then the original model (1.4) becomes nonlinear in the new parameters

y = Aez + n,

which can then be linearized around a point zi ∈ S to

y = Aci + ACi(z − zi) + n,

where Ci = diag(ci) and ci = ezi . Denoting K(zi) = ACi and y(zi) = y − Aci + K(zi)zi, we cast the ith
linear model for y at the iterate zi as

y(zi) = K(zi)z + n. (5.1)

Note that the new unknown variable is still in the high-dimension, so similar to the unconstrained
case we can project it onto S to get z = Πz + wz where now Πz = Φr, and B(zi) = K(zi)Φ, yielding
the low-dimensional model

y(zi) = B(zi)r + ε, ε = K(zi)wz + n. (5.2)

Assuming once again that the basis functions Φ spanning S are orthonormal then a positive
subspace projected estimator of the image ĉ+ can be obtained iteratively using the following
algorithm:

(i) Initialize zi ∈ S and compute ci = ezi ,
(ii) for i = 1, 2, 3, . . .

(a) Compute matrix B(zi) = K(zi)Φ and vector y(zi),
(b) Compute r̂+

i+1 using (3.11) with B = B(zi) and y = y(zi),
(c) Update zi+1 = Φ r̂+

i+1,

(iii) end
(iv) ĉ+ = ezi .

Although we do not derive error bounds for this positively constrained estimator, we note that
as c can no longer admit zero values, some information loss is incurred in the transformation
from c to z, and, therefore, the bounds of the previous section no longer apply. In this case,
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Table 1. Three simulatedexperiments on target concentrationswithnegligibly small approximationerror. Each rowcorresponds
to a different ci from (6.1) and the subscript on c is omitted for clarity in the presentation. In all cases, ‖wc‖ ≈ 0.005 and
‖Aqc‖ ≈ 0.001. The image error ‖c − Φ r̂‖ increases with ‖r∗ − r0‖, while the value ofλ reduces.

i ‖c‖ ‖r∗ − r0‖ λ ‖c − Φ r̂‖ ‖r∗ − r̂‖ ‖c − ĉ+‖
1 15.856 1.060 0.134 0.783 0.783 1.359

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 16.369 4.240 0.016 1.035 1.035 3.566
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 20.272 12.722 0.006 1.659 1.659 9.061
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

only the positive part of the function c can be uniquely mapped to a corresponding function
z = log c, while a zero concentration value will typically be assigned a very small yet still
positive value.

6. Numerical results
In order to evaluate the performance of the proposed algorithms and verify the image error
bound (3.13), two sets of image reconstruction experiments were performed using simulated data
infused with white Gaussian noise of standard deviation equal to 5% of the mean measurement
value. In both instances, we consider concentration functions that are similar but not equal to the
prior guess c0. This prior is based on model (2.1) with x = 2 m, cmax = 5 and θ = 0.2 rad, and it
appears in figure 3 plotted in a domain Ω = [−0.26, 0.26] × [−0.26, 0.26] with normalized distance
units. The first three target images are of the form

ci(
1, 
2) = c0 + βi(sin(3φ3(
1, 
2)) − sin(3φ4(
1, 
2))), i = 1, 2, 3, (6.1)

where φj denotes the jth function in the approximation basis (e.g. the jth column of Φ), β1 =
0.25, β2 = 1 and β3 = 3 is a parameter that controls the deviation of the target function from
c0, and 
1, 
2 are the coordinates on the plane of measurement. The definitions c1, c2 and c3
were chosen to yield a small approximation error, e.g. ‖wc‖/‖c‖ ≈ 10−4, and consequently the
approximation error component in the data Aqc is small enough to be ignored, ‖Aqc‖/‖y∗‖ ≈ 10−4.
The measurements have been computed on a fine 100 × 100 square grid model of Ω , while for
the imaging problem a coarser 70 × 70 grid was used. Consistent with the FLITES experiment,
126 attenuation measurements were computed from six projection angles, and a model matrix
A ∈ �126×4900 was assembled. On the coarse grid, we also define Φ ∈ �4900×144 whose columns
represent an orthonormal basis of s = 144 discrete cosine basis functions. Forming the low-
dimensional projected model yields a rank-deficient matrix B ∈ �126×144 with κ(B) ≈ 1016. For
each of the targeted concentration functions c1, c2 and c3, we have computed low dimensional
estimators r̂1, r̂2 and r̂3 using (3.11). The results obtained are summarized in table 1 and the
respective images appear in figure 5. A quick glance at the table confirms the derived error
bounds ‖c − Φ r̂‖ ≤ ‖wc‖ + ‖r∗ − r̂‖ and ‖r∗ − r̂‖ ≤ ‖r∗ − r0‖ in all three cases, where r∗ = Φ†c is
the optimum low-dimensional solution, and r0 = Φ†c0 the projection of the prior concentration
on S. The value of the regularization factor λ used in each case was estimated heuristically as
outlined at the end of this section. As anticipated, when the approximation error is very small,
the overall reconstruction error scales to the discrepancy between the true image and the prior
guess ‖r∗ − r0‖, and, therefore, a lower λ value is more appropriate when this discrepancy can be
large. Note, however, that the overall image error ‖c − Φ r̂‖ is not proportional to ‖r∗ − r0‖, despite
that ‖wc‖ ≈ 0.005 remains fixed in all tests. For comparison, a positively constrained solution ĉ+ is
also obtained by performing four iterations of the algorithm in section 5. The algorithm exhibits
a fast convergence (figure 6), but the value of the error ‖ĉ+ − c‖ appears to be significantly higher
compared with that of the unconstrained solution.

To investigate the impact of a significant approximation error on the image reconstruction,
another set of simulated experiments were performed using three different target concentrations.
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Figure 5. (a–c) are, respectively, the reconstruction results for c1, c2 and c3 concentration functions from equation (6.1). At the
top row, the true concentration targets at fine discretization with N = 100, and below their projectionΠ ci , projected image
reconstructionΦ r̂i and fourth iteration of the positively constrained estimator ĉ+i all in resolutionN = 70, assuming a subspace
of s= 144 discrete cosine transform functions. (Online version in colour.)

Assuming the same prior for consistency, these new target concentration functions are

ci(ξ , ϑ) = c0 + βi(e
− cos(3ϑ) + e− sin(3ϑ))e−ξ , i = 4, 5, 6, (6.2)

where (ξ , ϑ) are the polar coordinates of (
1, 
2). The coefficients β4 = 0.01, β5 = 0.1 and β6 = 0.5
control the size of the prior guess discrepancy ‖r∗ − r0‖. Contrary to the previous tests, these
incur a significant approximation error in the adopted basis, as it can be seen by comparing
the images at first and second rows of figure 7. In this case, we consider a gradually increasing
approximation error in conjunction with an increasing prior discrepancy. The results of these
experiments are tabulated in table 2, but the reconstructions of c4, c5 and c6 show that while λ

should be reduced in increasing ‖r∗ − r0‖ in order to relax the influence of the prior guess, the
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Figure 6. Convergence of the positively constrained algorithm on the reconstruction of ĉ+1 in (6.1) (a) and ĉ+5 in (6.2) (b).

increasing approximation error Aqc in the data reinstates a high regularization parameter value.
This being the primary difference in the two tests, the error bounds ‖c − Φ r̂‖ ≤ ‖wc‖ + ‖r∗ − r0‖
and ‖c − Φ r̂‖ ≤ ‖wc‖ + ‖r∗ − r̂‖ were found to hold in this ‖wc‖ � 0 case. Moreover, the errors
in the constrained and unconstrained solutions are at equivalent levels, as opposed to those for
‖wc‖ ≈ 0, where the unconstrained estimators were profoundly superior. However, a closer look at
the images in figure 7 reveals that quantitatively, the high concentration levels are more accurately
reconstructed in the constrained solutions ĉ+

5 and ĉ+
6 despite the higher overall error.

(a) Choosing a value for the regularization parameter
The choice of the regularization parameter λ has a significant impact on the reconstructed
Tikhonov estimator r̂λ. In abstract form, this problem has been studied extensively in the context
of Bayesian estimation for linear inverse problems and various approaches have been proposed
on optimizing this parameter in conjunction to the noise levels in the data and the confidence
one has on the prior information [16]. The generalized cross validation (GCV) and L-curve
methods are among the most popular tools for choosing λ, for example Ma & Cai [26] on
their implementation in chemical species tomography. These schemes refer predominantly to
linear Gaussian models assuming some knowledge on the noise’s first and second statistical
moments. Alternatively, one may use criteria based on the singular value decomposition in
the cases where the model matrices are rank deficient [27]. As in our setting, regularization is
applied to the projected problem, which includes an unknown data error component Aqc, L-
curve and GCV are not straightforward to apply. Instead, we resort in a heuristic criterion for
choosing a sub-optimal λ as follows. We generate a dense grid of M logarithmically equally spaced
values in the interval [σ̃rank(B), σ̃1], where σ̃rank(B) is the smallest, non-zero singular value of B,
which can be easily identified from the ‘jump’ in the singular values as illustrated in figure 8.
Assigning in turn, each value in that interval to λ and solving the problem (3.11) yields a set
of solutions {r̂λ1 , r̂λ2 , . . . , r̂λM}, from which we compute a residual vector �r̂λi = r̂λi − r̂λi−1 , for
i = 2, . . . , M and then plot the graph of ‖�r̂λi‖ on a linear scale, as a function of λ evaluated at
the midpoint of the interval [λi, λi−1]. Our criterion for choosing λ from this curve is that in
the neighbourhood of the optimal λ the value of ‖�r̂λ‖ will be minimized indicating a region
of stability, in the sense that a small perturbation in λ will only cause a small perturbation on
the solution r̂λ. More precisely, as λ : σ̃rank(B) → σ̃1, we anticipate the residual norm to gradually
reduce as regularization sets in to alleviate the instabilities caused by the rank deficiency of matrix
B. This reduction will lead to a minimum near the optimal λ∗, before the residual norm increases
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Figure 7. (a–c) are, respectively, the reconstruction results for c4, c5 and c6 concentration functions from equation (6.2). At the
top row, the true concentration targets at fine discretization with N = 100, and below their projectionΠ ci , projected image
reconstructionΦ r̂i and fourth iteration of the positively constrained estimator ĉ+i all in resolutionN = 70, assuming a subspace
of s= 144 discrete cosine transform functions. (Online version in colour.)

Table 2. Three simulated experiments on target concentrations with significant approximation error. Each row corresponds to
a different ci from (6.2). Notice that the overall error ‖c − Φ r̂‖ is less than the sum of the approximation and computational
errors.

i ‖c‖ ‖wc‖ ‖Aqc‖ ‖r∗ − r0‖ λ ‖c − Φ r̂‖ ‖r∗ − r̂‖ ‖c − ĉ+‖
4 16.633 0.325 0.115 1.050 0.308 0.712 0.633 1.129

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 24.940 3.256 1.149 10.504 0.016 4.086 2.468 6.768
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 67.285 16.283 5.749 52.522 0.064 19.351 10.456 22.574
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

again in response to the regularization beginning to affect some of the larger singular values
that are clustered closely together. Thereafter, we expect the ‖�r̂λi‖ curve to converge to zero
as λ approaches σ̃1 due to over-regularization, which prevents the solutions to deviate from the
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Figure 8. The singular values of matrices A ∈ �m×N2 and B= AΦ withΦ ∈ �N2×s, wherem= 126, s= 144 and N = 70.
Note the slow rate in the reduction of the singular values of A and the effective rank deficiency of B.Φ consists of a basis of
discrete cosine functions.
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prior r0. The graphs of ‖�r̂λi‖ for the selection of λ in the reconstruction of c3, c5 and c6 are shown
in figure 9. To demonstrate the validity of this approach we have also computed ‖r∗ − r̂λi‖ using
r∗ = Φ†c for each value of λ in the same interval, regarding as optimal parameter choice λ∗ the
argument that minimizes this error discrepancy. In reality of course ‖r∗ − r̂λi‖ is not known, but
the proximity of λ∗ to the minimum of ‖�r̂λi‖ can be used as a guide for selecting a near-optimal
regularization parameter.

7. Conclusion
This work proposes a computationally efficient solution of the inverse problem in limited-
data chemical species attenuation tomography with flow model-based prior information. We
have showed that projection of the unknown function in a smooth low-dimensional basis
reduces drastically the dimensionality of the problem and probably yields rank-deficient linear
systems that are suitable to Tikhonov regularization. This image reconstruction approach is
computationally efficient as it avoids inverting high-dimensional matrices; however, it incurs
errors due to the subspace projection and the need for regularization in obtaining a stable solution
of the projected inverse problem. To quantify these errors and their impact on the reconstructed
image, we provide an upper bound on the overall image error which incorporates the subspace
approximation and regularization errors and can be used in the interpretation of the reconstructed
images. In this bound the approximation error appears both as an offset as well as a component
of the data error, however, the amplification factor of these errors in the image reconstruction is
maintained at small levels. This framework is complemented by an variant algorithm for solving
the positively constrained imaging problem and a heuristic method for selecting the required
regularization parameter. The numerical simulations affirm the performance of the algorithms
proposed and the validate the error bounds.
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