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Fungal infections of the lung are life-threatening but rarely occur in healthy,
immunocompetent individuals, indicating efficient clearance by pulmonary defense
mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which
contains several soluble effector molecules that form the first barrier of defense against
fungal infections. These include host defense peptides, like LL-37 and defensins that
can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant
protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these
molecules have immunomodulatory activities which can aid in fungal clearance from the
lung. However, existing observations are based on in vitro studies which do not reflect
the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the
presence of mucus can have strong detrimental effects on antifungal activity, while the
potential synergistic interplay between soluble effector molecules is largely unknown.
In this review, we describe the current knowledge on soluble effector molecules that
contribute to antifungal activity, the importance of environmental factors and discuss
the future directions required to understand the innate antifungal defense in the lung.
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INTRODUCTION

At the lung lining, several innate defenses are present that contribute to prevention of fungal
infection. These include mucociliary clearance of fungi, production of soluble effector molecules
with antifungal activity and/or immune stimulating activity, and roaming phagocytic cells that
can neutralize incoming pathogens. However, understanding how these molecular defenses act
in concert to prevent infection in a healthy lung has proven to be difficult. Usually, studies are
performed on the antifungal activity of single components (either defense molecules or cells)
which does not necessarily reflect their activity in a complex mixture due to either antagonistic or
synergistic activities. Moreover, effector molecules may have multiple functions that may further
complicate their individual contribution in lung host defense. Adding to this challenge is the
difficulty of mimicking the complex conditions of the lung environment in vitro. At the lung lining,
several factors such as pH, ionic strength, and mucus concentration will also affect the activity of
many innate immune components.

The study of immune defenses is most often approached using infection models. Even though
these models yield useful information, they do not fully apply to a healthy lung, where the fungal
intruders need to be controlled without causing an excessive immune response. In this review, we
will first summarize the current knowledge of the antifungal function of soluble effector molecules.
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Then we will discuss how the interaction of these molecules
with epithelial cells and phagocytes modulates protection against
fungal pathogens. Finally, the possibility of concerted activities
between these molecules and their interactions with the lung
environment will be addressed.

Soluble Effector Molecules
Soluble effector molecules are known to exert their antifungal
function in three ways: (1) direct killing, (2) opsonization, and
(3) immunomodulation. Direct killing is classically known as
the main function of host defense peptides (HDPs), but other
soluble molecules such as enzymes can also directly target
fungal cells. Opsonization on the other hand is an important
function of collagen-containing C-type lectins (collectins). HDPs
and collectins can also modulate the immune response of
epithelial and phagocytic cells, with respect to, for example,
cytokine production and activation status of immune cells. These
immunomodulatory properties are significantly contributing to
an effective overall defense strategy of the host. The three different
modes of antifungal activity expressed by soluble effectors will be
reviewed in the following sections.

Direct Killing
Several constitutively secreted proteins and peptides line the
lung inner surface and many of them have shown to exert
direct fungicidal activity in vitro. One of the most abundant
proteins with fungicidal activity is lysozyme, a small protein
(approximately 15 kDa) produced by epithelial cells and alveolar
macrophages in the human lung [10 µg/ml in bronchoalveolar
lavage fluid (BALF)] (Dubin et al., 2004). Lysozyme is one
of the first characterized antimicrobial proteins, discovered by
Alexander Fleming in 1922. Its antimicrobial activity involves two
distinct mechanisms (Düring et al., 1999). First, the enzymatic
cleavage of the N-glycosidic bonds linking polysaccharides and
proteins in the bacterial cell wall and chitodextrins in fungal cell
walls. Second, the permeabilization of the plasma membrane, due
to its cationic properties, which resembles host defense peptide
activity, as described below (Marquis et al., 1982; Ibrahim et al.,
1994, 1997; Nishiyama et al., 2001). Fungistatic effects have
also been attributed to lysozyme, even at low concentrations
(approximately 1 µg/ml for H. capsulatum) (Newman et al.,
2000). These include: impairment of yeast budding by C. albicans
and P. brasiliensis (Nishiyama et al., 2001; Lopera et al., 2008),
decreased production of virulence factors such as aspartyl
proteinases (SAP) by C. albicans (Wu et al., 1999) and hyphal
disruption of A. fumigatus (Diamond et al., 1978).

Antileukoprotease (ALP) is a major serine protease inhibitor
secreted by Clara and goblet cells at the bronchial epithelium,
and by serous cells and submucosal glands in the bronchi
(De Water et al., 1986). This 12 kDa cationic non-glycosylated
protein exhibits antifungal activity in vitro against C. albicans
and A. fumigatus at concentrations comparable to that of
lysozyme (Tomee et al., 1997). It remains unclear whether the
antifungal mechanism of action is similar to its antibacterial
mechanism, which resides mainly in the N-terminal region
of ALP (Miller et al., 1989). Its proteinase inhibitory activity,
however, is associated with the C-terminal region, which in

itself does not have antibacterial activity (Hiemstra et al., 1996;
Tomee et al., 1997). Recently, a study by Curvelo et al. (2014)
has shown that ALP can also affect C. albicans cell membrane
stability by inducing several structural changes, most notably
irregularities along the cytoplasmic membrane. This finding
points toward a mechanism similar to the one displayed by
other cationic peptides, such as defensins, known for their ability
to permeabilize membranes (see below). In vitro, inhibition of
C. albicans and A. fumigatus proteases by ALP decreases fungal
adhesion to MA104 epithelial cells from monkey kidneys (Tomee
et al., 1997; Curvelo et al., 2014).

Host defense peptides (HDPs) are characterized by their
high cationic charge, small size (5–50 amino acids) and
amphipathicity. There are two major groups of cationic HDPs
secreted into the lung lining: defensins and cathelicidins.
Defensins are characterized by three conserved disulfide linkages,
which induce a characteristic fold containing a high percentage
of β-sheets. A structural subdivision is made between α- and
β-defensins based on the location of the cysteine linkages. Four
human β-defensins (hBD-1, -2, -3, and -4) are produced by the
lung epithelium, either constitutively (hBD-1) or induced upon
infection (hBD-2, -3, and -4) (Yanagi et al., 2005; Doss et al.,
2010).

The mechanism of action of hBDs has been studied in
bacteria, where interaction with cell membranes seems to be an
important requirement for their antibacterial activity. However,
other effects such as inhibition of DNA, RNA, and protein
biosynthesis are also observed and might significantly contribute
to growth inhibition and killing (Sahl et al., 2005). hBD-1,
hBD-2, and hBD-3 are also known to have antifungal activity
but these mechanisms are not well understood (Vylkova et al.,
2007). For hBD-1 and hBD-2, the activity against C. albicans
is dependent on the energy status of the fungal cells, reflecting
a requirement for energy-dependent uptake of peptide, but
for hBD-3 energy-independent mechanisms are also observed
(Vylkova et al., 2006; Krishnakumari et al., 2009). Similar to what
is seen for bacteria, all three defensins permeabilize the fungal
cell membrane, indicating that membrane destabilization plays
an important role in fungal killing (Krishnakumari et al., 2009).
Histatin 5, a host defense peptide present in the oral cavity but
not in the lungs, binds to specific receptors on the fungal cell
membrane, ultimately leading to cell permeabilization. In line
with this, Vylkova et al. (2006) have shown that hDB-2 and
hBD-3 require Ssa1/-2 surface proteins to kill C. albicans, and it
seems likely that other peptides or proteins use membrane bound
receptors as well.

The mechanism of action of defensins against fungi other
than C. albicans has been less studied. Contact with metabolically
active spores of A. fumigatus, for example, increases transcription
and secretion of hBD-2 and the recently described hBD-9 by
human bronchial epithelial cells. This indicates that several
antimicrobial peptides might be released into the lung lining
upon fungal infection (Alekseeva et al., 2009; Evans et al., 2010).
Levels of α-defensins 1-3 in whole blood seem to increase
after exposure to Candida spp. yeast cells (Gácser et al., 2014).
However, to our current knowledge, no mechanistic data of
α-defensins against fungi are available.
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Cathelicidins constitute a structurally diverse family of host
defense peptides characterized by sharing a similar (cathelin-
like) prosequence. In the lung, the only human cathelicidin,
hCAP18 is processed by proteases such as elastase, cathepsin
G, and proteinase 3 (Sørensen et al., 2001). The processed
product is the active peptide LL-37. This peptide is secreted
by alveolar macrophages, neutrophils, bronchial glands and
by the epithelium of the lung lining (Bals et al., 1998). In
a healthy lung, LL-37 can be found at the lung lining at
measurable concentrations (Agerberth et al., 1999). In vitro
antifungal activity of LL-37 has been described for C. albicans
(den Hertog et al., 2005; López-García et al., 2005; Krishnakumari
et al., 2009; Ordonez et al., 2014). Its activity results mainly
from permeabilization of the cytoplasmic membrane, although
effects on internal organelle membranes have also been described
(Ordonez et al., 2014). The only instance in the literature where
the role of LL-37 in fungal infections was mentioned is in a study
of patients with chronic rhinosinusitis (Lee et al., 2010). In these
patients LL-37 levels increased after contact with A. fumigatus.

In addition to the described molecules, several other
components present in the lung have antifungal activity. These
include mainly peptides present in neutrophils that are released
upon degranulation, including human α-defensins, histones,
Cathepsin G, bactericidal/permeability-increasing protein (BPI),
and azurocidin (Newman et al., 2000; Cederlund et al., 2010).
No detailed mechanistic antifungal studies have been performed
on these molecules but they possess activity against fungi
in vitro, demonstrating their potential involvement in lung
defense against fungal pathogens. An overview of antifungal
proteins and peptides is provided in Table 1.

Opsonization
Fungal recognition by SP-A and SP-D
Surfactant proteins A and D (SP-A and SP-D) are two
multimeric C-type lectins. In several publications, the structure
and processing of SP-A and SP-D have been described in detail
(Crouch, 1998; Haagsman and Diemel, 2001). Briefly, these
proteins consist of a C-terminal Ca2+-dependent carbohydrate
recognition domain (CRD), a neck region and an N-terminal
collagen-like domain. These glycoproteins are mainly secreted as
large octadecameric (SP-A), dodecameric (SP-D), or even higher
order oligomeric structures and to a lesser extent as trimeric
subunit structures. The low affinity interaction for carbohydrates
of the CRDs requires cooperative binding of these domains. Thus,
the assembly of collectins to oligomeric structures is essential for
increasing the avidity of binding to glycan arrays on the surface
of microorganisms. Production and secretion of SP-A and SP-
D is mainly attributed to alveolar type II cells and bronchiolar
Clara cells, but mRNA expression of both lung collectins is also
observed in trachea (Madsen et al., 2000, 2003; van Rozendaal
et al., 2001). SP-A strongly associates with the phospholipids
present in ‘pulmonary surfactant,’ the protein/lipid mixture
produced and secreted by epithelial type II cells, whereas SP-D
is not (Persson et al., 1989; Creuwels et al., 1997). This difference
affects their distribution: while SP-A will remain largely bound
to surfactant lipids at the alveolar lumen and bronchioli, SP-D is
relatively more abundant at the upper conductive airways.

SP-A and SP-D bind to fungi through their CRD in a
Ca2+-dependent manner. Fungal ligands that are recognized by
collectins can be found in Table 2. For a more detailed description
on fungal interactions with collectins, we refer to an excellent
review by Brummer and Stevens (2010). SP-A and SP-D have a
preference for binding glycans with a terminal mannose residue
but are otherwise quite unspecific (Lu et al., 1992; Haurum
et al., 1993). Therefore, it does not rely on the availability of
only a single type of polysaccharide on the fungal membrane,
explaining the broad fungal binding spectrum of these collectins.
Binding to fungal surfaces by oligomeric structures of SP-A
and SP-D results in different mechanisms of protection against
fungal infection (Figure 1). SP-D-mediated aggregation of fungi
can facilitate fungal removal, either by mucociliary clearance
or by phagocytosis, and helps to prevent infection by blocking
fungal attachment to the epithelium (Madan et al., 1997; Yang
et al., 2000). Fungal cells coated with either SP-A or SP-D
interact differently with immune cells. In some cases, binding of
these proteins to fungal cells has shown to enhance macrophage
phagocytosis through opsonization and modulate their cytokine
secretion (Rosseau et al., 1999). This will be discussed further in
the following section.

Effects of SP-A and SP-D opsonization on the antifungal
activity of phagocytic cells
Collectins are known to interact with phagocyte receptors as well
as with fungal ligands and can thereby be of influence during an
encounter between them. Brown (2011) describes in detail how
fungal pathogens are recognized by phagocytes through several
pattern recognition receptors (PRR), which comprise Toll-like
receptors (TLRs) as well as C-type lectin receptors (CLRs). The
structures present in the fungal cell wall that can be recognized by
PRRs include mannan, phospholipomannan, O-linked mannan,
glucuronoxylomannan, galactomannan, and β-glucans ( Netea
et al., 2006; Willment and Brown, 2008; Figueiredo et al., 2011;
Bourgeois and Kuchler, 2012). Some PRRs are known to interact
with SP-A and SP-D directly such as TLR2, TLR3 and TLR4, gp-
340, CD91/calreticulin, and SIRPα (Holmskov et al., 1999; Gardai
et al., 2003). As for CLRs expressed at the surface of phagocytes,
one can imagine that these compete with SP-A and SP-D for
similar binding sites at the fungal surface.

Recognition by PRRs initiates phagocytic uptake. Internalized
fungi are directed to acidic compartments, called lysosomes,
which further fuse to form phagolysosomes. Here, a cocktail
of hydrolytic enzymes, host defense peptides, reactive oxygen
species, and reactive nitric oxide species are in charge to
destroy the internalized fungi (Ibrahim-Granet et al., 2003;
Philippe et al., 2003; Netea et al., 2008). Collectin-opsonization
of fungal cells usually enhances phagocytosis. However, enhanced
phagocytosis could either be favorable or unfavorable for fungal
clearance depending on the fungus involved. For example,
increased phagocytosis by macrophages and neutrophils has
shown to improve killing of A. fumigatus (Madan et al., 1997),
while increased phagocytosis can be favorable for survival
of C. neoformans and H. capsulatum, likely indicating how
certain fungi have evolved to withstand (certain aspects of )
the immune response within the lung. Extracellular growth
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TABLE 1 | Antifungal activity of soluble innate effector molecules.

Effector molecule Fungal strains Proposed mechanism of action

Lysozyme H. capsulatum
C. albicans
P. brasiliensis
A. fumigatus

Cleavage of chitodextrins
Cell wall destabilization/permeabilization
Impairment yeast budding
Decrease virulence factors
Disruption of hyphae

ALP C. albicans
A. fumigatus

Cell wall destabilization/permeabilization

LL-37 C. albicans Cell wall destabilization/permeabilization

hBD-1 C. albicans, C. krusei,
C. parapsilosis, and C. glabrata

Cell wall destabilization/permeabilization

hBD-2 C. albicans, C. krusei,
C. parapsilosis, and C. glabrata

Cell wall destabilization/permeabilization

hBD-3 C. albicans, C. krusei,
C. parapsilosis, and C. glabrata

Cell wall destabilization/permeabilization

hBD-4 C. albicans Cell wall destabilization/permeabilization

HNP1 C. albicans
H. capsulatum

Intracellular uptake

HNP2 C. albicans
H. capsulatum

–

HNP3 C. albicans
H. capsulatum

–

Azurocidin C. albicans –

Cathepsin G H. capsulatum –

BPI H. capsulatum –

Histones H1-H4 C. albicans –

of C. neoformans can be inhibited by macrophages while
internalized C. neoformans is able to survive (Flesch et al., 1989).
For H. capsulatum, internalization by macrophages allows fungal

survival while internalization by neutrophils and dendritic cells
has proven to be fungistatic and fungicidal, respectively (Deepe
et al., 2008).

TABLE 2 | Interaction of fungal ligands with SP-A and SP-D.

Fungi Ligand for SP-A Effect Ligand for SP-D Effect

C. albicans • Sugar moieties at cell wall
(van Rozendaal et al., 2001;
Geunes-Boyer et al., 2009)

• Reduction of phagocytosis by
alveolar macrophages
• Moderate increase in

phagocytosis in monocytes and
neutrophils
• Downregulation of cytokines in

alveolar macrophages
(Brummer and Stevens, 2010)

• Mannose Maltose (Rosseau
et al., 1997; van Rozendaal
et al., 2000; Geunes-Boyer
et al., 2009)

• Inhibition of phagocytosis by
alveolar macrophages
(van Rozendaal et al., 2000;
Dennehy and Brown, 2007)

P. carinii • Glycosylation sugars of GPA
(Vuk-Pavlovic et al., 2001)

• Enhanced attachment to rat
macrophages
• Increased clearance of P. carinii

infection (Vuk-Pavlovic et al.,
2001)

• Glycosylation sugars of Gp-A
(O’Riordan et al., 1995)
• Cell wall β-glucans

(Vuk-Pavlovic et al., 2001)

• Fungal aggregation
• Increased binding to

macrophage surface
• Decreased fungal internalization

(Atochina et al., 2004)

H. capsulatum • Sugars at the cell surface (not
identified) (Dennehy and Brown,
2007)

• Fungal permeabilization • Sugars at the cell surface (not
identified)

• Fungal permeabilization

A. fumigatus • Mannose Maltose • Enhanced phagocytosis and
killing by macrophages and
neutrophils (Philippe et al.,
2003)

• Mannose Maltose • Enhanced phagocytosis and
killing by macrophages and
neutrophils (Philippe et al.,
2003)

C. neoformans ? ? • Glucuronoxylomannan (GXM)
• Sugars at the cell surface

• Aggregation of acapsular
C. neoformans (van de
Wetering et al., 2004;
Geunes-Boyer et al., 2009)
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FIGURE 1 | Antifungal roles of SP-A and SP-D at the lung lining. Inhaled fungi can be bound by constitutively expressed lung collectins SP-A and SP-D in the
conductive airways and in the alveoli. This generates three mechanisms of protection that contribute to inhibition of fungal infection. Aggregation of fungal particles is
mainly facilitated by interactions with SP-D and results in enhanced clearance through mucociliary movement. Binding of collectins to fungal spores also helps to
prevent attachment of fungi to pulmonary epithelial cells and thereby inhibits fungal infection. In addition, SP-A and SP-D act as opsonins and mark fungi for
recognition, enhanced uptake and improved destruction by neutrophils in the airways and macrophages in the alveoli.

Interestingly, for Pneumocystis carinii, collectin binding
actually decreases phagocytosis. SP-D binding to the 120 kDa
mannose-rich glycoprotein (GPA) of P. carinii blocks the fungal
cell from interacting with macrophage mannose receptors that
are responsible for phagocytosis (O’Riordan et al., 1995; Vuk-
Pavlovic et al., 2001). Decreased phagocytosis in the presence
of SP-D was also observed for C. albicans (van Rozendaal et al.,
2000). SP-A also binds to GPA of P. carinii but actually enhances

its association to alveolar macrophages (Atochina et al., 2004).
These opposing effects of SP-A and SP-D, observed for P. carinii,
are hard to explain with the current knowledge and one can
only speculate about these outcomes. Two reasons have been
proposed: one is that SP-A interaction with macrophage receptors
may increase phagocytosis, counteracting GPA blockage; another
hypothesis suggested by Yong et al. (2003) is that the tertiary
structures of SP-A and SP-D differ so strongly that they may
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promote different outcomes even though binding the same
ligand.

Immunomodulation
Until now immunomodulatory effects of host defense molecules
have been strongly underestimated. In the fight against bacterial
infections, immune modulation by host defense molecules plays
an important role and it is likely that this also accounts for fungal
clearance. A broad range of immunomodulatory functions has
been described for several of the innate defense molecules in the
airway surface liquid (ASL).

Host defense molecules could prepare immune cells for
encounters with fungi in the healthy lung. A study by Scott et al.
(2002) shows that LL-37 may contribute to the immune response
against bacteria by limiting host cell damage and increasing
phagocyte recruitment to infection sites. During infection, an
increase in secretion of several defense molecules is observed.
Human lactoferrin, for example, triggers the transcription
of host defense peptides by bovine tracheal epithelial cells
(Velliyagounder et al., 2003). Host defense molecules can increase
protection in areas near the infection and additionally attract
phagocytic cells. For instance, LL-37 secreted by epithelial cells is
known to act as a chemoattractant for neutrophil recruitment (De
et al., 2000). LL-37 produced by PMNs has also been suggested to
activate the epithelium resulting in IL-8 release (Tjabringa et al.,
2003). An overview of the activities of HDPs is given in Figure 2.

Collectins can induce macrophage actin changes (Veillette
et al., 1998; Gardai et al., 2003), integrin induction (Senft et al.,
2007), and increase cellular receptors on phagocytes (Kuroki
et al., 2007). These collectin-induced modifications might be
essential for proper phagocyte activation. In fact, macrophages
alone are not able to clear A. fumigatus in an in vitro cell-based
infection model. In vitro, SP-A downregulates the production of
pro-inflammatory cytokines by alveolar macrophages evoked by
C. albicans (Rosseau et al., 1999). Additionally, SP-A interacts
with macrophages affecting their response to LPS, and decreases
macrophage TNFα production by interaction with TLR2 (Fisher
et al., 2002; Murakami et al., 2002).

Cell receptors and signaling pathways activated by collectins
have been studied mainly in macrophages, but they are also
known to trigger lymphocyte proliferation and leukocyte
recruitment (Madan et al., 1997; Crouch, 1998; Fisher et al.,
2002). Several cell receptors have been found to be responsible
for SP-A- and SP-D-induced signaling in inflammation. Gardai
et al. (2003) showed that the CRD domain of both collectins
bind to the inhibitory signal regulatory protein α (SIRPα) at
the macrophage surface, while the collagenous domain binds to
calreticulin/CD91. Binding to SIRPα blocks pro-inflammatory
responses and decreases phagocytosis of apoptotic cells, while
binding to calreticulin/CD91 increases pro-inflammatory
responses, chemotaxis, and macrophage phagocytosis.
Additionally, another pathway for the immunomodulatory
function of SP-D has been recently described by Olde Nordkamp
et al. (2014), where the collagenous domain of SP-D was
found to bind the Leukocyte-Associated Ig-like Receptor 1
(LAIR-1) at the neutrophil surface, inhibiting the production
of FcαR-mediated reactive oxygen. These examples show the

complexity of the immunomodulatory role of these soluble lung
effector molecules, with sometimes seemingly opposing (pro-
and anti-inflammatory) effects. It is even likely that the described
examples only constitute a fraction of all immunomodulatory
routes, which emphasizes again that a better understanding of
the interaction between all components is required to predict the
outcome of an immune response.

Effects of Lung Environment on
Antifungal Activities
Most of the antifungal components and mechanisms described
above are derived from in vitro studies and, in most cases,
have been determined in a one-to-one set-up. For example, the
antimicrobial activity of host defense peptides such as LL-37 or
defensins is determined by incubating fungi with the peptide in a
specified buffered solution after which the viability of the fungi is
monitored in time. Although valuable observations can be made
this way, one should be careful in extrapolating these activities
to an in vivo situation. The complex composition of the ASL
will likely affect the activity of individual innate immune effector
molecules. Several factors can modulate the activity of soluble
effector molecules: (1) pH, (2) ionic strength, (3) divalent cations,
and (4) interactions with mucus.

pH
In general, the ASL of a healthy lung is known to have a neutral
pH of 6.94 ± 0.03 (Johansson et al., 1998; Nakayama et al.,
2002; Olde Nordkamp et al., 2014) and a decrease in pH affects
the ability of the ASL to eliminate pathogens (Pezzulo et al.,
2012), likely due to a reduced activity of several defense molecules
(Berkebile and McCray, 2014). This can happen during infection
at specific locations inside the lung, or during certain diseases
such as cystic fibrosis. From what is described for bacteria, a low
pH may reduce the activity of LL-37 by perturbing its α-helical
conformation and interaction with membranes (Johansson et al.,
1998). Low pH also decreases HBD-1 secretion by epithelial
cells (Nakayama et al., 2002), phagocyte chemotaxis, and ROS
production. However, specific effects of pH with respect to their
antifungal activities have not been described yet (Lardner, 2001;
Ng et al., 2004). On the other hand, the Ca2+-binding properties
of SP-D and SP-A are mostly retained at pH values as low as
5.0 (Haagsman et al., 1987; Crouch, 1998). It is not known,
however, whether pH changes may affect phagocyte interactions
with these collectins (Rosseau et al., 1999). Whether such a
low pH could exist locally in a healthy lung is debatable, but
phagocytic responses might generate acidic microenvironments
that could reach low pH values.

Ionic Strength
The activity of most HDPs is based on their high cationic
charge and the ASL ionic concentration can therefore strongly
affect their activities. The major component contributing to the
ionic strength of the ASL is NaCl, present in a concentration
of approximately 100 mM at the ASL of the healthy lung
(Jayaraman et al., 2001). In vitro, such salt concentrations
significantly diminish the direct antifungal activity of several
host defense peptides including defensins and LL-37 (Vylkova
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FIGURE 2 | Antifungal roles of host defense peptides at the lung lining. It is the schematic representation of the antifungal roles of defensins and the human
cathelicidin LL-37 in human lungs. Fungi are killed by membrane destabilization and permeabilization due to interactions with defensins and LL-37 that are
constitutively released into the lung lining fluid by airway epithelial cells; epithelial secretion of these peptides is induced upon infection. Phagocytic cells that
encounter fungal spores, in particular neutrophils, secrete LL-37 that results in enhanced killing and epithelial expression of interleukin-8. Infection-induced secretion
of LL-37 also contributes to attracting neutrophils that help to clear the infection. Host defense peptides may also act synergistically with surfactant proteins SP-A
and SP-D.

et al., 2007; Krishnakumari et al., 2009; Coorens et al., 2017),
lysozyme and ALP (Tomee et al., 1997), although the antifungal
activity of HBD-3 appears less sensitive as compared to that
of other defensins (Turner et al., 1998; Krishnakumari et al.,
2009). The high amount of antimicrobials needed to exert
adequate antifungal killing at physiological ionic concentrations
does not correspond with the concentrations normally found
at the ASL. However, there is evidence that at lower than
minimum inhibitory concentrations, innate effector molecules
can still affect fungal growth. Lysozyme, for example, can

still decrease C. albicans growth, morphology transition, and
protein production at inflammatory concentrations around
400–800 µg/ml (Lopera et al., 2008). Additionally, lysozyme
inhibits C. albicans virulence-related proteins at sub-inhibitory
concentrations (10 µg/ml) (Wu et al., 1999).

The collectins SP-A and SP-D are also affected by ionic
concentrations but in opposite ways. While purified SP-A
precipitates at physiological salt concentrations, SP-D requires
physiological salt concentrations to maintain its structure and
functionality. This could correlate with their localization in vivo.
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Inside the lung, SP-A is mainly forming a complex with surfactant
lipids whereas most of SP-D locates in the aqueous salt-
containing sub-phase (Crouch, 1998). The localization of these
two collectins could make the difference for their availability
to bind fungal cells and how they modulate presentation
to phagocytes. SP-D has shown to be able to bind fungal
spores in BALF (Yang et al., 2000). Nevertheless, a fraction
of SP-A produced by Clara cells and submucosal glands
at the conductive airway may not be bound to lipids (as
is the case for SP-A at the alveoli) and therefore could
bind to inhaled microorganisms (Khoor et al., 1993). It is
unclear though, to what extend SP-A might affect macrophage
activation.

Divalent Cations
The presence of divalent cations at the lung lining, such as
Mg2+, Fe2+, and Ca2+, strongly influences ASL antifungal
activity. In vitro concentrations of ∼5 µM Ca2+ or ∼25 µM
Mg2+ are sufficient to abrogate the candidacidal activity of
defensins, especially HBD-1 and HBD-2 (Krishnakumari et al.,
2009). The antifungal activity of LL-37 is also decreased by
Ca2+ at concentrations as low as 1 µM (Ordonez et al.,
unpublished data). This is similar to what has been observed
for its antibacterial activity where the minimum inhibitory
concentration of LL-37 for Escherichia coli increased 10-fold in
the presence of 1 mM CaCl2 (Turner et al., 1998). There are
also several chelators present at the ASL that sequester divalent
cations as a defense against pathogenic organisms. Lactoferrin,
for example, is a monomeric multifunctional glycoprotein of
80 kDa secreted by lung epithelium and submucosal glands
into the ASL. There, lactoferrin is found in high concentrations
(Dubin et al., 2004; Viejo-Díaz et al., 2004). This protein is
best known for its ability to trap iron ions. According to Ding
et al. (2014), iron ions are essential for fungal virulence. In
line with these observations, Soukka et al. (1992) described
candidacidal effects of lactoferrin that were dependent on iron
ion sequestering since Fe3+-saturated lactoferrin completely lost
its ability to kill C. albicans. Transferrin, a siderophore present
in the deep lung, is also known to limit iron availability, thus
inhibiting microbial growth. Although this siderophore will
chelate ions, several pathogenic bacteria such as P. aeruginosa
are known for their ability to use them as a source of ions
(Cornelis and Dingemans, 2013). Interestingly C. neoformans is
also able to use transferrin as a source of iron (Saikia et al.,
2014).

Mucus
Mucus is a complex structure mainly composed of highly
glycosylated proteins called mucins. This structure covers the
epithelial surface throughout the conductive airways, thereby
serving as a barrier against inhaled microorganisms. The
regulation of mucus secretion by epithelial cells is tightly linked
to pH and ionic concentrations at the ASL. To date, 20 genes
coding for mucosal proteins have been described (Rose and
Voynow, 2006). A total of 14 of these mucins are expressed in
the lung as demonstrated by RNA expression, with MUC5AC and
MUC5B being the most abundant components of the respiratory

mucus (Hovenberg et al., 1996). Interaction of mucus with
cationic peptides is likely to occur since mucins are negatively
charged. It is known that LL-37 and HBD-2 bind mucins in
the gastrointestinal tract (Felgentreff et al., 2006; Cobo et al.,
2015). Mucins are highly glycosylated, and this enables their
interaction with lectins, such as SP-D. Although SP-D is produced
mainly in the deep lung, its localization in the aqueous phase
might enable it to travel throughout the conductive tract.
Nevertheless, low expression of this protein was also observed
at the level of the trachea (Madsen et al., 2000; Herias et al.,
2007). Whether SP-D interactions with mucus at the conductive
airway interfere with SP-D binding to pathogens remains to be
studied.

Combined Immune Defenses against
Fungal Pathogens
Previously, we have discussed how ASL conditions may affect
the interactions between antimicrobial molecules and fungal
pathogens. It is easy to imagine that the concentrations needed
for exerting antifungal activity would have to be higher than
the ones described in in vitro experiments. It can be speculated
though that in the healthy lung, the concerted action of several
antimicrobial molecules may help to protect against fungal
colonization. In this scenario, we have to consider synergistic,
additive, and antagonistic activities of the different soluble
effector molecules present.

In vitro, combined effects have already been described against
bacteria, but these are less understood for fungi. For bacteria,
combinations of lactoferrin, lysozyme, ALP, and LL-37 appear
to be synergistic, while combinations with defensins seem to
have only an additive effect (Bals et al., 1998; Singh et al.,
2000). However, it remains to be investigated to what extent
these effects occur at the ASL with salt concentrations of
approximately 100 mM, since Singh et al. (2000) show loss of
synergism at salt concentrations as low as 45 mM. Even though
combinatorial fungicidal activities between antimicrobials have
not yet been described, there is some evidence for a synergistic
effect with antifungal drugs (Wakabayashi et al., 1998; Kuipers
et al., 1999). Lactoferrin acts synergistically with amphotericin
B, 5-fluorocytosine, and more strongly with fluconazole against
C. albicans (Wakabayashi et al., 1998). This synergism seems to be
related to the different mechanisms of action between fluconazole
and lactoferrin. While fluconazole inhibits ergosterol synthesis,
lactoferrin directly interacts with the membrane, making it
unstable. The result is a 50% reduction in the concentration
of fluconazole needed for complete growth inhibition in the
presence of lactoferrin.

Interactions of surfactant proteins SP-A or SP-D with
other antimicrobial components of the ASL have been widely
overlooked. It seems plausible that these collectins can interact
with defensins and LL-37 due to the cationic nature of these
peptides (Doss et al., 2010). The results of these interactions
could be either positive or negative for fungal clearance. On one
hand, assuming that interactions are weak enough, SP-A/SP-D-
bound peptides can be released and bind to fungal membrane
targets. On the other hand, if binding between these molecules
is strong enough, either peptide activity or sugar recognition
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by the surfactant protein could be reduced. In this respect, it
is worth to mention that while the antiviral activity of SP-D is
not affected by binding to β-defensins 5 and 6, binding with
neutrophil defensins 1 and 2 actually leads to decreased antiviral
activity of SP-D (Doss et al., 2009, 2010). This is most likely due
to stronger interactions between neutrophil defensins and SP-D
that interfere with recognition by SP-D of viral target proteins.

CONCLUSION

Altogether it is clear that physiological conditions at the lung
lining may strongly contribute to the antifungal activity of soluble
effector molecules. Most of the direct antifungal activities of
host defense peptides are dependent on factors such as pH and
divalent cation concentrations at the lung lining. It is important
to realize that interactions among different innate immune
molecules, and the way they interact with host cells, are of
major importance in controlling fungal intruders. Therefore, it is
essential that the antifungal activity of innate immune molecules
should be tested in more complex environments resembling their
natural environment in vivo.

Several experimental models that mimic the lung surface
more closely are currently being developed and optimized. The
availability of several alveolar and bronchiolar epithelial cell lines
is aiding in this process (Foster et al., 1998; Grainger et al.,
2009; Escobar et al., 2016). Usage of a cell-based system that
includes several relevant immune components like salts, mucus,
and immune cells has become within reach. Such a system will
provide a good in vitro model to test antifungals in a more
realistic environment. Hope et al. (2007) described a model of
the lung consisting of a bilayer of epithelial and endothelial cells.
Surprisingly, this study showed that neither the tested antifungal
compound, nor the use of macrophages could eliminate an

A. fumigatus infection but rather the combination of both: an
effect not observed in simpler models.

In addition, the emergence of new technologies such as the
lung-on-a-chip system could be of great help to dissect the
antifungal mechanisms and importance of the innate immune
system in vitro under circumstances that mimic the human lung
(Esch et al., 2015). This microdevice makes use of endothelial
and epithelial cells grown on a polymer support that produces
a polarized cell layer with one side submerged in liquid (blood
flow) and the other side exposed to air. This setting could help
mimic the conditions during a fungal infection, especially at later
stages where hyphal growth is believed to reach the endothelium.
Finally, a recent report described the development of human lung
organoids, resembling the upper airways (Dye et al., 2015). The
use of these sophisticated model systems will ultimately lead to a
more thorough understanding of the innate defense against fungi,
and may contribute to the development of novel, more effective
drugs for the treatment for fungal infections in humans.
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