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A B S T R A C T   

Background: Deep learning-based radiological image analysis could facilitate use of chest x-rays as a triaging tool 
for COVID-19 diagnosis in resource-limited settings. This study sought to determine whether a modified 
commercially available deep learning algorithm (M-qXR) could risk stratify patients with suspected COVID-19 
infections. 
Methods: A dual track clinical validation study was designed to assess the clinical accuracy of M-qXR. The al-
gorithm evaluated all Chest-X-rays (CXRs) performed during the study period for abnormal findings and assigned 
a COVID-19 risk score. Four independent radiologists served as radiological ground truth. The M-qXR algorithm 
output was compared against radiological ground truth and summary statistics for prediction accuracy were 
calculated. In addition, patients who underwent both PCR testing and CXR for suspected COVID-19 infection 
were included in a co-occurrence matrix to assess the sensitivity and specificity of the M-qXR algorithm. 
Results: 625 CXRs were included in the clinical validation study. 98% of total interpretations made by M-qXR 
agreed with ground truth (p = 0.25). M-qXR correctly identified the presence or absence of pulmonary opacities 
in 94% of CXR interpretations. M-qXR’s sensitivity, specificity, PPV, and NPV for detecting pulmonary opacities 
were 94%, 95%, 99%, and 88% respectively. M-qXR correctly identified the presence or absence of pulmonary 
consolidation in 88% of CXR interpretations (p = 0.48). M-qXR’s sensitivity, specificity, PPV, and NPV for 
detecting pulmonary consolidation were 91%, 84%, 89%, and 86% respectively. Furthermore, 113 PCR- 
confirmed COVID-19 cases were used to create a co-occurrence matrix between M-qXR’s COVID-19 risk score 
and COVID-19 PCR test results. The PPV and NPV of a medium to high COVID-19 risk score assigned by M-qXR 
yielding a positive COVID-19 PCR test result was estimated to be 89.7% and 80.4% respectively. 
Conclusion: M-qXR was found to have comparable accuracy to radiological ground truth in detecting radiographic 
abnormalities on CXR suggestive of COVID-19.   

1. Introduction 

The novel coronavirus disease 2019 (COVID-19) was first reported in 
Wuhan, China and has since spread throughout the world, causing the 
World Health Organization (WHO) to declare the virus a global 
pandemic on March 11, 2020 [1]. Despite extensive research, clinical, 

and governmental efforts, the prevalence of this virus continued to 
escalate globally as of this writing [2]. Due to the prevalence and highly 
infectious nature of this disease, there is a need to accurately and quickly 
identify patients, particularly in resource-limited regions [1]. 

Although initial efforts in mainland China first utilized chest 
computed tomography (CT)-scans to identify patients with likely 
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COVID-19 infection, recent studies indicate that chest x-ray (CXR) may 
be preferable for this purpose due to its widespread availability and 
lower cross-infectivity risks compared to CT scanners [3,4]. Common 
radiographic CXR findings in patients infected with COVID-19 include 
bilateral pulmonary consolidations predominantly in the lower lobes 
and in the periphery of the lungs [5–7]. 

When available, real time reverse transcription polymerase chain 
reaction (RT-PCR) testing for SARS-Cov-2 nucleic acid from the novel 
coronavirus is currently the preferred diagnostic testing, with a signifi-
cantly higher sensitivity (91%) for detecting COVID-19 infection when 
compared to CXR (69%) [5,8]. However, in resource limited settings 
where RT-PCR testing is not readily available, the Fleischner Society 
recommends evaluation with imaging to triage suspected COVID-19 
patients [8]. CXR has been shown to be a useful tool in triaging pa-
tients with suspected COVID-19 infection who could benefit most from 
early intervention and hospitalization [9,10]. 

Since many of the regions that would potentially utilize CXR to 
classify possible COVID-19 patients are already resource-limited, there 
is an opportunity for artificial intelligence (AI) to unburden radiologist’s 
workload by quickly identifying potentially infected patients [11]. 
While a few preliminary studies have investigated the use of AI, spe-
cifically utilizing a deep learning model, to interpret structural abnor-
malities on CT scans or CXR in order to improve COVID-19 detection, the 
use of AI in a resource-limited region for medical triage has not yet been 
investigated [12–14]. The objective of this study is to determine the 
efficacy of a newly designed algorithm (M-qXR) in stratifying patients 
with suspected COVID-19 infections in a resource-limited setting. 

2. Algorithm development 

qXR, a clinically validated, proprietary deep learning (DL) algorithm 
(Qure.ai, Mumbai, India) trained to identify abnormal imaging findings 
suggestive of tuberculosis (TB), is currently deployed in over 28 coun-
tries as an assistive tool for radiologists [15–17]. This algorithm was 
developed using a dataset of 2.5 million CXRs (CXRs included radio-
graphic findings suggestive of infectious etiologies for pneumonia, 
tuberculosis, and other pulmonary pathologies) and demonstrated an 
area under the curve (AUC) as a primary accuracy measure of 0⋅92 (CI 
0⋅91-0⋅94) for detection of abnormal scans [15]. This DL algorithm was 
modified (M-qXR) to detect radiographic abnormalities that are indic-
ative, such as opacities and consolidation with bilateral and peripheral 
distribution, and contra-indicative, such as hilar enlargement, discrete 
pulmonary nodule, calcification, cavity, and pleural effusion, of 
COVID-19 to assign a COVID-19 risk score. M-qXR uses the same model 
architecture as qXR, which is a convolutional neural network (CNN). 

The algorithm uses features derived from qXR generated segmentation 
maps of radiological findings clinically relevant to COVID-19 to 
generate COVID-19 risk scores. The specific training steps and 
post-processing algorithm for M-qXR are propriety; however, the ar-
chitectures that form the basic blocks in the systems that detect indi-
vidual abnormalities in M-qXR are similar to those of q-XR and are 
versions of resnets with squeeze-excitation modules [18,19]. 

In summary, CNNs are algorithms used to analyze data as a whole 
and further categorize this data into sections based on similar charac-
teristics. The use of CNNs has become popular in medical image classi-
fication for disease diagnosis due to high accuracy rates [20–23]. These 
algorithms follow a general architecture, consisting of an input image, 
convolution layers, pooling layers, and fully connected layers that create 
an output (Fig. 1). An input image is analyzed using several filters, 
referred to as channels, via convolution operations to form convolution 
layers. A down-sampling operation occurs, yielding further data 
extraction and a pooling layer. Then, each input is mapped fully to form 
a connected layer [21,24]. CNNs combine spatial and channel-wise in-
formation to analyze an image by placing varying weights on filters 
based on the desired output. More recently, Squeeze-Excitation Net-
works (SENets), improve the efficiency of CNNs by reducing the 
computational power needed to analyze input images. These algorithms 
can evaluate channel-interdependencies when analyzing input images 
and decipher which channels should be assigned greater weight for the 
overall interpretation of an image [19]. 

2.1. Evaluation of M-qXR 

An independent test-set of 11,479 CXRs was created prior to 
deployment to evaluate the modified algorithm (M-qXR) as a tool to risk 
stratify patients based on CXR imaging findings. The test-set consisted of 
515 positive CXRs and 10,964 negative CXRs. Positive CXRs were 
defined as any CXRs acquired from a patient with a RT-PCR positive test, 
the gold-standard of care for diagnosis of novel coronavirus-19 based on 
the current World Health Organization (WHO) guidelines. Positive CXRs 
were acquired after PCR-diagnosis was obtained. The algorithm was 
trained on a set of 300 CXRs from COVID-19 positive patients from India 
and Europe. Negative CXRs were defined as those acquired before the 
first case of COVID-19 was discovered on December 31, 2019 [25]. The 
negative CXR set used was sampled from a distinct set of 250,000 CXRs 
and was comprised of 1609 cases of bilateral pulmonary opacities and 
547 cases of pulmonary consolidations, where the final diagnosis was 
not COVID-19. This set also included 355 CXRs with abnormalities not 
related to pulmonary opacities. The respective sizes of the negative and 
positive CXR sets were created to match the available prevalence of the 

Fig. 1. General CNN architecture with Squeeze-Excitation Network structure.  
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disease as reported in the literature at the time of algorithm develop-
ment during the first trimester of 2020, allowing for evaluation of the 
algorithm’s ability to detect non-COVID-19 pulmonary opacities and 
other findings [26]. M-qXR was able to rule out COVID-19 and suggest 
alternative possible etiologies based on CXR imaging findings. M-qXR 
was observed to have an area under the curve (AUC) of 0.9 (95% CI: 
0.88–0.92) on this test set. At the operating threshold, M-qXR was 
observed to have a sensitivity of 0.912 (95% CI: 0.88–0.93) and speci-
ficity of 0.775 (95% CI: 0.77–0.78) to detect imaging findings indicative 
of COVID-19 (Table 1). 

3. Methods 

3.1. Study Design 

A dual track clinical validation study was designed to compare the 
accuracy of M-qXR in detecting CXR imaging findings for COVID-19 to 
the formal interpretations made by radiologists. In collaboration with 
Hospital Angeles del Pedregal, the algorithm was deployed at a private 
hospital in Mexico City, Mexico, during the initial stages of the COVID- 
19 pandemic in the country (April to May 2020) as a tool to stratify at- 
risk patients to receive further testing to help contain the early spread of 
the virus. Of note, the study period was eight weeks. Patient consent was 
waived as the data used for algorithm development was retrospective 
and de-identified and data processes were carried out in a controlled 
environment compliant with all Indian IT laws and the Health Insurance 
Portability and Accountability Act (HIPAA).The dual track consisted of: 

3.2. Track 1: M-qXR 

M-qXR evaluated all CXRs performed at Hospital Angeles del 
Pedregal during the study period for abnormal findings consistent with 
COVID-19. The algorithm was configured to process all CXRs performed, 
regardless of reason for hospital visit, and evaluate for the presence of 
radiographic abnormalities commonly found with COVID-19 infection. 
The presence of pulmonary opacities and consolidations with a bilateral 
and peripheral distribution were considered indicative of likely COVID- 
19 infection. The presence of hilar enlargement, a discrete pulmonary 
nodule, calcifications, cavitation, and pleural effusions were contra- 
indicative of COVID-19. M-qXR risk stratified CXRs into no-risk, low- 
risk, medium-risk, and high-risk for COVID-19 based on the presence or 
absence of these radiographic abnormalities (Fig. 2). The thresholds for 
low-risk, medium-risk, and high-risk COVID-19 scores were established 
by Qure.ai and were provided by M-qXR as a validated threshold. 
However, the marginal percent probability that the radiographic find-
ings in each CXR were suggestive of COVID-19 were also provided by M- 
qXR. 

3.3. Track 2: ground truth 

Four independent radiologists served as ground truth (ideal expected 
result used to calculate DL algorithm’s accuracy) and evaluated all CXRs 
during the study period for abnormal findings consistent with COVID- 

19. Ground truth was established by majority consensus in-
terpretations by the four radiologists, who had an average of 22 years (2, 
5, 30, 50 years respectively) of experience. The radiologists were 

Table 1 
M-qXR’s metrics for detecting signs of COVID-19 on CXR.   

aSensitivity (%) aSpecificity (%) aAUC PPV (%) NPV (%) 

M-qXR 91.2 
b(88.0–93.0) 

77.5 
b(77.0–78.0) 

0.9 
b(0.88–0.92) 

c69.9 d89.7 c41.6 d80.4  

a Metrics calculated at the operating threshold during algorithm development. 
b 95% Confidence Intervals (CI). 
c PPV and NPV of a medium-high COVID-19 risk score yielding a positive COVID-19 PCR result using the estimated prevalence of COVID-19 among the study 

patients. 
d PPV and NPV for a medium-high COVID-19 risk score yielding a positive COVID-19 PCR result using the algorithm’s observed sensitivity and specificity at the 

operating threshold and disease prevalence cited in literature. 

Fig. 2. Examples of chest radiographs evaluated by the M-qXR algorithm. M- 
qXR assigned a high (a), medium (b), and low (c) COVID-19 risk score based on 
the presence of radiographic abnormalities on the chest radiographs presented. 
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provided with the identification number and study date for each CXR. 
Radiologists were blinded to the patient’s reason for hospital visit and 
did not have access to the patient’s medical chart during the study 
period. The radiologists conducted a preliminary review of all CXRs to 
classify them as either normal or abnormal. A CXR was marked as 
normal when majority of radiologists classified the CXR as normal. The 
same criteria were used to classify CXRs as abnormal. The presence of 
any of the imaging findings concerning for COVID-19 classified the CXR 
as abnormal. 

3.4. COVID-19 risk score and PCR test result Co-occurrence matrix 

In parallel to the dual-track validation study, patients who sought 
treatment at Hospital Angeles del Pedregal also underwent PCR testing 
for definitive COVID-19 diagnosis. Testing was offered after clinical 
evaluation by a physician. The decision to perform PCR-testing was 
made at the physicians’ discretion. A subset of patients who underwent 
CXR also received PCR-testing. Patients who underwent both PCR 
testing and CXR for suspected COVID-19 infection were included in a co- 
occurrence matrix to assess the sensitivity and specificity of the M-qXR 
algorithm. 

3.5. Statistical analysis 

The M-qXR algorithm output was compared against radiological 
ground truth and summary statistics for prediction accuracy were 
calculated. For each radiographic abnormality, paired categorizations 
(present/not present) were recorded as determined by M-qXR and by 
consensus of radiologists. McNemar’s test was used to estimate the 
chance of seeing a given difference in these paired categorizations if 
there was no underlying difference between groups. Furthermore, the 
risk score assigned by M-qXR was computed using a post-processing 
algorithm that combined the model outputs for the above-mentioned 
imaging findings that are either suggestive or contra-indicative of 
COVID-19. To simulate triage, only the first scan a patient received 
during hospitalization was included when calculating M-qXR COVID-19 
risk score’s prediction accuracy. Statistical measures for accuracy such 
as sensitivity, specificity, PPV, and NPV were calculated. 

4. Results 

4.1. M-qXR clinical validation 

A total of 722 CXRs were processed by M-qXR during the study 
period. Of the 722 CXRs, 647 were interpreted by both the M-qXR al-
gorithm and by the radiologists. Seventy-three CXRs were initially 
excluded from the study because they were not properly uploaded into 
the picture archiving and communication system (PACS); therefore, a 
final interpretation for these CXRs was not made. Twenty-two additional 
CXRs were excluded from the study because majority consensus was not 
achieved by the radiologists and ground truth could not be established. 
As a result, 625 total CXRs were included in the clinical validation study. 
M-qXR classified 524 CXRs as abnormal and proceeded to assign a 
COVID-19 risk score (Fig. 3). In terms of clinical accuracy, 98% of total 
interpretations made by M-qXR agreed with ground truth. McNemar’s 
test yielded a p = 0.25 indicating no statistically significant difference 
between M-qXR’s ability to detect a radiographic abnormality con-
cerning for COVID-19 on CXR when compared to ground truth. 

M-qXR correctly identified the presence or absence of pulmonary 
opacities in 94% of CXR interpretations. However, McNemar’s test 
yielded a p < 0.05 (p = 0.0001) indicating a statistically significant 
difference between M-qXR’s ability to detect the presence of pulmonary 
opacity on CXR when compared to ground truth. M-qXR’s sensitivity and 
specificity for detecting pulmonary opacities was 94% and 95% 
respectively. The calculated PPV and NPV for M-qXR’s ability to 
correctly report pulmonary opacity was 99% and 81% respectively. M- 
qXR correctly identified the presence or absence of pulmonary consoli-
dation in 88% of CXR interpretations. No significant differences were 
seen in M-qXR’s ability to detect the presence of pulmonary consolida-
tion on CXR when compared to ground truth, p > 0.05 (p = 0.48). M- 
qXR’s sensitivity and specificity for detecting pulmonary consolidation 
was 91% and 84% respectively. The calculated PPV and NPV for M- 
qXR’s ability to correctly report pulmonary consolidation was 89% and 
86% respectively. 

4.2. COVID-19 risk score and PCR test result Co-occurrence matrix 

A total of 1083 patients underwent PCR testing for definitive COVID- 

Fig. 3. Study Design: M-qXR Clinical Validation. PACS: Picture archiving and communication system; CXRs: Chest X-rays.  
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19 diagnosis during the 8-week study period. Of the 1083 patients, the 
majority (n=962) underwent PCR testing alone without CXR. A small 
subset of patients (n=121) underwent both PCR testing and CXR for 
COVID-19 diagnosis. These CXRs were used to clinically validate M-qXR 
as stated previously. The CXRs corresponding to these patients were 
automatically processed by M-qXR and assigned a COVID-19 risk score, 
which was correlated with a PCR result. M-qXR COVID-19 low risk 
scores (n=8) were excluded, as they could not be correlated to either 
positive or negative PCR test results. In total, 113 COVID-19 validated 
cases were used to create a co-occurrence matrix for the COVID-19 risk 
score produced by M-qXR and PCR testing (Fig. 4). 

58.4% of all PCR results (n=66) were positive for COVID-19. Patients 
with medium-high COVID-19 risk scores accounted for 86.6% of all 
positive PCR test results. In contrast, 41.6% of PCR tests (n=47) yielded 
a negative result for COVID-19. Patients with a no-risk COVID-19 score 
accounted for 50% of all negative PCR test results. The calculated PPV 
and NPV of a medium-high COVID-19 risk score yielding a positive 
COVID-19 PCR result was estimated to be 69.9% and 41.6% respectively 
using the estimated prevalence of COVID-19 among the study patients. 
Conversely, the calculated PPV and NPV for a COVID-19 medium-high 
risk score using the algorithm’s observed sensitivity and specificity 
(91.2% and 77.5% respectively) at the operating threshold was 89.7% 
and 80.4% respectively (Table 1). 

5. Discussion 

5.1. Clinical significance 

Clinical validation of M-qXR as an assistive tool to risk stratify pa-
tients based on CXR imaging findings concerning for COVID-19 was 
achieved by comparing the algorithm output against radiological 
ground truth. 98% of interpretations made by M-qXR coincided with 
ground truth and no significant differences were seen in M-qXR’s ability 
to flag overall radiographic abnormalities when compared to the 

radiologists (p < 0.05). M-qXR exhibited a moderate to high sensitivity 
and specificity for radiographic findings suggestive of COVID-19. 
Among patients with PCR positive COVID-19 test results, 64.4% of the 
corresponding CXRs were classified as medium-high risk by M-qXR. The 
PPV and NPV of a COVID-19 risk score yielding a positive PCR test result 
were 69.9% and 41.6% respectively in our study population. We believe 
the low specificity was due to selection bias as it may be that only pa-
tients with symptoms highly concerning for a respiratory infection 
received both a CXR and PCR. Using M-qXR’s observed sensitivity and 
specificity (91.2% and 77.5% respectively) at the operating threshold, 
the PPV and NPV were found to be 89.7% and 80.4%. 

We believe that M-qXR could serve as a radiology decision tool to 
guide management of patients who are deemed at medium to high risk 
for COVID-19 and may have poor outcomes. In the setting of limited 
testing, Mexico employed an epidemiological surveillance method 
known as the Sentinel Model to assess disease burden and allocate re-
sources. By risk stratifying patients using M-qXR’s COVID-19 risk scores, 
limited resources, such as PCR-testing, can be allocated to higher risk 
groups to help diagnose and treat patients with high likelihood of dis-
ease transmission. It is estimated that two-thirds of the world’s popu-
lation lacks access to medical imaging [27]. Patients in these 
radiological scarce zones tend to have higher mortality and morbidity 
due to poor access to health services. We believe that M-qXR can help 
increase access to care in these areas and optimize a radiologist’s 
workflow in a critically resource-limited environment by providing 
recommendations to help guide medical management. 

DL algorithms have recently been used to screen for tuberculosis and 
other diseases, especially in resource-limited settings, to aid in the 
interpretation of CXR findings. More recently, several DL algorithms 
have been developed to screen and risk stratify for COVID-19. However, 
many of these algorithms lack robust clinical validation. One critical 
appraisal of dozens of AI algorithms and predictive models to screen and 
stratify COVID-19 patients concluded that all of the models were at a 
high risk of bias, via a PROBAST assessment [28]. The risk of bias was 

Fig. 4. COVID-19 Risk Score and PCR Test Result Co-occurrence Matrix: Study Design 
PCR: Real time reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-Cov-2 nucleic acid from the novel 2019 coronavirus strain; CXR: Chest 
X-rays. 
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due to underreporting the use of control patients or the target popula-
tion, poor description of how regions of interest were assessed, lack of 
reader consensus to establish ground truth, and a lack of scientific rigor 
[29]. In addition, many of the prognostic outcomes were not well re-
ported because of lack of long-term follow up. Many of these studies also 
need to be performed using a large-scale population to improve external 
validity. The findings of these studies cannot be generalized due to lack 
of adequate sample size, despite high reported sensitivities and speci-
ficities. A study by Chowdhury et al., however, acknowledged the 
importance of a large dataset and tried to teach an algorithm to read 
COVID images from a large set of COVID-19 positive CXRs. They were 
able to achieve high classification accuracy, precision, sensitivity, and 
specificity in diagnosing COVID-19 [29]. 

5.2. Limitations of study 

The present study had several limitations. The number of CXRs 
decreased after the 6th week of the study period, despite increasing daily 
COVID-19 cases in Mexico City, Mexico. To track the spread of COVID- 
19, the Mexican Health Department redirected all COVID-19 positive 
patients to government owned hospitals, which significantly decreased 
the number of CXRs analyzed by the algorithm during the last two weeks 
of the study. Furthermore, the data that was used to test the performance 
of the algorithm originated from one institution, and thus may not be an 
accurate representation of COVID-19’s appearance on chest radiographs 
in other settings. Another limitation is that chest radiographs may be 
normal early in the disease course of COVID-19. One study found that 
31% of patients diagnosed with COVID-19 did not demonstrate any 
chest radiograph abnormalities [5]. Thus, chest radiographs may not be 
the most effective way to risk stratify COVID-19 patients who are early 
in their disease process. Furthermore, to simulate triage, only the first 
CXR patients received during their hospitalization were used to calcu-
late statistical measures for accuracy. 

Of note, patients with low COVID-19 risk scores were not included in 
the COVID-19 risk score and PCR test result co-occurrence matrix. A low 
COVID-19 score was assigned to CXRs with even the smallest probability 
of disease based on radiographic findings. We believe that low-risk 
scores may not serve as reliable predictive indicators for COVID-19 
diagnosis, and the correlation between low-risk scores and PCR test 
results may be of minimal value. Several limitations of this framework 
with respect to calculating the PPV and NPV were also identified. To 
calculate PPV and NPV, the prevalence, sensitivity, and specificity of a 
test must be known. Unfortunately, the true prevalence for COVID-19 in 
this study population was unknown. To calculate the PPV and NPV for 
M-qXR, we had to use M-qXR’s observed sensitivity and specificity at the 
operating threshold using the COVID-19 disease prevalence found in the 
validation dataset, which mirrored the disease prevalence reported in 
literature at the time of algorithm deployment. Therefore, further 
studies are needed to assess the validity and reliability of M-qXR as a 
triaging tool in patient populations in which the prevalence of COVID-19 
is higher than in the reported literature. 

5.3. Conclusion 

This study evaluated M-qXR’s ability to serve as a risk stratification 
tool to help evaluate patients with possible COVID-19 diagnosis. M-qXR 
was found to have comparable accuracy in detecting radiographic ab-
normalities on CXR suggestive of COVID-19 when compared to radio-
logical ground truth. The M-qXR algorithm has the potential to provide 
benefit in guiding medical management of patients suspected of having 
COVID-19 who present with a high likelihood of disease, and where 
timely viral testing is not feasible due to limited resources. We also 
believe that M-qXR’s ability to localize and quantify the affected regions 
on CXR, will enable us to monitor for progression of infection and 
evaluate response to treatment in future studies. 

This study adds to the growing body of literature utilizing existing 

CXR and CT datasets in the public domain pertaining specifically to 
COVID-19 to train an AI model for COVID-19 classification and diag-
nosis. By adapting q-XR, a validated DL algorithm for CXR interpreta-
tion, to identify radiographic findings that are typically seen on CXR and 
are suggestive of COVID-19, we believe that M-qXR can help predict a 
patient’s likelihood of being diagnosed with COVID-19. In addition, we 
believe that this study can also help to further validate future studies 
using a risk stratification approach such as this for a triaging setting. 
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