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Objectives: This study aimed at assessing shared spatial risk of childhood undernutrition indicators in Malawi. 
Study design: Cross-sectional design. 
Methods: The shared spatial component model was fitted to childhood undernutrition indicators, namely: 
stunting, wasting and underweight, using 5066 child records of the 2015/16 Malawi demographic health survey 
data. The spatial components were districts, and were modeled by the convolution prior, with the structured 
components being assigned the conditional autoregressive distribution. 
Results: There is significant clustering of shared spatial risk of stunting and wasting (Moran I = 0.464, p-value =
0.009), and wasting and underweight (Moran I = 0.392, p-value = 0.026), and the risk maps show southern 
districts, followed by central districts being at greater risk of jointly having stunting and wasting, wasting and 
underweight, compared to the northern region districts. The shared spatial risk of stunting and underweight is 
randomly dispersed across the country (Moran I = - 0.044, p-value = 0.539). 
Conclusion: Interventions to reduce the shared risk of child undernutrition should focus on the southern region 
districts and those in the central region, and a suggestion is made to address the issue of overpopulation and 
effects of climate change.   

1. Introduction 

Child undernutrition is a form of malnutrition resulting from eating 
less. Some forms of undenutrition are stunting, wasting and under-
weight. Stunting is measured by height-for-age z-score (HAZ) and is a 
sign of chronic food inadequacy. Wasting is measured by weight-for- 
height z-score (WHZ) and is a manifestation of acute situation related 
to illness or lack of food. Underweight is measured by weight-for-age z- 
score (WAZ) and it is a result of either wasting or stunting or both. Child 
undernutrition is said to be associated with poor survival, poor physical 
and cognitive development [1] and obesity, later in life [2]. The global 
burden of childhood malnutrition as of 2020 [3] was 21.3% for stunting, 
6.9% for wasting and 5.6% for overweight. In Malawi, it is estimated 
that 37% of under-five children are stunted, 3% are wasted, 12% are 
underweight and 5% are overweight, according to the 2015/16 Malawi 
demographic health survey (MDHS) report [4]. 

Malnutrition has generally been decreasing from 1992 to 2015/16 in 
Malawi [4,5]. In this case, stunting has decreased from 55% to 37%, 
underweight from 24% to 12%, wasting from 6% to 3% and overweight 
from 9% to 5%. The decrease is claimed to be due to the decreasing 

poverty levels [6] and increase in women autonomy [7]. Nevertheless, 
malnutrition problem has remained persistent in Malawi due to the fact 
that some factors that contribute to malnutrition have not changed 
significantly. For example, poverty is still considered to be a contrib-
uting factor of childhood malnutrition [8]. Other contributing factors 
include: small sized children at birth, episodes of sicknesses during in-
fancy and HIV mothers [9,10]. Persistent malnutrition in Malawi has 
also been attributed to differential in community characteristics like 
availability of facilities in different communities, differential in mar-
riage culture (matrilineal versus patrilineal communities) [11]. In this 
case, communities with better facilities, like, dairy markets, and those 
with patrilineal marriages are associated with better nutritional status 
than those with poor facilities and with matrilineal marriages. Poor 
education of mothers, being male child, children of rural residence and 
poor access to clean water are other determinants of malnutrition in 
Malawi [12] that might have been left unattended. Furthermore, 
non-exclusive breast feeding is another potential factor of persistent 
malnutrition in Malawi [13]. Contextual geographical factors, like cli-
matic factors such as high rainfall and temperature may also be playing 
part in the risk of having childhood malnutrition in Malawi [14]. 
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Not many epidemiological studies in Malawi on childhood malnu-
trition have considered geographical contextual spatial risk of childhood 
malnutrition [14,15]. In addition, these few studies have not considered 
the shared contextual geographical spatial risk common to multiple 
malnutrition indicators. In this case, both Ngwira [14] and Kandala et al. 
[15], investigated the divergent contextual geographical spatial risk, 
specific to each malnutrition indicator. The shared geographical spatial 
risk to malnutrition indicators can be described as the risk to indicators 
due to similar unmeasured or unobserved factors, for example, similar 
socio-economic, climatic or environmental factors, all influencing the 
indicators. Some of the studies that have investigated the shared 
geographic contextual spatial risk of childhood malnutrition on the 
global scale are Sartorius et al. [16], Takele et al. [17] and Kinyoki et al. 
[18]. The investigation of shared geographic spatial risk of multiple 
disease outcomes usually benefit from joint shared spatial component 
model. The use of this model is based on the assumption that outcomes 
are correlated, like malnutrition indicators which are found to be pair-
wise correlated [19–21]. Correlation of malnutrition indicators is based 
on the fact that they usually share the same biomarkers of the same 
child, like age, weight and height. 

The aim of this study was to investigate shared geographical spatial 
risk of childhood undernutrition indicators, so as to determine 
geographical regions (districts) where the indicators are strongly 
correlated and to hypothesize possible common or shared contextual 
risk factors for further epidemiological investigation. 

2. Methods 

2.1. Study area 

The study used data of 2015/16 Malawi demographic and healthy 
survey (MDHS) which covered the whole nation of Malawi. Malawi is in 
the Southern Africa between latitudes, 9◦22’S and 17◦03’S and longi-
tudes, 33◦40’E and 35◦55’E [22]. It has an area of 118480 km2, length of 
900 km and width of about 250 km. It is bordered by Mozambique to the 
south, south east, and south west, Zambia to the central west and north 
west and Tanzania to the north and north east. It has three main regions, 
namely: northern, central and southern region. There are a total of 
twenty eight districts and the northern region has six districts, that is, 
Karonga, Rumphi, Chitipa, Mzimba, Nkhata-bay and Likoma. The cen-
tral region has nine districts, namely: Kasungu, Dowa, Ntchisi, 
Nkhota-kota, Mchinji, Salima, Dedza, Lilongwe and Ntcheu. There are 
thirteen districts located in the southern region and they are: Mulanje, 
Chiradzulu, Blantyre, Balaka, Mangochi, Machinga, Phalombe, Chik-
wawa, Nsanje, Mwanza, Thyolo, Neno and Zomba. There are four major 
cities in Malawi which are: Blantyre, Lilongwe, Mzuzu and Zomba. The 
total population size based on the latest census conducted in 2018 is 
17563749 [23]. The southern and central regions are relatively highly 
populated than the northern region with the population sizes 7750629, 
7523340 and 2289780 respectively [23]. 

2.2. Sampling design and data collection 

The 2015/16 MDHS study according to National Statistical Office of 
Malawi [4], used a two stage cluster sampling with stratification where 
clusters were stratified by residence (urban/rural) and then in each 
cluster, households were randomly selected. In the first stage, 850 
clusters, comprising of 173 clusters in urban areas and 677 clusters in 
rural areas were selected by probability proportional to size (PPS) 
cluster sampling method. In the second stage, 30 households from each 
urban cluster and 33 households from each rural cluster were selected by 
systematic sampling. The data from households was then collected using 
four questionnaires that is, household, woman, man and biomarker 
questionnaire. The household questionnaire was used to collect infor-
mation on household characteristics such as type of dwelling unit, 
source of drinking water, type of toilet, type of house flooring material 

and ownership of durable goods. The individual woman and man 
questionnaires were administered to women aged 15–49 years and men 
aged 15–54 years in the selected households and were used to collect 
information on background characteristics such as age and education, 
marriage and sexual activity, maternal and child health, nutrition, 
fertility preferences, sexually transmitted diseases (STDs) and human 
immunodeficiency virus (HIV), among others. Biomarker questionnaires 
were used to collect information on anthropometric measurements such 
as height and weight, anemia and HIV testing. Anthropometric mea-
surements were recorded for 0–59 months old children and whose 
mothers were 15–49 years of age. 

2.3. Data variables 

The study used MDHS child data set, where the unit of analysis is a 
child less than 5 years (0–59 months). The data set contains information 
on under-five children such as age, sex, anthropometric measurements 
(height, weight), anthropometric z-scores such as HAZ, WHZ and WAZ. 
Furthermore, the data set has information on child health indicators 
such as immunization coverage, vitamin A supplementation, recent 
occurrence of illnesses such as diarrhea, fever, cough and treatment of 
childhood diseases. The data set also contains information on maternal 
and household characteristics such as maternal education and wealth 
status, among others. 

The response variables of interest considered were childhood un-
dernutrition status indicators: stunting (yes, if HAZ<− 2/no, if 
HAZ≥− 2), wasting (yes, if WHZ<− 2/no, if WHZ≥− 2) and underweight 
(yes, if WAZ<− 2/no, if WAZ≥− 2). This definition of the childhood 
undernutrition indicators was based on WHO 2006 child growth stan-
dards [24]. The independent variables considered were child age (in 
months), mother body mass index (kg/m2), child sex (male/female), 
education (no education/primary/secondary/higher), wealth quantile 
(poorest/poor/rich/richer/richest) and geographical location of the 
child which was district. The use of these independent variables was 
based on the literature [15]. Missing values in the response variables 
were dealt with automatically through Bayesian inference by sampling 
from their posterior distributions [25]. A few missing values for child 
age were dealt with, by deleting all records where child age was missing. 
The standard approach though, was to define the prior distribution for 
child age and then use posterior estimates for missing values, but this 
paused a challenge on initializing the Markov chain Monte Carlo 
(MCMC) chains. The final total number of cases used were 5066. 

2.4. Statistical analysis 

Bivariate scatter plots were made between two of the three childhood 
undernutrition indicators to asses correlation. A multiple variable joint 
shared heterogeneity model of any of the two childhood undernutrition 
status indicators was then fitted. Specifically, a joint shared spatial 
model of stunting and wasting, stunting and underweight, and wasting 
and underweight were fitted. Theoretically, a bivariate shared spatial 
model of the two Bernoulli distributed health outcomes is defined as 
follows according to Manda et al. [26]: Let πij1 be the probability of child 
i in area j of having disease of the first kind, and πij2 the probability of 
child i in area j of having disease of the second kind. Then the joint 
shared spatial model of the two diseases is defined as: logit(πij1) = α1 +

XTβ1 + ∅jγ + φj1 and logit(πij2) = α2 + XTβ2 +
∅j
γ + φj2, where X is a 

vector of fixed effects and ∅j is the area level shared spatial component 
and ∅j1 and ∅j2 are the two area level spatial effects which are disease 
specific. The parameter γ represents the differential gradient of the 
shared spatial component of the two diseases. The ratio of the scaling 
parameters, γ to 1γ compares the weight of disease 1 relative to disease 2 
associated with the shared component. The shared spatial effect, ∅j 

represents the proxy of the area level unmeasured risk factors influ-
encing both diseases and the disease specific spatial effects, ∅j1 and ∅j2, 
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denote the proxies for the unmeasured risk factors specific to the two 
diseases. The focus of this study was on the investigation of the shared 
spatial component which represents the shared latent risk between the 
two diseases. In this case, the shared spatial component was the district 
of the child, where the shared risk would be observed per district. The 
rest of the independent variables were used as control variables. Model 
estimation was fully Bayesian using the Gibbs sampling where model 
parameters were assigned prior distributions. All fixed effect parameters 
were assigned the normal distribution with a large variance assuming 
prior ignorance. All the spatial components were assigned the convo-
lution prior where they were split into structured and unstructured, that 
is, u+ v. The unstructured spatial components were assigned the normal 
distribution with zero mean, that is, u ∼ N(0, δ2

u), and the structured 
spatial effects were modeled by the following intrinsic conditional 
autoregressive (ICAR) normal distribution [27]: 

vi

⃒
⃒
⃒
⃒
⃒
vj∈Θi ∼ N

(∑
j∈Θi

vjwij
∑

j∈Θi
wij

,
δ2

v∑
j∈Θi

wij

)

, where wij was the weight relating 

adjacent areas, that is, if wij = 1, then the adjacent areas i and j were 
neighbors and if wij = 0, then the adjacent areas were not neighbors. 
The idea behind the ICAR prior for the area spatial effect is that the 
spatial effect of the geographical location is the average of spatial effects 
of the neighbors of the given location. The variance parameters were 
assigned the gamma distribution. Since model inference was Bayesian, 
design based analysis was not necessary as this is not common in 
Bayesian inference [28]. According to Kang & Bernstein [29], a true 
Bayesian analyst does not use survey weights as the focus is on reliable 
statistical models rather than on assessing the degree to which their 
estimates are nationally representative or not. The models were fitted by 
WinBUGS using R2WinBUGS package in R. A total number of 25000 
iterations were used and after a burn in of 10000 iterations and thinning 
of every 30th iteration, 500 iterations were left for posterior analysis. 
Before posterior analysis, the Markov chain Monte Carlo (MCMC) chains 
for all parameters were assessed for convergence to the posterior dis-
tribution by CODA package in R. The Geweke, Gelman-Rubin and 
Heidelberger-Welch diagnostic tests confirmed the convergence of 
MCMC chains. Posterior analysis involved the mapping of the posterior 
mean of the shared spatial component. Posterior probability that the 
shared spatial risk for each district was greater than one (i.e. Prob. (RR 
> 1)) was also plotted to highlight areas with increased risk. 

2.5. Ethical issues 

The data used in this study was downloaded from DHS website 
(www.dhsprogram.com/data) after being granted permission. The 
MDHS study was approved by Malawi Health Sciences Research Com-
mittee and Institutional Review Board of ICF Macro in Calverton, 
Maryland, USA. Participants gave consent to take part in the study after 
enumerators asked for their permission. 

3. Results 

Fig. 1 presents pairwise scattered plots of the z-scores for the child-
hood undernutrition indicators, namely: the height-for-age, weight-for- 
age, and weight-for-height. There is linear correlation between weight- 
for-age and height-for-age z-score (Fig. 1A), and between weight-for- 
height and weight-for-age z-score (Fig. 1C), since the scatter plots 
form a linear pattern. There is a very weak correlation between weight- 
for-height and height-for-age z-score (Fig. 1B), since the pattern in a 
scatter plot cannot be clearly defined. A shared spatial model of stunting 
and wasting, stunting and underweight, and then wasting and under-
weight was then fitted. 

Table 1 shows estimates of the variance parameters. The proportion 
of variance due to shared risk factors between the childhood 

Fig. 1. Pairwise scattered plots of the z-scores for the childhood undernutrition indicators. A (HAZ and WAZ), B (HAZ and WHZ) and C (WAZ and WHZ).  

Table 1 
Variance parameters of the shared spatial component model.  

Model δ2 (Shared pattern)  δ2 (Specific pattern)  % (Shared pattern) 

Stunting and wasting 
Stunting 0.007 (0.001, 

0.021) 
0.008 (0.001, 
0.022) 

0.439 (0.101, 
0.906) 

Wasting 0.018 (0.000, 
0.074) 

0.061 (0.023, 
0.116) 

0.186 (0.003, 
0.592) 

Stunting and underweight 
Stunting 0.008 (0.001, 

0.026) 
0.009 (0.002, 
0.020) 

0.457 (0.086, 
0.842) 

Underweight 0.015 (0.001,0.057) 0.019 (0.003, 
0.044) 

0.399 (0.024, 
0.895) 

Underweight and wasting 
Wasting 0.174 (0.042, 

0.397) 
0.029 (0.003, 
0.077) 

0.842 (0.610, 
0.978) 

Underweight 0.033 (0.004, 
0.103) 

0.013 (0.002, 
0.058) 

0.706 (0.331, 
0.966)  
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undernutrition indicators is very high for wasting and underweight 
(84% and 71%) and is moderate for stunting and wasting (44% and 
19%), and stunting and underweight (46% and 40%). The scaled shared 
spatial variance parameters for wasting and underweight (0.174 and 
0.033) are relatively higher than those of stunting and wasting (0.007 
and 0.018) and stunting and underweight (0.008 and 0.015), which are 
close to zero. This is suggesting insignificant shared spatial variation 
regarding the latter two pairs of undernutrition status indicators. 

Fig. 2 shows the shared spatial pattern of two of the three childhood 
undernutrition status indicators. The shared spatial risk pattern of 
stunting and wasting (Fig. 2A) shows many districts in the southern 
region being at increased risk to both stunting and wasting. One district 
in the north and west, called Mzimba is also at increased risk to both 
stunting and wasting. The shared unobserved risk pattern of stunting 
and underweight (Fig. 2B), shows the high risk areas being randomly 
distributed across the country. Similar to the shared risk pattern of 
stunting and wasting, the shared risk pattern of wasting and under-
weight (Fig. 2C) shows high risk areas being clustered in the south. The 
posterior probability map regarding stunting and wasting (Fig. 2D) that 
the estimated risk ratio is greater than one is showing many areas in the 
center and south having high probability that the risk ratio exceeds one. 
With regard to stunting and underweight (Fig. 2E), many districts across 
Malawi, regardless of region, have high probability that the risk ratio is 
greater than one. Regarding wasting and underweight (Fig. 2F), most 
districts in the southern region have a higher probability that the shared 
risk ratio is more than one. Spatial cluster analysis by the Moran I sta-
tistic, shows that there is significant clustering regarding shared risk to 
stunting and wasting (Moran I = 0.464, p-value = 0.009). There is also 
significant spatial autocorrelation regarding unobserved common risk to 
wasting and underweight (Moran I = 0.392, p-value = 0.026). The un-
observed shared risk to both stunting and underweight is randomly 
dispersed across Malawi (Moran I = - 0.044, p-value = 0.539). 

4. Discussion 

The study aimed at exploring the bivariate shared spatial risk pattern 
of childhood undernutrition indicators in Malawi while using the shared 
spatial component model. The study has highlighted geographical 

regions (districts) with high and low contextual spatial risk shared by 
childhood undernutrition indicators pairwise. This will guide epidemi-
ologist to know districts where the undernutrition indicators co-exists 
and hence forth investigate underlying risk factors causing the co- 
existence. The strength of the study is in the use of relatively novel 
analytical method as the routine methods tend to use separate models to 
investigate the spatial risk of individual undernutrition indicators. 

The study finds that most districts in the southern region and 
including a few in the central region in Malawi are consistently being at 
increased risk to all the three pairs of childhood undernutrition in-
dicators. The findings of the study are consistent with the literature [30, 
31], where it was found that the distribution of underweight and 
stunting separately, were more prevalent in the south and center than in 
the northern region. The observed spatial gradient may be due to the 
effect of common latent factors in play, and an explanation of such 
factors, is a matter of conjecture. One possible latent factor, could be 
population density. The southern region has the highest population 
density (244 people/km2) seconded by the central region (211 peo-
ple/km2) and lastly the northern region with the lowest density (84 
people/km2) [14,23]. The observed spatial gradient of the shared risk to 
undernutrition indicators, where the high risk coincides with the high 
population density is supported by the Nube & Sonneveld [30], who also 
observed that underweight hot spots in Africa were also high population 
density areas. The population density though itself is not correlated with 
undernutrition, but the pressure on land and its deterioration in quality 
due to high population brings about poor nutrition conditions [32]. 

The other possible driver of the observed shared spatial structure 
would be the climate. The main factors of climate are rainfall and 
temperature. High temperature tends to be associated with increased 
risk of undernutrition [18]. The effect of temperature on malnutrition is 
due to the fact that temperature is directly linked to aridity according to 
Quan et al. [33], which in turn has an impact on malnutrition [34]. On 
the other hand, high rainfall has been found to be associated with 
increased risk of stunting and low rainfall is associated with increased 
risk of wasting and underweight [14,18]. The high risk to childhood 
undernutrition indicators manifested in the southern region in Malawi is 
therefore as expected since the south eastern part (Zomba, Mulanje and 
Thyolo) is associated with high rainfall and the south western part 

Fig. 2. The shared spatial risk of childhood undernutrition indicators (A–C). (A) Stunting and wasting, (B) stunting and underweight and (C) underweight and 
wasting. Probability that RR > 1 (D–F). (D) Stunting and wasting, (E) stunting and underweight and (F) underweight and wasting. 
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including the southern tip (Balaka, Chikwawa and Nsanje) is associated 
with high temperature and low rainfall [35]. The effect of climate 
change like flooding would also be the other contributing factor to the 
observed high risk in the southern region. Areas especially in the 
southern tip experience flooding from Shire River almost every year. 
Flooding has been documented to enhance food insecurity by reducing 
fish catch rates due to dilution of fish in greater volumes of water [36]. 
Flooding is also associated with child morbidity like diarrhea which in 
turn is associated with high risk to undernutrition [37]. 

The weakness of this study though is that the data is a little bit out 
dated and hence the actual shared spatial risk patterns might have 
changed over the last five years. Nonetheless, the observed shared risk 
patterns may still guide the policy makers regarding the areas with 
increased shared risk in the absence of up to date nationally represen-
tative data, as currently there is no up to date data to my knowledge. 
Furthermore, this study has not investigated the shared spatial risk of all 
the three childhood undernutrition indicators. This may be the future 
work to be done. Also, future work may consider shared spatial- 
temporal risk trends, to investigate shared risk pattern by both space 
and time. 

5. Conclusion 

The study finds non-random pattern of the shared risk to stunting and 
wasting, wasting and underweight, where the southern region is at 
increased risk compared to the central and northern region. There is no 
significant clustering regarding the shared risk to stunting and under-
weight. The observed south to north gradient of spatial risk pattern calls 
for epidemiologist to further investigate the actual shared risk factors 
bringing about this spatial risk gradient. In addition, it is suggested that 
nutrition intervention policies should include interventions to address 
the effects of climate change and overpopulation on childhood under-
nutrition status. 
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