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Aims The medical need for screening of aortic valve stenosis (AS), which leads to timely and appropriate medical intervention,
is rapidly increasing because of the high prevalence of AS in elderly population. This study aimed to establish a screening
method using understandable artificial intelligence (AI) to detect severe AS based on heart sounds and to package the
built AI into a smartphone application.

Methods
and results

In this diagnostic accuracy study, we developed multiple convolutional neural networks (CNNs) using a modified strati-
fied five-fold cross-validation to detect severe AS in electronic heart sound data recorded at three auscultation locations.
Clinical validation was performed with the developed smartphone application in an independent cohort (model estab-
lishment: n= 556, clinical validation: n= 132). Our ensemble technique integrating the heart sounds from multiple aus-
cultation locations increased the detection accuracy of CNN model by compensating detection errors. The established
smartphone application achieved a sensitivity, specificity, accuracy, and F1 value of 97.6% (41/42), 94.4% (85/90), 95.7%
(126/132), and 0.93, respectively, which were higher compared with the consensus of cardiologists (81.0%, 93.3%, 89.4%,
and 0.829, respectively), implying a good utility for severe AS screening. The Gradient-based Class Activation Map de-
monstrated that the built AIs could focus on specific heart sounds to differentiate the severity of AS.

Conclusions Our CNN model combining multiple auscultation locations and exported on smartphone application could efficiently
identify severe AS based on heart sounds. The visual explanation of AI decisions for heart sounds was interpretable.
These technologies may support medical training and remote consultations.
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Introduction
Aortic valve stenosis (AS) is one of the most common valvular heart
diseases (VHDs) in developed countries. Recent guidelines on VHD
management have updated treatment recommendations for
asymptomatic severe AS.1 Further, the recent OxVALVE study ob-
served a substantial number of undiagnosed patients with VHD
among the elderly population.2 Therefore, an early and easily
accessible screening method is necessary to unmask severe AS in
asymptomatic patients to improve prognosis and to prevent sudden
cardiac death.

Currently, echocardiography is the gold standard for diagnosis of
patients with VHD.1,3 Auscultation is a simple, cost-effective, and a
basic diagnostic examination procedure that has occupied an import-
ant place in medical education and training. However, Gardezi et al.
reported that using cardiac auscultation alone for VHD detection is a
poor screening tool in primary care and recommended to have an
easier access to echocardiography.4–7

Artificial intelligence (AI) technologies are developing drastically
and have extended its use in the medical field. The potential recog-
nition capability of AI is shown to be superior than that of human
capability.8,9 Chorba et al.10 developed and evaluated an AI system
to detect VHD based on heart sounds in patients with single valvular
disease. It still remains unclear if AI can distinguish the heart sounds in
presence of systolic murmurs caused by other common VHD. The
current AI architecture has often been criticized because it is difficult
to explain how the output (decision) is determined. Therefore, ex-
plainability and interpretability are key requisites in introducing AI
technology in medical practice.

The objectives of this study were as follows: (i) to develop an AI
technology to screen and detect severe AS based on heart
sounds as efficiently as cardiologists, even in the coexistence of other
valvular diseases, (ii) to visualize the built AI’s focus to verify its
judgement process, and (iii) to package the built AI into a
smartphone application to efficiently screen and easily interpret
the heart sounds.

Methods

Research participants
Patients who underwent transthoracic echocardiography (TTE) in our
institute were enrolled in the study. The trained members of our project
team (both coordinators and auscultators) had to be present during the
enrolment process. The auscultators were blinded to the cardiovascular
status of the participants.

Inclusion criteria were as follows: (i) age≥ 18 years, (ii) a complete set
of echocardiography tests, and (iii) written informed consent. Exclusion
criteria were as follows: (i) history of any heart valve surgery or trans-
catheter aortic valve implantation, and (ii) use of a cardiac implantable
electronic device, except an implantable loop recorder.

The existing guidelines for echocardiography were followed to establish a
diagnosis (see Supplemental Material for detail).1,11 Based on the diagnosis of
TTE, we prospectively enrolled 886 participants (establishment cases) includ-
ing 114 patients with severe AS and 772 patients without severe AS (no AS,
n= 670; mild AS, n= 51; moderate AS, n= 51). The Standards for
Reporting Diagnostic accuracy studies (STARD) 2015 flow diagram for
the enrolment of the participants is shown in see Supplementary material
online, Figure S1. No patients were enrolled twice in the present study.

Data collection
All data were collected after written informed consent was obtained
from the patient and the participants’ data were pseudonymized at the
data centre. Further, data were anonymized during all processes of the
project.

The auscultators were blinded to the patients’ clinical information at
the time of recording. A phonocardiogram was recorded using an Eko
Duo system Eko Devices Inc., Oakland, CA, USA) on the day of echocar-
diography (+1 day). The heart sounds were recorded in the
4000 Hz.wav format from the following three auscultation locations in
each patient: second intercostal space along the right sternal border
(L1: 2RSB), Erb’s area (third intercostal space along the left sternal bor-
der: L2: ERB), and apex (fifth intercostal space in the midclavicular line:
L3: APX). The duration of each recording was 15-s. The 12-lead electro-
cardiogram and clinical data including medical and treatment history
were collected on the day of phonocardiogram recording.

Dataset preparation and data preprocessing
The detailed processes are documented in the Supplementary material
online. In brief, we adopted a modified stratified five-fold cross-validation
method to train the models. Each training set contained 352 training
cases (severe AS= 74, moderate AS= 33, mild AS= 33, and no AS=
212), 100 development cases (severe AS= 20, moderate AS= 9, mild
AS= 9, and no AS= 62), and 100 test cases (severe AS= 20, moderate
AS= 9, mild AS= 9, and no AS= 62), and there were no overlaps be-
tween the training, development, and test cases. Further, the test cases
were common to all the five training sets for a fair evaluation of the per-
formance of the model (see Supplementary material online, Figure S2 for
detail).

Based on our previous experience that there is a possibility of misrec-
ognition of systolic murmurs due to AS and mitral regurgitation, we ba-
lanced the number of cases with mitral regurgitation and AS while
building the cross-validation sets, 330 of 886 participants were excluded
from the establishment dataset (Table 1).

For preprocessing, a 128-dimension log-Mel spectrogram was ex-
tracted (see Supplementary material online, Figure S3). All our models
were constructed to accept log-Mel spectrogram using 4 s heart sound
data as input data.

Training and development of models
We adopted two different architectures of convolutional neural net-
works (CNNs) based on our experience (see Supplementary material
online, Figure S4A, S4B).9 The output of our models interpreted if the in-
put heart sound were that of severe AS or not. Python 3.7 and
TensorFlow 2.3 (Google LLC, Mountain View, CA, USA) were used
for this project. We trained the CNN models using the entire 4 s heart
sound data from all the three collection locations, and then separately for
each location. (see Methods in Supplemental Material and see
Supplementary material online, Figure S7 for details).

In terms of performance metrics, we determined the F1 value [har-
monic mean of sensitivity and positive predictive value (PPV)], accuracy,
sensitivity, specificity, PPV, negative predictive value (NPV), and area un-
der the curve (AUC).

The best-performing model was selected for each data collection lo-
cation (2RSB, ERB, and APX) based on the performance metrics in the
test dataset (4 s data level) and named as the L1-, L2-, and L3-models, re-
spectively. The best models from each data collection location were
then assembled in the following combination of ratios: (i) L1-model:
L2-model:L3-model= 1:1:1, (ii) L1-model:L2-model:L3-model= 6:2:2,
and (iii) L1-model:L2-model:L3-model= 8:1:1.
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For case level performance testing, the prediction per case was calcu-
lated by averaging the predictions of all data fractions in each case. During
this process, one heart sound data (15-s) was divided into 11 fractions of
4 s data at regular intervals, and each data fraction was preprocessed into
a log-Mel spectrogram. The accuracy of this analysis was estimated by
dividing the number of patients with correct prediction by the total num-
ber of patients analysed. Each location model was tested for diagnostic
accuracy, sensitivity, and specificity for severe AS using the same dataset.
The best ensembled model was then selected for the smartphone
application.

Building the smartphone application and
clinical validation
The selected models were exported to a smartphone application
using TensorFlow Lite (tflite). A smartphone application
(‘AudioClassification’) was designed in the framework of Swift using
Xcode, and iPhone11 Pro with iOS14.4 (Apple Inc., Cupertino, CA,
USA) was adopted as the test device. The application was intended to
provide an output interpreting whether the input case had severe AS
or not.

We enrolled 132 patients prospectively in the clinical validation cohort
to guarantee probative force (Table 2; no AS, n= 34; mild AS, n= 28;
moderate AS, n= 28; and severe AS, n= 42). The detailed enrolment
process of participants is shown in Supplementary material online,
Figure S6. There was no overlap with the individuals in the establishment
cases.

Six physicians were tested based on the heart sounds of the clinical val-
idation cohort, which were also used during the clinical validation of the
AI we built. All the six physicians were engaged in patient care at our in-
stitute for at least 6 years. Four of them were board-certified cardiology

consultants, and the other two physicians were board-certified cardiolo-
gists. They interpreted whether the case had severe AS or not based on
the heart sounds from the three auscultation locations; further, they as-
signed a score of 0 to non-severe disease and a score of 1 similar to the AI
we developed. The ‘consensus’ of cardiologists was obtained by calculat-
ing the average score provided by the 6 physicians. Those cases with a
calculated consensus score of less than 0.5 were classified as non-severe
AS and those with a score greater than or equal to 0.5 as severe AS.

Visualization of the features identified by
deep learning
We generated activation maps (heatmaps) of the final convolutional layer
using Gradient-based Class Activation Maps (Grad-CAM++), which illu-
strated the relative positive activation of the convolutional layer with re-
spect to the network output.12 This heatmap was overlaid on the
grey-scaled Mel spectrogram of the heart sounds. We then quantified
the focus of built AI to assess how the AI differentiated the heart sounds
between non-severe and severe AS. Further, we also assessed the focus
scores according to the phases in a cardiac cycle (see Supplemental
Material for detail).

Statistical analyses
Continuous data were expressed as mean+ standard deviation for nor-
mally distributed data. Categorical data were presented as numbers and
percentages. In cases of non-normal distributed data, these were shown
as median values (lower-upper quartile). The chi-square test, the
Kruskal–Wallis test, Student’s t-test, or Fisher’s exact test were per-
formed when appropriate. For the global test statistics, we used a signifi-
cance level of 5%. Analyses were performed using the JMP software
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Table 1 Basic participants’ characteristics of establishment cases and excluded cases

Training/development/test cases: N=556 Excluded cases: N=330

Age 68.9+ 14.8 60.5+ 16.0

Male 305 (54.9%) 177 (53.6%)

Hypertension 386 (69.4%) 174 (52.7%)

Diabetes mellitus 132 (23.7%) 47 (14.2%)

Dyslipidaemia 197 (35.4%) 90 (27.3%)

Atrial fibrillation at enrolment 101 (18.2%) 29 (8.8%)

Heart rate (beats per minute) 72.7+ 13.9 72.0+ 13.7

History of stroke/TIA 70 (13.0%) 45 (13.6%)

History of myocardial infarction 71 (12.7%) 29 (8.8%)

History of CABG 37 (6.7%) 5 (1.5%)

LVEF (%) 57.9+ 10.8 61.5+ 7.8

Aortic stenosis (no/I/II/III) 340/51/51/114 (61.2%/9.2%/9.2%/20.5%) 330/0/0/0 (100%/0%/0%/0%)

Severe low-flow low-gradient AS 28 0

Aortic regurgitation (no/I/II/III) 361/157/36/2 (64.9%/28.2%/6.5%/0.4%) 270/46/14/0 (81.8%/13.9%/4.2%/0%)

Mitral stenosis (no/I/II/III) 508/39/9/0 (91.4%/7.0%/1.6%/0%) 323/6/0/1 (97.9%/1.8%/0%/0.3%)

Mitral regurgitation (no/I/II/III) 211/195/96/54 (38.0%/35.1%/17.3%/9.7%) 210/116/4/0 (63.6%/35.2%/1.2%/0%)

Tricuspid stenosis (no/I/II/III) 556/0/0/0 (100%/0%/0%/0%) 329/0/0/1 (99.7%/0%/0%/0.3%)

Tricuspid regurgitation (no/I/II/III) 228/243/65/20 (41.0%/43.7%/11.7%/20%) 190/124/12/4 (57.6%/37.6%/3.6%/1.2%)

PQ interval (ms) 171+ 38 162+ 32

QRS duration (ms) 100+ 23 95+ 19

QT interval (ms) 405+ 37 398+ 40

QRS axis (ms) 32+ 52 40+ 45

CABG, coronary artery bypass grafting; LVEF, left ventricular ejection fraction; TIA, transient ischaemic attack.
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Version 14 (SAS Institute, Cary, NC, USA) and performed with custom
python scripts on macOS computers. We adopted the bootstrapping
technique (sampling with replacement, 2000 times) for the statistical ana-
lyses of the performance of the built models with the test data and during
the clinical validation. To compare the performance metrics under boot-
strapping, the Mann–Whitney U test with Bonferroni correction was
used when appropriate (two-tailed).

IRB approval
The study protocol was approved by the Medical Ethics Commission of
the University Hospital Düsseldorf (File Number 2019-763). All partici-
pants were informed about the research, and they provided written in-
formed consent in accordance with the tenets of Declaration of Helsinki.

Results

Model development and selection
The performance metrics (accuracy, F1 value, and AUC) of the mod-
els for the test data are shown in Figure 1A.

Generally, the model performance was significantly better in the
2RSB location (L1) than in the other two locations (P, 0.01). The
performance metrics of the models for the test data are given in de-
tail in Supplementary material online, Tables S2A–C.
For the test data of 2RSB (L1), the 10-layered CNNmodel trained

only with the 2RSB heart sound dataset showed significantly better
metrics than the other models, except for sensitivity and NPV.
For the test data of ERB (L2), the 10-layered CNN model trained

with the entire dataset from all three locations showed better me-
trics than the other models (specificity, PPV).
For the test data of APX (L3), the CNN with combination kernels

trained with the entire dataset from the three locations showed me-
trics superior to the other models (AUC, loss).
We selected the best-performing model based on the F1 value for

each location. The performance metrics of each selected model are
shown in Supplementary material online, Table S3.

Recognition by case and ensemble
For the usage of the above-selected models, the results of severe AS
recognition of the cases (15-s sound data) are shown in Figure 1B and
1C. All threemodels (L1, L2, and L3) showed a high recognition ability
of over 80% for severe and noAS (see Supplementarymaterial online,
Table S4A). However, their performance varied depending on the se-
verity of AS. The L1-model showed a higher sensitivity (95.0%) for se-
vere AS than the L2-model (80.0%) and L3-model (85.0%), whereas
the specificity of the L1-model for severe AS (85.0%) was lower
than that of the L2-model (97.5%) and L3-model (88.8%).
To achieve higher recognition ability for the severity of AS, these

three location models were combined (ensemble model).
The test results with the ensemble models are also shown in

Figure 1B and 1C (see also Supplementary material online,
Table S4B). Among the models, the E1-model achieved the highest
accuracy (94/100, 94%) and F1 value (0.857) which was significantly
higher as compared to those of the other models (P, 0.001).

Clinical validation
Based on the above results, we selected the E1-model for clinical val-
idation on the smartphone with prospectively collected heart sounds
of patients (N= 132). The 15-s heart sound data (three locations per
patient) recorded by an electronic stethoscope were imported into
the application. The recognition results after the analysis were shown
on the graphical user interface in the application on the smartphone
(see Supplementary material online, Figure S5).
Our smartphone application achieved an F1 value of 0.932, accur-

acy of 95.7% (126/132), sensitivity of 97.6% (severe AS, 41/42 cases),
and specificity of 94.4% [85/90, no AS, 34/34 (100%); mild AS, 28/28
(100%); and moderate AS, 23/28 (82.1%)]. Only one case with severe
AS was misclassified as having non-severe AS.
The recognition performance by physicians as compared to that

by our smartphone application is shown in Figure 2A and 2B. The
Fleiss’ Kappa calculated to assess the interobserver discrepancy of
the judgement was 0.32 (95% CI 0.274–0.362) that suggested a fair
agreement among the cardiologists.
We observed that the smartphone application demonstrated

a significantly higher performance in all 5 metrics in comparison
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Table 2 Participants characteristics of clinical
validation cases

Clinical validation
cases: N=132

Age 75.0+ 12.5

Male 72 (54.5%)

Hypertension 107 (81.1%)

Diabetes mellitus 33 (25.0%)

Dyslipidaemia 61 (46.2%)

Atrial fibrillation at enrolment) 41 (31.1%)

Heart rate (beats per minute) 74.4+ 17.3

History of stroke/TIA 16 (12.1%)

History of myocardial infarction 19 (16.5%)

History of CABG 11 (8.3%)

NYHA classification I/II/III/IV 29/37/59/7

LVEF (%) 54.5+ 13.1

Aortic stenosis (no/I/II/III) 34/28/28/42

(25.8%/21.2%/21.2%/31.8%)

Severe low-flow low-gradient AS 8

Aortic regurgitation (no/I/II/III) 63/46/23/0

(47.7%/34.8%/17.4%/0%)

Mitral stenosis (no/I/II/III) 117/13/2/0

(88.6%/9.8%/1.5%/0%)

Mitral regurgitation (no/I/II/III) 31/56/27/18

(23.5%/42.4%/20.5%/13.6%)

Tricuspid stenosis (no/I/II/III) 132/0/0/0 (100%/0%/0%/0%)

Tricuspid regurgitation (no/I/II/III) 39/77/14/2

(29.5%/58.3%/10.6%/1.5%)

PQ interval (ms) 180+ 39

QRS duration (ms) 103+ 26

QT interval (ms) 417+ 46

QRS axis (ms) 16+ 49

CABG, coronary artery bypass grafting; LVEF, left ventricular ejection fraction; TIA,
transient ischaemic attack.
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Figure 1 Performances of models in the test dataset. (A) The performance metrics according to the locations of the test dataset (4-s data) are shown.
Themetrics are significantly better in the second intercostal space along the right sternal border location than in the other auscultation locations. (B) The
receiver-operating-characteristic curves of the developed models based on the 15-s test dataset are shown. All models demonstrated the area under the
curveover 0.9. (C) Accuracy, F1 value, sensitivity, specificity and area under the curve based on the 15 s test dataset of the selectedmodels (L1, L2, and L3)
and the ensemblemodels (E1, E2, and E3) using bootstrapping are shown. The F1 value and accuracy of E1-modelwere significantly higher as compared to
the other five models (P, 0.001). For all parameters the performance of E1-model was not inferior to the other models.
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to the performance metrics of cardiologists’ consensus
(Figure 2B).

Analysis of judgement process in the built
AI
Figure 3 shows the analyses results of the foci on the heart sound data
at each auscultation location. Figure 3A shows the focus scores per
beat in the correctly classified cases (in detail please also see see
Supplementary material online, Table S7). These results demon-
strated that our AI from each auscultation location paid attention
to the different phases of the cardiac cycle.

In the cases correctly classified as severe AS (Figure 3B), the L1-
and L2-models recognized systolic murmurs (S1-S2), while the
L3-model focused on the diastolic phase before the first heart sound
(S2-S1). In the cases correctly classified as non-severe AS (Figure 3C),
the models for L1 and L2 mainly focused on the second heart sound
(S2). The L3-models’ foci seemed to have a wider range compared to
the L1- and L2-models.

We also analysed the cases that were incorrectly classified in the
ensemble. In cases with moderate AS (Figure 3D and 3E) the data was
misjudged as severe AS when L1- and L2-models were focusing on
the systolic phase and the L3-model focused on the late diastolic
phase (before S1). Three more patients with moderate AS
were similarly classified as severe AS (false positive). In the false nega-
tive case (Figure 3F), the data was incorrectly classified as non-severe
AS when the L2-models were focusing on S2, and the L3-model fo-
cused on S1-S2. In the Supplemental Material we have also shown the
other cases with their recognition results.

Discussion
We developed an AI model using CNNs, which recognized severe
AS based on electronically recorded heart sound data. The major

findings of the present study were as follows: (i) the recognition cap-
abilities by CNNs were high and showed dependency on the re-
corded locations, (ii) the combination of CNNs (ensemble model)
from multiple locations increased the total accuracy, (iii) the ex-
ported model to a smartphone application showed higher perform-
ance metrics as compared to the cardiologists, and (iv) the
visualization of AI focus on heart sound data was feasible and com-
prehensible using Grad-CAM++.
Therefore, our results demonstrated the feasibility of heart sound

screening for severe AS cases using a realistic patient cohort including
all severity grades of AS and without excluding other valvular
diseases.
Although auscultation is a basic examination technique, it requires

expertise to accurately diagnose VHD by using auscultation alone.13

Moreover, the use of auscultation alone in VHD diagnosis is becom-
ing limited after the widespread use of echocardiography.
In the present study, we demonstrated that AI technology can ef-

ficiently support the diagnostic process of severe AS. In comparison
to the previous studies, the strength of our study is that we enrolled
patients with all severities of AS and tested the efficacy of AI technol-
ogy in recognizing severe AS.10,14,15 We also enrolled patients with
mitral and tricuspid valve regurgitation that cause systolic murmurs
leading to a confusion in the diagnosis of VHD. Moreover, in the pre-
sent study, the heart sound data included certain levels of noise as the
auscultation was performed in daily medical practice without a sound
shielding room. The recorded data quality was checked by a self-
check at bedside. This is a realistic setting that provides a way to
screen patients in clinical practice.
Further, this non-invasive and easy-access screening method using

smartphone-application will enable earlier medical access for asymp-
tomatic patients with severe AS who may be under-recognized
(Figure 4). In the present study, 15 patients with severe AS in the
clinical validation cohort were classified by the New York Heart
Association functional classification as class I (N= 4) and class II

Figure 2 Performance of the smartphone application and cardiologists for clinical validation. (A) The receiver-operating-characteristic curves of
the smartphone application and the cardiologists’ consensus are shown. The performance of each cardiologist is also shown as dots. The cardiol-
ogists’ performances were visually diverse (Fleiss’ Kappa= 0.32). (B) The performances of smartphone application and cardiologists’ consensus are
compared using bootstrapping. In the table below the performance metrics in the clinical validation cohort (lower-upper quartile) are shown. The
performances of the smartphone application were significantly higher as compared to those of the cardiologists.
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(N= 11). The ensembled model could correctly detect severe AS in
all these asymptomatic and mildly symptomatic patients. Notably the
ensembled model could recognize all the cases (N= 8) even with se-
vere low-flow low-gradient AS correctly in the clinical validation co-
hort; thus, further supporting the utility of our model.

We interpreted the heart sounds in images through Mel spectro-
grams and succeeded in visualizing the AIs focus with heatmaps. The
introduction of Grad-CAM++ made our AIs explainable and inter-
pretable. The foci corresponded to the systolic murmur of AS for the
detection of severe AS and to the second heart sound for the

Figure 3 Visualized foci of built models in each auscultation location. (A) The Quantified Foci in correctly classified cases in each auscultation
location are compared according to the presence of severe aortic stenosis. In the 2RSB, our artificial intelligence focused significantly more on
the first heart sound and between first heart sound and second heart sound in the cases of severe aortic stenosis. In contrast, the artificial intelligence
focused significantly more on the second heart sound and between second heart sound and first heart sound in the cases of non-severe aortic sten-
osis (upper panel). In the Erb’s area, the artificial intelligence focus located on the second heart sound and between second heart sound and first
heart sound in the cases of non-severe aortic stenosis (middle panel). In the apex, interestingly, the artificial intelligence focused significantly more on
the phase between first heart sound and second heart sound in the cases of non-severe aortic stenosis compared to the severe aortic stenosis cases.
The foci located also on the second heart sound in the non-severe aortic stenosis cases. In the severe aortic stenosis cases, the focus located on the
phase between second heart sound and first heart sound (lower panel). (B–F ) The examples of predictions in the clinical validation cases (red zone as
strong focus). (B) The case correctly classified as severe aortic stenosis is shown. The L1- and L2-model focused on the systolic phase and the
L3-model focused visually on the late diastolic phase before first heart sound. (C ) The case correctly classified as non-severe aortic stenosis is shown.
The case had moderate aortic stenosis. The ensembled model compensated for the failure of the L1-model by balancing the L2- and L3-models. The
L1-model focused on the systolic phase and classified the data as severe aortic stenosis. In contrast, the L2-model focused on the late systolic phase
to the second heart sound and classified the data as non-severe aortic stenosis. The foci of L3-model were wider, including systolic and diastolic
phases, and classified the data correctly as non-severe aortic stenosis. (D, E) The incorrectly classified cases with moderate aortic stenosis are shown.
The L1- and L2-models focused on the systolic phase and classified the data as severe aortic stenosis. The L3-model also classified the data as severe
aortic stenosis, and the wider foci are indicated from the first heart sound to the systolic phase. (F ) The incorrectly classified case with severe aortic
stenosis is shown. The L1-model focused on the systolic phase and classified the data as severe aortic stenosis (correctly). The L2-model focused on
the late systolic phase to the second heart sound, and the L3-model focused mainly on the systolic phase. They classified the data as non-severe
aortic stenosis, resulting in the wrong ensembled classification.
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detection of non-severe AS in the 2RSB and Erb’s location. The mid-
systolic murmur and attenuation of the second heart sound are
known to be typical markers of severe AS, which is consistent with
our results. It could be suggested that our AI has automatically learn-
ed these traditional tips of auscultation during machine learning. This
visualization technique could also bring educational improvement in
medical students, young doctors, or nurses and may correct the
underestimation of auscultation.

We found that the explainability and interpretability of AI through
our visualization technique depended on the CNN architectures.

The CNN10L models with small kernels focused on the relatively lo-
calized region (mid-systolic or second heart sound), while the CNN
with a combination of multiple kernels focused on a wider region to
make its decision. Further research is needed to suggest the optimal
architecture structure of the neural network including kernel designs.
A recent study demonstrated that a deep learning-based algorithm

detects moderate and severe AS based on an electrocardiogram.16

The combination/ensemble of heart sounds and electrocardiograms
may further improve the efficacy of screening cardiovascular dis-
eases, which should be evaluated in the future.

Figure 3 Continued
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Study limitations
Due to the characteristics of this project as a feasibility study, this was
a single-centre study with a limited number of enrolled patients.
Further, the prevalence of severe AS was higher in the clinical valid-
ation cohort as compared to the general population. An institutional
bias could not be excluded as our institute was transcatheter aortic
valve replacement (TAVR) referral centre. We did not perform any
assessment of echocardiographic reproducibility in cases having AS

with borderline characteristics in this study. Based on our institutional
standard as the TAVR referral centre, we believe that the echocardio-
graphic assessments are valid. The enrolment of participants was per-
formed by trained physicians and medical students to maintain the
heart sound quality, resulting in a small number of participants. The ex-
ternal validation was not performed due to the training that is neces-
sary for data acquisition and staff requirement. A larger sample size
involving multicentre trials and integration of more auscultation sites

Figure 3 Continued
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with the ensemble may enhance the quality of models. Furthermore,
the device usability, the extent of necessary training for data acquisition
and its influence on the data quality affecting the model accuracy

should be assessed in future projects, as we observed no recordings
of inadequate audio quality for our analyses, in contrast to both prior
studies and typical clinical practice.10,17 We should admit that the

Figure 3 Continued

Figure 4 Future screening possibility using smartphone application. The smartphone application enables to detect severe aortic stenosisbased on
the heart sounds from three locations. This can be utilized for the screening in the general practice, leading to efficient further cardiovascular
examination.
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quantification method of visualized heatmaps was semi-quantitative
due to the arbitrary threshold of our scoring system.

This research does not intend to demonstrate the inferiority of
physicians/cardiologists. We recognize that a diagnosis is not purely
based on auscultation but on clinical assessment. The enrolment of
participants, particularly with severe aortic or tricuspid regurgitation
and with implantable cardiac devices should be necessary for further
evaluation of the models. The cases with other causes of left ven-
tricular outflow tract obstruction which may mimic heart murmurs
of AS were not specifically analysed in the present study; this should
be evaluated in a future study.

Conclusions
This study demonstrated the promising possibility of screening for
severe AS using an electronic stethoscope and deep learning technol-
ogy. The visualization of AI foci is feasible and may lead to under-
standable AI in the medical field, which may further contribute to
medical training and redefine the skills of auscultation. In future, these
models may be extended to various VHDs.
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Supplementary material is available at European Heart Journal – Digital
Health.
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