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ABSTRACT

Complex viruses that encode their own initiation
proteins and subvert the host’s elongation appar-
atus have provided valuable insights into DNA rep-
lication. Using purified bacteriophage SPP1 and
Bacillus subtilis proteins, we have reconstituted a
rolling circle replication system that recapitulates
genetically defined protein requirements. Eleven
proteins are required: phage-encoded helicase
(G40P), helicase loader (G39P), origin binding
protein (G38P) and G36P single-stranded DNA-
binding protein (SSB); and host-encoded PolC and
DnaE polymerases, processivity factor (b2), clamp
loader (q-d-d0) and primase (DnaG). This study
revealed a new role for the SPP1 origin binding
protein. In the presence of SSB, it is required for
initiation on replication forks that lack origin se-
quences, mimicking the activity of the PriA replica-
tion restart protein in bacteria. The SPP1 replisome
is supported by both host and viral SSBs, but phage
SSB is unable to support B. subtilis replication, likely
owing to its inability to stimulate the PolC holoen-
zyme in the B. subtilis context. Moreover, phage
SSB inhibits host replication, defining a new mech-
anism by which bacterial replication could be
regulated by a viral factor.

INTRODUCTION

Double-stranded (ds) DNA viruses may encode most if
not all the components for their own replication, as in
the case of the T4, �29 or HSV-1 viruses (1–3), or may
encode a subset of proteins, including an origin-specific
initiation protein, and recruit the host DNA replication
machinery to achieve efficient viral replication. The study
of the replication mechanisms of the latter type of viruses

has provided significant insight into cellular DNA replica-
tion processes. For example, SV40, a virus that encodes its
own origin binding protein and helicase within the T
antigen has provided a viral window into eukaryotic
DNA replication (4,5). Its use enabled the only full recon-
stitution of a eukaryotic DNA replication system with
purified proteins and revealed the special roles of Pol a-
primase and the Pol d holoenzyme in the process (5,6).
Bacteriophage � has provided similar insight into the rep-
lication of Gram-negative bacteria (7). � encodes its own
origin binding protein and a helicase loader that subverts
the host DnaB6 replicative helicase, leading to the acqui-
sition of the cell’s elongation apparatus. Through this
system, the role of heat shock proteins in freeing the
DnaB helicase from tightly bound � O and P proteins
was discovered, providing one of the initial observations
of chaperone function (7,8). The mechanism used by these
viruses to recruit host proteins could provide significant
insight into viral and host processes.
Bacillus subtilis SPP1 is a virulent dsDNA phage whose

mature genome is a linear 45.4-kb dsDNA. The ends of
the packaged DNA are terminally redundant and are
permuted to facilitate circularization after DNA injection
into cells. SPP1 replication starts with the circle-to-circle
replication mode (y replication), but after one or a few
rounds, it switches to concatemeric replication (termed s
replication or rolling circle replication) by a process driven
by homologous recombination (9,10). This switch in the
mode of replication is a strategy used by many viruses to
produce linear head-to-tail concatemers that are used by
the packaging machinery. This late-phase DNA replica-
tion, which is believed to be independent of an origin of
replication, has been reconstituted in vitro for viruses that
encode their own polymerase [e.g. HSV-1, T7, T4 and
�29, (11–14)] and for bacteriophage � (15).
Genetic analyses showed that SPP1 DNA replication is

independent of the host origin binding protein (DnaA),
the replicative DNA helicase (DnaC), primosomal
proteins DnaB and PriA and RNA polymerase.
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These studies also showed that SPP1 replication requires
the host DnaG primase and PolC DNA polymerase
(16–18).
The SPP1 phage possesses two origins of replication,

oriL and oriR, which are 32.1 kb apart in a linear map
of the SPP1 genome. Replication proteins are encoded
by two operons. The first one, which is under the
control of the early promoter PE2, codes for proteins
that have been shown to be required for y replication:
the G38P origin binding protein, the G39P helicase
loader and the G40P helicase. G38P, which does not
belong to the AAA+ family, is widely conserved in
phages (19,20). G38P binds with high affinity to the two
origins of replication (21) and forms a complex with G39P
(17). G39P does not share homology with other studied
helicase loaders but performs a similar role: it delivers
G40P, on interacting with G38P, to the origin of replica-
tion (22,23). G40P is a widely studied helicase that belongs
to the DnaB family (24–26).
Genes required for the recombination-dependent s rep-

lication mode are under the control of the early promoter
PE3. These include a recombinase, G35P (18,27), and a
50 ! 30 exonuclease, G34.1P (28). In this operon, there
is also a gene (gene 36) that encodes a single-stranded
DNA-binding protein (SSB), G36P, whose role in replica-
tion has not yet been analysed. G36P is 48% identical to
the essential host SSB (B. subtilis SsbA, Supplementary
Figure S1), and 38% identical to the competence-specific
SSB [B. subtilis SsbB, (29)].
We have exploited the apparatus required for the s

mode of replication to establish a robust rolling circle rep-
lication system that requires four phage proteins and seven
host elongation proteins. These studies revealed surprising
new roles for the G38P origin binding protein in the ini-
tiation of DNA replication on forks that do not contain
origin sequences. In addition, they show the versatility of
the SPP1 replication fork, where both the viral and the
host SSB may be used, in contrast to the B. subtilis repli-
cation fork, which uses only its own SSB (the SsbA
protein). Moreover, B. subtilis replication is inhibited by
the viral SSB (G36P), a mechanism that is likely exploited
by the phage to shut down host DNA replication synthesis
and foster its own replication.

MATERIALS AND METHODS

Rolling circle assays

Standard reactions consisted of 30 nM G40P6, 300 nM
G39P, 300 nM G38P, 8 nM DnaG, 15 nM DnaE, 20 nM
PolC, 25 nM t4, 25 nM d, 25 nM d0, 24 nM b2, 30 nM
G36P4, 5 nM mini-circular DNA template, 350 mM ATP,
100mM CTP, GTP and UTP, 48 mM dNTPs (except
18 mM dCTP or dGTP for the leading and lagging
strand DNA synthesis, respectively) and 0.2 mCi/reaction
[a-32P]dCTP or [a-32P]dGTP. The DNA template was a
409-nt circle containing a 396-nt tail described in (30), but
prepared by an alternative procedure that included a poly-
merase chain reaction amplification step (Yuan and
McHenry, in preparation). The reactions were carried
out in 12.5 ml of buffer BsRC [40mM Tris-acetate

(pH 7.8), 12mM magnesium acetate, 3 mM ZnSO4,
1mM dithiothreitol, 0.02% (w/v) Pluronic F68, (30)]
that contained 500 mM potassium glutamate and 1%
(w/v) polyethylene glycol (PEG-8K). The buffer also con-
tained 4% glycerol, 19mM NaCl and 4mM Tris-HCl that
was contributed by the addition of protein solutions.
Incubations were conducted for 10min at 37�C. An
enzyme mix containing all protein components except
SSB (G36P, or SsbA, as indicated) was prepared in
buffer BsRC. Two different substrate mixes containing
template DNA, rNTPs, dNTPs, SSB (G36P or SsbA)
and either [a-32P]dCTP or [a-32P]dGTP for measurement
of leading and lagging strand synthesis, respectively, were
prepared. Reactions were initiated by mixing the enzyme
mix and a substrate mix. After incubation, reactions were
stopped by addition of an equal volume of stop mix
[40mM Tris-HCl (pH 8.0), 0.2% SDS, 100mM EDTA,
and 50 mg/ml proteinase K]. Samples were treated for
20min at 37�C, then applied onto Sephadex G-50
columns to eliminate non-incorporated dNTPs. The
extent of DNA synthesis in leading and lagging strands
was quantified by scintillation counting.

For the analysis of the size of leading and lagging strand
products, samples were brought to 50mM NaOH, 5% (v/
v) glycerol and 0.05% bromphenol blue and fractionated
on alkaline 0.5% agarose gels for �3 h at 80V. Alkaline
agarose gel buffer consisted of 30mM NaOH and 0.5mM
EDTA. Gels were fixed in 7% (w/v) trichloroacetic acid,
dried, autoradiographed on storage phosphor screens and
analysed with Quantity One (Bio-Rad) software.

For calculating the rate of SPP1 fork progression,
aliquots were removed, quenched and processed as
described earlier in the text. The molecular weight of the
longest leading strand product at each time was
extrapolated from labelled DNA size standards and
plotted as a function of time. The elongation rate was
determined by calculating the slope of this curve (31).

The protein concentrations in the B. subtilis replication
system were as follows: 15 nM DnaE, 20 nM PolC, 8 nM
DnaG, 25 nM t4, 25 nM d, 25 nM d0, 24 nM b2, 30 nM
DnaC6, 15 nM PriA, 50 nM DnaD4, 100 nM DnaB4,
40 nM DnaI6 and various amounts of SsbA4 and G36P4.

Extension of DNA primers annealed to M13

Templates were prepared by mixing 50 pmol
single-stranded M13Gori DNA (32) with 60 pmol synthetic
DNA primer (50AGGCTGGCTGACCTTCATCAAGA
GTAATCT-30) in 70 ml of a buffer consisting of 40mM
Tris-HCl (pH 7.8), 150mM NaCl and 1mM EDTA,
heating to 95�C, cooling to room temperature over 1 h
and diluting the resulting mixture to 29 nM as circles.
Holoenzyme reactions (25ml each) contained 2.3 nM
template; 2 nM PolC or 3 nM DnaE; 25 nM b2, if
present, 15 nM t4, 20 nM d, 20 nM d’, and variable con-
centrations of B. subtilis SsbA4 or SPP1 G36P4; 48 mM
dATP, dGTP and dCTP; 18 mM [3H]dTTP (specific
activity 113 cpm/pmol); and 250 mM ATP in buffer
BsM13 [40mM Tris-acetate (pH 7.8), 340mM potassium
glutamate, 10mM magnesium acetate, 4 mM ZnSO4,
0.015% (w/v) Pluronic F68]. Reaction mixtures were
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prepared on ice, initiated by incubation at 30�C, stopped
after 3min (for PolC) or 5min (for DnaE) with 2 drops of
0.2M sodium pyrophosphate, and incorporated nucleo-
tides were precipitated with 0.5ml 10% (w/v) trichloro-
acetic acid. Unincorporated nucleotides were removed,
and reaction products were quantified as described (33).

Helicase assays

Oligonucleotides were obtained from Biosearch Techno-
logies. The substrate diagrammed in Figure 6A was
assembled from the following HPLC-purified oligonucleo-
tides. Leading strand template 90-mer- 50-tetrachloro-
fluorescein (TET)-CGCGTATAGATCATTACTATAAC
ATGTTAGATTCATGATAATATAAGAGATGACGA
ATATGATTTTGTCGGCTAATGTAAGAATCTTCA
A-30 contained fluorescent TET at the 50 terminus.
Lagging strand template 90-mer- 50-TT(biotin)T44ATAT
TATCATGAATCTAACATGTTATAGTAATGATCT
ATACGCG-BHQ-1-30 contained biotin conjugated to
preceding thymidine and Black Hole Quencher-1
(BHQ-1) at 30 terminus that quenches fluorescent TET
dye. Primer 35-mer- 50-TTGAAGATTCTTACATTAGT
TGACAAAATCATATT-3, when annealed to the leading
strand template, created a 10-nt gap. Trap oligo 45-mer 50-
TATATTATCATGAATCTAACATGTTATAGTAAT
GATCTATACGCG-30 was used to capture
helicase-displaced leading strand so that it did not
reanneal to the lagging strand template that contained
the fluorescence quencher. The substrate was formed by
annealing 1 mM leading strand template with 1 mM lagging
strand template and 1 mM primer in a buffer containing
10mM Tris (pH 7.75), 50mMNaCl and 1mM EDTA in a
final volume of 25 ml. The sample was heated to 95�C for
5min and cooled to 25�C at 1�C/min.

For FRET experiments, 20 nM oligonucleotide sub-
strate was combined with 100 nM trap oligo, 200 nM
streptavidin and protein components in a buffer contain-
ing 50mM Hepes (pH 7.5), 10mM magnesium acetate,
10mM dithiothreitol, 20% (v/v) glycerol, 0.02% (v/v)
Nonidet-P40 detergent, 200 mg/ml bovine serum albumin,
100mM potassium glutamate and 10mM ATP in a
round-bottomed black 96-well plate in a final volume of
50 ml. Samples were incubated at 30�C for 15min.
Fluorescence emission was detected at 535 nm using an
Envision plate reader with an excitation of 485 nm.
Using concentrations of unannealed fluorescent leading
strand template that are in the linear range of the assay,
fluorescence units were converted to molarity using a
standard curve.

In vivo replication of SPP1 in a ssbD35 background

The B. subtilis FLB22 (ssbD35) and FLB23 (ssb3+) strains
were a kind gift of P. Polard (CNRS, France). They were
obtained by a single crossing-over integration procedure
of pMUTIN-SPA derivatives; in those two strains, the
essential rpsR gene, which is located immediately after
ssb, is placed under the control of the IPTG-inducible
Pspac promoter (34). FLB22 is a mutant strain, which
expresses from its natural promoter an SsbA truncated
of its last 35 amino acids. ssbD35 cells are temperature

sensitive for growth above 47�C in LB medium. FLB23
is an isogenic strain encoding a wild-type SsbA protein.
FLB22 and FLB23 cells were grown at 30�C in LB
medium with 0.5mM IPTG until OD560=0.2 and then
shifted to 50�C. After 15min incubation, the cells were
infected with a multiplicity of infection of 10 with the
SPP1 phage, and the cultures were incubated for 120min
at 50�C. Infection experiments at permissive temperature
were performed in parallel. After centrifugation, the
supernatant that contained free phage particles was
filtered through 0.45 mm filters. Titrations were carried
out using B. subtilis BG214 as the indicator strain.

RESULTS

Reconstitution of a SPP1 replication fork

We reconstituted replication on a synthetic 409-bp circle
containing a long flap that mimics a replication fork
(Figure 1B). A 50:1 asymmetric G:C distribution in the
synthetic template permits facile quantification of
leading and lagging strand synthesis (Figure 1C). The
structure of this template may mimic the intermediate
that is formed in SPP1 once the D-loop, formed by recom-
bination, is resolved to initiate concatemeric (s mode)
replication (35). SPP1 proteins were expressed and
purified to homogeneity (Supplementary Methods,
Figure 1A) and added to various combinations of
purified B. subtilis DNA replication proteins (30) to deter-
mine which combination was required for efficient repli-
cation. Consistent with genetic requirements, SPP1 G39P
and G40P were required, as were host PolC and DnaG
(Figure 1D and E). Additional components of the host
replicase including the clamp loader (t complex, which
consists of the t, d and d0 subunits) and sliding clamp
processivity factor (b2) were also found to be required.
As observed in B. subtilis, DnaE was also necessary, and
like primase, it plays primarily a lagging strand role
(30,36). The decreased level of leading strand synthesis
in the absence of DnaE and DnaG may be due to a
decreased efficiency when the replisome is incomplete—
lacking these factors. To our surprise, the G38P origin
binding protein was also essential, even though the
origin sequence was not contained within the DNA
template. G36P was also required, but some synthesis
was observed in the absence of G36P, owing to a
non-physiological reaction where the helicase can
‘self-load’ by threading over the 50-end of the template
flap (Manhart and McHenry, in preparation). The
required proteins were individually titrated in the
presence of optimal concentrations of the remaining
proteins to optimize the replicative reaction
(Supplementary Figure S2).
We examined the time course of DNA leading and

lagging strand synthesis with the SPP1 replisome. Both
leading and lagging strand synthesis exhibited a lag
phase of 1min, presumably the time required for loading
of the helicase and assembly of the replication fork. After
the lag, the synthesis rate remained linear for �5min
(Figure 2A). We examined the elongation rate of
reconstituted SPP1 replication forks by analysing leading
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strand product formation after the first minute lag
(Figure 2B and C). From these data, a rate of progression
of 224±7 nt/s was obtained. We performed, as a control,
the same assays with a reconstituted B. subtilis replication
fork and obtained a value of 200±6 nt/s. These results
show that both replisomes progress at a similar rate under
the experimental conditions used.

Primase, not DnaE, regulates the length of Okazaki
fragments

B. subtilis DnaG primase cycles on and off the replication
fork through association with the DnaC helicase. Thus,
higher concentrations of primase lead to more frequent
associations with helicase and more frequent priming, re-
sulting in shorter Okazaki fragments (30). We also
observed a decrease in Okazaki fragment size with
increasing DnaG primase concentration in our SPP1
system (Figure 3A). Okazaki fragment length varied
from ca. 4-kb at 1.5 nM primase down to ca. 400-bp at
100 nM primase (Figure 3A). B. subtilis DnaE functions
like eukaryotic DNA polymerase a, adding a stretch of

deoxynucleotides to the RNA primer before handoff to
the major replicase (30). We also investigated whether
variations in DnaE concentration influence Okazaki
fragment length. In the absence of DnaE, lagging strand
synthesis was very low (Figure 1E and Figure 3B). Most of
the synthesis observed in the absence of DnaE was owing
to background incorporation of [a-32P]dGTP into the
leading strand product. The leading strand template
contains 2% of the template C residues within our
rolling circle template, and the resulting incorporation
yields a significant background only in the absence of
lagging strand synthesis. The size of Okazaki fragments
was similar over a wide range of concentrations
(1.25–80 nM DnaE, Figure 3B).

SPP1 replication forks can be reconstituted with SsbA
from B. subtilis, but the helicase loaders are not
interchangeable

To see if some SPP1 components could be replaced by
their B. subtilis counterparts, we first determined
whether host SsbA could replace G36P. B. subtilis SsbA
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supports an efficient reaction at both 30 nM [the optimal
G36P concentration, that is also the amount of SSB
needed to cover the 396-nt tail present in the DNA
template in the 65-nt DNA-binding mode (37)] and at
higher concentrations (Figure 4A, lanes 7 and 11). We
observed a stronger dependence on G38P at 90 nM B.
subtilis SsbA. The reactions were dependent on G39P
under both conditions tested. In the absence of any SSB,
efficient reactions are also observed, but dependence on
G38P and G39P was lost. In the absence of SSB, helicases
can self-assemble by threading over the exposed 50-end of
the flap of the forked substrates (Manhart and McHenry,
in preparation). We found that G40P could not be
assembled onto the fork by the host loading system
(DnaB/DnaD/DnaI/PriA) in the presence of either SsbA
or G36P (Figure 4A, lanes 2 and 15).
We then tested whether G36P can replace SsbA in

support of the B. subtilis replisome. B. subtilis chromo-
somal replication does not occur in the presence of
G36P either in the presence of the natural helicase
loading system (PriA, DnaD, DnaB, DnaI) (Figure 4B,
lane 4) or in the presence of the phage G38P-G39P
helicase loading system (Figure 4B, lane 6). Increasing
G36P concentrations to levels found to be optimal for
SsbA also did not stimulate the B. subtilis reaction
(Supplementary Figure S3). In the presence of SsbA, the
bacterial helicase worked well with its own helicase
loading proteins (Figure 4B, lane 1), but they could not
be substituted with the viral helicase loading proteins
(Figure 4B, lane 3).

Elevated levels of G38P are required to reverse inhibition
of DNA replication by high concentrations of G36P

The above experiments showed that G36P and SsbA could
work similarly on SPP1 replication forks. In titration ex-
periments that we performed to optimize protein concen-
trations, we noted that increasing concentrations of G36P
significantly reduced lagging strand DNA synthesis,
whereas this effect was not observed with increasing
SsbA (Figure 5A and B). We were concerned that the
leading strand synthesis observed at elevated G36P may
have been an inauthentic reaction, resulting from
helicase independent strand displacement by the PolC
holoenzyme. Such a reaction is catalysed by the E. coli
Pol III holoenzyme at high SSB concentrations (31).
However, dropout experiments where one protein was
deleted from the reaction at a time confirmed that
leading strand synthesis in the presence of elevated
G36P concentrations retained a dependency on all of the
leading strand replication proteins, including helicase
(Supplementary Figure S4).
We suspected the inhibition by high G36P may have

been caused by sequestering a component in a binary
complex in solution, preventing its participation in the
replicative reaction. In a search for proteins that
reversed the G36P inhibitory effect at high concentrations,
we found that G38P elicited this effect (Figure 5C). We
also tested the other viral protein that participates in
helicase loading, G39P, but observed no effect (data not
shown).
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We also performed an independent fluorescence-based
assay that detects helicase loading and ensuing strand sep-
aration (see Figure 6A for a description of the substrate).
This permits analysis of the SSB effect on helicase activity
independent of its influence on priming and polymerase
activity. The 50-end of the lagging strand template was
blocked by streptavidin attachment, preventing helicase
self-assembly by threading over the 50-flap in the absence
of SSB (Manhart and McHenry, in preparation). With the
G40P helicase, we also observed in these assays greater
efficacy of G36P relative to SsbA at low concentrations
(Supplementary Figure S5D). Furthermore, we observed
an absolute requirement for G38P (Supplementary Figure
S5A), consistent with a role for this protein at the helicase
assembly step.

SPP1 does not require SsbA in vivo

The previous assays showed that the in vitro SPP1 repli-
cation system can use both viral G36P and host SsbA
similarly. SPP1 rolling circle reaction requires an SSB
with a C-terminal tail (Supplementary Figure S6) that is
the site of interaction for almost all proteins that bind SSB
(38). To test whether the SPP1 phage requires the SsbA
protein in vivo, we analysed the levels of amplification of
the SPP1 phage in a B. subtilis mutant strain, FLB22,
which expresses from its natural promoter SsbA truncated
of its last 35 amino acids. ssbD35 cells and an isogenic
control were infected at 30�C, an after 2 h of infection
the phage titer was determined. ssbD35 cells are tempera-
ture sensitive for growth above 47�C in LB medium (34).
Cultures were also grown at a permissive temperature
until OD560nm=0.2 and then shifted to 50�C. After

15min incubation, the cells were infected with SPP1, and
the cultures were incubated for 2 h at 50�C. Titrations of
three independent experiments yielded a mean of 3� 109

phage/ml and 1� 109 phage/ml for infections of ssbD35
cells at permissive and non-permissive temperature,
respectively. 3� 109 and 4� 109 phage/ml titers were
obtained when the isogenic strain (ssb3+) was infected
at the permissive and non-permissive temperature,
respectively.

The DnaC helicase unwinds DNA in the presence of G36P

The preceding results show that G36P is not able to
support replication in the full B. subtilis replication
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system. In an attempt to identify the defective step, we
tested whether the DnaC helicase can be assembled onto
DNA and unwind DNA efficiently in the presence
of G36P. We exploited the fluorescence-based assay
(Figure 6A). The results showed that SPP1 G36P
and SsbA are interchangeable in the helicase assays
(Figure 6B). Thus, the defect in the B. subtilis assay in
the presence of G36P occurs after helicase loading and
DNA unwinding.

G36P stimulates synthesis by DnaE, but not by
the PolC holoenzyme

Continuing our search for the defect in B. subtilis chromo-
somal replication in the presence of G36P, we tested for its
ability to stimulate reactions catalysed by the DnaE and
PolC holoenzymes. We observed that SsbA and G36P
stimulate the DnaE holoenzyme with similar efficiency
(Figure 7A). However, G36P failed to stimulate the
PolC holoenzyme (Figure 7B). The same defect was
observed in RNA primer extension reactions conducted
with DnaE in the presence of PolC, which mimicked the
reactions occurring at the lagging strand of the replication
fork (Supplementary Figure S7). This suggests that the
defect in the G36P-supported B. subtilis reaction likely
resides in its inability to stimulate the PolC holoenzyme.
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G36P blocks host DNA replication

The observation that G36P does not support B. subtilis
replication led us to investigate whether this could also
occur in the physiological context, when both host and
phage SSBs are present in the same reaction. B. subtilis
replication forks were assembled in the presence of
saturating concentrations of SsbA4 and increasing concen-
trations of G36P4. Both leading and lagging strand syn-
thesis were significantly inhibited even at the lowest G36P
concentration tested (30 nM) (Figure 8).

DISCUSSION

We have reconstituted an efficient rolling circle SPP1
reaction that recapitulates the concatemeric phase of
SPP1 DNA replication. The reaction requires all
proteins defined by genetic studies including the phage
helicase (G40P), its loading protein (G39P) and the host
DnaG primase and PolC DNA polymerase. We also
observed a requirement for the G36P protein. Neither
the B. subtilis helicase loading proteins nor the helicase
are required, but all of the polymerase elongation compo-
nents are necessary, including b2, the t complex and a
second DNA polymerase III, DnaE. The rate of elong-
ation is similar to the rate of B. subtilis replication under
the conditions used.
In the well-characterized E. coli system, DnaG primase

binds to the DnaB6 helicase before the synthesis of each
primer and then dissociates (39). Because of this equilib-
rium, high concentrations of primase lead to more
frequent priming and shorter Okazaki fragments. A
similar observation has been made in a reconstituted
B. subtilis DNA replication system (30) and in the SPP1
system, presumably for the same reasons. DnaE has
been previously shown to be required to extend RNA
primers a short distance before handing them off to
PolC, analogous to the process in eukaryotes where Pol
a and the Pol d holoenzyme are required (5,6,30). Thus, it
is possible that DnaE could also influence primer synthesis

owing to an interaction with primase. We tested this pos-
sibility and found it not to be the case. Okazaki fragment
length did not vary over a wide range of DnaE concentra-
tions in the SPP1 system as may also occur in the bacterial
systems.

These studies identified a requirement for the G38P
origin binding protein for a replicative reaction initiating
on forks that mimic the concatemeric stage of SPP1 rep-
lication. In SPP1, this type of replication initiates after
recombinational events [after the processing of the
D-loop formed by fork stalling, (10)]. Therefore, such re-
actions might mimic the replication restart reactions that
occur on stalled forks in chromosomal systems that
require PriA for their initiation (40). PriA was an essential
component of the in vitro rolling circle replication with the
B. subtilis system (30), but SPP1 replication does not
require PriA, consistent with genetic data (18). Thus, it
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appears that G38P plays a dual role as an origin-specific
and forked structure-specific initiation protein. Future
studies directed at common features of PriA- and
G38P-supported replication initiation may provide
insight regarding the mechanism used by these proteins
to drive the replication restart reaction in cellular
systems. In B. subtilis, the loading of the replicative
helicase DnaC at oriC relies on the ordered associations
of DnaA, DnaB, DnaD and DnaI proteins (41) and
outside of the origin relies on the PriA, DnaB, DnaD
and DnaI proteins, also through a cascade of protein
interactions that are crucial for the loading of the replica-
tive helicase on SSB-coated ssDNA (42). The results of the
current study show that in SPP1, this reaction is restricted
to two proteins (G38P and G39P).

We found that both SPP1 G36P and B. subtilis SsbA
supported the SPP1 replicative reaction, but with interest-
ing differences. Under standard reaction conditions,
�180 nM SsbA4 was required to achieve an optimal rate
of leading and lagging strand synthesis. However, with
G36P4, an optimum rate is achieved at a 6-fold lower con-
centration. Further increases of G36P concentration result
in marked inhibition of lagging strand synthesis. The most
straightforward explanation for this observation is that
G36P makes specific protein–protein interactions that se-
quester some viral component in inactive binary
complexes. As elevated levels of G38P reverse the
lagging strand inhibition induced by elevated G36P, it is
the most likely candidate as the sequestration target.
Future work needs to be done to unravel the cause of
these differences. It is interesting that G38P is involved
in both loading the replicative helicase and reversing the
inhibition by high G36P concentrations specifically for the
lagging strand. This dual activity suggests an additional
function that is required for ongoing lagging strand repli-
cation after helicase loading.

In contrast to the above observations, the phage-
encoded SSB, G36P, will not support a full host
replisome-dependent replicative reaction. Dissection of
the individual reaction steps shows that G36P is fully com-
petent to support PriA/DnaD/DnaB/DnaI-dependent
helicase loading and ensuing advancement to separate
DNA strands. G36P is also able to stimulate a DnaE holo-
enzyme activity as good as the host SSB. The only defect
detected was a failure of G36P to stimulate the major
Gram-positive replicase, the PolC holoenzyme. Yet, the
PolC holoenzyme supports efficient replication in the
fully reconstituted SPP1 protein-dependent reaction.
This suggests the presence of additional or stronger
PolC holoenzyme-phage protein interactions that either
stimulate PolC, protect it from inhibition or bypass its
requirement for lagging strand replication.

The lack of support by G36P of the B. subtilis replica-
tion fork and the efficient use in the SPP1 replication fork
of the two SSBs (the viral G36P and the host SsbA) could
be used in vivo as a strategy of the phage to amplify its
own DNA while inhibiting host chromosomal replication.
This hypothesis is supported by our observation that even
at saturating amounts of SsbA, the B. subtilis replication
system was inhibited by low concentrations of G36P.
Examples of viral inhibitors that block host proliferation

by binding to host proteins have been reported (43–45).
But a strategy based on inhibition by a viral encoded SSB
has not been reported to date. It is interesting to note that
many viruses encode SSB proteins (46). These include
Staphylococcus aureus phage 80a, which transfers patho-
genicity islands between staphylococci. This phage also
encodes a G38P-like protein (47).
G36P is 48% identical to B. subtilis SsbA. Identity in

the C-terminus, which is important for most SSB-protein
interactions, is even higher (�75%). The most critical
residues required for SSB-protein interactions are the
Pro–Phe pair found at the extreme C-terminus (38). The
C-terminal Phe of the E. coli homolog fits into a hydro-
phobic pocket of the � subunit of the E. coli DNA poly-
merase III holoenzyme, and the carboxyl group of this
residue forms a salt bridge (48). Slightly more internal
within SSB are three conserved acidic residues that form
ionic bonds with positively charged residues in SSB-
binding sites (49). The C-terminus of G36P contains two
of these three acidic residues. In other systems, mutation
of only one of the C-terminal three acidic residues of SSB
results in only a modest decrease in binding to interacting
proteins (38,49). Thus, explanation of the differential
effects observed between G36P and SsbA on PolC holo-
enzyme stimulation and the specific inhibition of SPP1
replication at high G36P levels may require additional
interactions outside of the prototypical C-terminal SSB
interaction sequences.
Viruses that encode their own initiation machinery but

depend on the host for elongation functions have provided
significant insight into cellular processes (4,5,7,50). With
the simple single-stranded DNA coli-phages, the only viral
protein that is required for replication is a nicking/
religation activity that functions after duplex formation
to shift SS -> RF to duplex DNA replication (51). The
bacteriophage � encodes its own origin binding protein
and helicase loader and subverts the host helicase (7).
Thus, it differs from SPP1 in that it does not encode a
helicase or an SSB. However, important similarities are
also noted. �, like SPP1, encodes an origin-specific initi-
ation protein (O protein) that is not a DnaA homolog.
The O protein, like SPP1 G38P, can serve to initiate
DNA synthesis on artificial replication forks that lack
origin sequences (15). SV40, like SPP1, encodes its own
origin binding protein and helicase, both contained within
the same polypeptide chain as the T-antigen (52). This
system has been invaluable in revealing the mechanisms
of eukaryotic DNA replication (4,5).
The best biochemically defined Gram-positive bacterio-

phage is �29 (53). It encodes its own replication machin-
ery and has provided a wealth of tools and insight, varying
from basic models for viral replication that extend to eu-
karyotic adenoviruses (54) to tools for biotechnology (55).
Before this work, an in vitro replication system for a
Gram-positive phage that is dependent on host proteins
had not been established.
Thus, the present study provides a new viral window

into Gram-positive replication processes. The availability
of a hybrid assay that exploits the efficiency and simplicity
of initiation by phage-encoded proteins and a requirement
for host proteins for elongation provides a powerful tool
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to support studies of fork dynamics, macromolecular
interactions and regulation of replicative processes in
Gram-positive organisms. Having two SSBs that can be
used interchangeably with differential effects should help
unravel the importance of SSB interactions in replication
fork processes. And, having the G38P protein that
supports initiation on both defined duplex origins and
replication forks may provide an opportunity to learn
more about the mechanistic features common to these
two important processes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–7, Supplementary Materials
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