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Abstract: Irisin is a myokine derived from the cleavage of fibronectin type III domain-containing 5.
Irisin regulates mitochondrial energy, glucose metabolism, fatty acid oxidation, and fat browning.
Skeletal muscle and cardiomyocytes produce irisin and affect various cardiovascular functions. In the
early phase of acute myocardial infarction, an increasing irisin level can reduce endothelial damage
by inhibiting inflammation and oxidative stress. By contrast, higher levels of irisin in the later phase
of myocardial infarction are associated with more cardiovascular events. During different stages of
heart failure, irisin has various influences on mitochondrial dysfunction, oxidative stress, metabolic
imbalance, energy expenditure, and heart failure prognosis. Irisin affects blood pressure and controls
hypertension through modulating vasodilatation. Moreover, irisin can enhance vasoconstriction via
the hypothalamus. Because of these dual effects of irisin on cardiovascular physiology, irisin can be a
critical therapeutic target in cardiovascular diseases. This review focuses on the complex functions of
irisin in myocardial ischemia, heart failure, and cardiac hypertrophy.

Keywords: irisin; myocardial ischemia; myocardial infarction; heart failure; hypertension; cardiac
hypertrophy

1. Introduction

Irisin is a myokine with 112-amino acid, glycosylated protein hormone. It is a cleavage
product of the polypeptide from fibronectin type III domain-containing 5 (FNDC5), a
transmembrane protein of skeletal muscle. Peroxisome proliferator-activated receptor-γ
coactivator 1α (PGC-1α) mediates exercise-related effects by stimulating an increase in the
expression of FNDC5 and the release of irisin. This process can activate mitochondrial
energy regulation, glucose metabolism, fatty acid oxidation, and fat browning. Exercise
influences various organs, such as the brain, heart, muscles, adipose tissue, and liver. Irisin
is a multifunctional hormone acting on metabolism, diabetes mellitus, and cardiovascular
diseases. In this regard, irisin, FNDC5, and PGC-1α are therapeutic targets of metabolic
and cardiovascular disease.

Exercise increases irisin abundance, which can fine-tune body composition in individ-
uals with obesity. Irisin regulates appetite by the expression of brain-derived neurotrophic
factor (BDNF) and neuronal activity [1]. Irisin can facilitate neural differentiation through
the ERK1/2 MAPK pathway [2]. Irisin can trigger adipocyte fatty acid metabolism and
induce fat browning through thermogenesis and energy homeostasis [3]. Skeletal muscle
secretes cytokines and peptides after exercise, including interleukin-6 (IL-6), IL-8, IL-15,
fibroblast growth factor, BDNF, and irisin [4,5]. These myokines act, together with irisin, to
modulate energy homeostasis and exercise effects on the cardiovascular system [6]. Irisin
overexpression can increase energy expenditure and improve insulin resistance in a diabetic
animal model [3]. Cardiomyocytes produce more irisin than skeletal muscle does [7]. After
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myocardial injury, cardiac cells begin to repair the myocardium. This reparative process is
associated with oxidative stress, apoptosis, inflammation, and energy balance. Irisin plays
an essential role during this recovery phase. Subsequently, regeneration of the myocardial
cells is responsible for the later recovery of myocardial function. Irisin promotes cardiac
progenitor cell-induced myocardial repair [8,9]. In heart failure, exercise and rehabilitation
can improve long-term prognostic outcomes. Irisin can affect the outcomes of patients with
heart failure by interacting with other exercise-related myokines [10]. By reducing oxidative
stress, irisin improves endothelial function in patients with diabetes [11]. Through vascular
endothelial nitric oxide synthase (eNOS) signaling, irisin modulates blood pressure and
endothelial dysfunction [12]. Irisin also acts as a regulator of macrophages and affects
atherosclerosis and host defense [13].

However, many irisin studies have shown conflicting results between irisin levels and
associated prognostic value in cardiovascular diseases [10,14–16]. The role of irisin may
be different in different phases of cardiovascular diseases (Figure 1). This review aims to
provide an overview of the association between irisin and cardiovascular function and the
potential role of irisin in cardiovascular diseases.
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2. Acute Myocardial Infarction

Acute myocardial infarction is the leading cause of death and morbidity in cardio-
vascular diseases [17]. Myocardial infarction is caused by progressively atherosclerotic
coronary arteries and ruptured lipid plaques, which result in blood flow occlusion and
myocardial ischemia. Circulating irisin is associated with atherosclerosis and acute my-
ocardial infarction [14,18]. Patients with stable coronary artery disease and more advanced
lesions have lower serum irisin [19]. The pooled data in a meta-analysis from 2000 to
2017 showed that irisin levels were lower in patients with cardiovascular disease than
in healthy controls [16]. Irisin levels were significantly higher in patients with diabetes
without coronary artery disease than those with diabetes and coronary artery disease [15].
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However, in some studies, a higher irisin level was associated with an increased risk of
coronary artery disease, acute coronary syndrome, and heart failure [14,20]. The exact link
between irisin abundance in patients and the development of cardiovascular disease is still
under investigation.

In mice, irisin suppresses neointima formation and attenuates the development of
atherosclerotic aortic lesions [21]. Irisin also inhibits atherosclerosis by promoting en-
dothelial proliferation [22]. Recent data also showed that irisin inhibits hepatic cholesterol
synthesis [23]. Furthermore, the farnesoid X receptor, which is a ligand-activated transcrip-
tion factor in cholesterol metabolism, regulates reverse cholesterol transport and cholesterol
homeostasis through irisin transcription [24].

Irisin is highly expressed in the myocardium. Irisin abundance is significantly corre-
lated with different stages after myocardial infarction and cardiac repair [14,25,26]. Cardiac
repair after myocardial infarction includes several phases [27,28]. The initial step is medi-
ated by inflammation and immune cell migration. In this phase, the immune cells begin
to digest the debris of cell death and extracellular tissue. After 3 to 5 days, the reparative
phase initiates simultaneously with fibrosis formation and neovascularization. In this stage,
energy metabolism through the AMPK pathway with macrophage migration is essential
to achieve an optimal repair process [29,30]. If the inflammatory phase is prolonged, the
residual dead cells and tissue will influence further regeneration, causing poor cardiac
remodeling and infarct enlargement. Heart function decrease leads to chamber dilatation
and systolic myocardial dysfunction [28]. Irisin plays a significant role in these stages of
myocardial infarction.

2.1. Inflammatory Phase after Myocardial Infarction

In the acute phase of myocardial infarction, coronary blood supply, and myocardial
demand imbalance cause cardiomyocyte damage and energy depletion. Therefore, decreas-
ing cell damage and improving cardiac function are essential for cardiomyocyte survival.
The myocardial injury, including mitochondrial dysfunction and reactive oxygen species
(ROS) influences the myocardium repair and remodeling processes. Irisin is critical in mi-
tochondrial homeostasis in myocardial infarction. After an ischemic injury, irisin interacts
with the mitochondrial uncoupling protein [31,32], preventing mitochondrial dysfunction
and reducing oxidative stress.

In early-stage ischemia, hypoxemia impairs endothelial cell function to increase per-
meability and leukocyte infiltration [27]. Autophagy, apoptosis, and necrosis are involved
in the pathogenesis of cardiomyocyte death [33]. Clearance of apoptotic neutrophils,
recruitment of inhibitory monocyte subsets and regulatory T cells, macrophage differ-
entiation, may play a role in post-infarction inflammation [34]. After reperfusion, ROS
are generated, and the complement pathway is activated. These signals activate inflam-
matory cytokines, including tumor necrosis factor-α, IL-1β, IL-6, IL-18, and infiltrating
leukocytes and macrophages. Injection of irisin can protect heart against ischemia and
reperfusion injury through mitochondrial function improvement [35]. Irisin can attenuate
active caspase-3 and cleaved poly(ADP-ribose) polymerase and increase hypoxia resistance
in cardiomyoblasts to suppress mitochondrial apoptosis and swelling [31]. Two studies
demonstrated that irisin attenuates hypoxic injury in diabetic mice through the adenosine
monophosphate-activated protein kinase (AMPK) pathway to improve mitochondrial func-
tion [36,37]. Irisin functions through a superoxide dismutase 2-dependent mitochondrial
mechanism to protect against ischemia-reperfusion injury [38]. Irisin activates dynamin
GTPase Opa1-induced mitophagy to protect cardiomyocytes against apoptosis after my-
ocardial infarction [39]. Irisin also decreases ischemic injury through a mitochondrial
ubiquitin ligase-dependent mechanism and relieves endoplasmic reticulum stress [40].

The abundance of irisin changes dynamically after acute myocardial infarction. Irisin
increases after 8 h of myocardial infarction, then gradually decreases on day three in pa-
tients with acute ST-segment elevation myocardial infarction [14]. This pattern of irisin
release after myocardial infarction was confirmed in another study in serum and saliva [41].
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In the early phase of myocardial infarction, higher irisin levels may decrease injury to pro-
tect against ischemic change. Irisin reduces endothelial damage by inhibiting inflammation
and oxidative stress [42].

2.2. Reparative and Proliferative Phase after Myocardial Infarction

In the late phase of myocardial infarction, the inflammatory response is tapered and
resolves after 3 to 5 days. The myocardium begins the repair process, which necessitates cell
remodeling and ROS production. Immune regulation and myofibroblasts are activated for
the repair mechanisms. These processes contribute to neovascularization, scar formation,
and cardiac repair. The immunomodulation and anti-inflammatory effects last up to
14 days. The cardiomyocytes secrete several paracrine signals, including islet-derived
3β, to regulate macrophages and inhibit inflammation [43]. Depletion of irisin in mice
increases the pro-inflammatory cytokines, including increasing levels of IL-6 and TNF-α
and decreasing level of IL-10 [44].

A clinical study extensively examined the level of irisin 1 month after myocardial
infarction [14]. The myocardium is in the repair and proliferative stages 1 month after
myocardial infarction. The irisin level in this stage reflects its association with myocardial
repair. In contrast to the beneficial effects of irisin in acute stages, higher serum levels of
irisin in patients with myocardial infarction in this stage are associated with more heart
failure events. Patients with the highest levels of irisin have an increased risk of major ad-
verse cardiovascular events [14]. Several mechanisms underlie these contradictory results
in the acute stages versus chronic stages after myocardial infarction. Forced overexpression
of irisin in mice increases mitochondrial respiration and generates excessive ROS. Treating
cardiomyocytes with higher irisin levels increases cleaved caspase-9 and hypoxia-induced
apoptosis [32]. Patients with myocardial infarction with higher irisin levels may have
incomplete inflammation resolution. The large infarct area of the myocardium results in
more inflammatory activation and leads to progressive chamber dilatation and heart failure.
The inflammatory responses after acute myocardial infarction sustain to the reparative and
proliferative phase. This subsequent inflammatory reaction interacts with the reparative
and proliferative mechanisms. This incomplete anti-inflammatory response is associated
with poor cardiovascular outcomes. The higher level of irisin may be secondary to these
prolonged inflammatory reactions [14].

In short, different mechanisms may underlie irisin abundance after myocardial in-
farction (Figure 2). More evidence and research are warranted to identify the complex
irisin reactions after myocardial injury. In the future, irisin may be a therapeutic target to
improve myocardial injury after myocardial ischemia and enhance cardiac repair.
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3. Heart Failure
3.1. Oxidative Stress and Mitochondria Dysfunction in Heart Failure

Heart failure is the terminal stage of many cardiovascular diseases with high mortal-
ity [45]. The molecular mechanisms of heart failure are associated with oxidative stress,
mitochondrial dysfunction, energy imbalance, and deranged substrate use [46]. Car-
diomyocytes are highly metabolically active, with mitochondria as their primary energy
source [47]. If mitochondrial energy production is deranged, the energy insufficiency re-
sults in heart failure progression. Clinical data have shown that patients with heart failure
have abnormal mitochondrial energetics, including reduced energy reserves, impaired
fatty acid oxidation, and decreased peripheral oxygen extraction [46,48].

The mitochondria in cardiomyocytes are dynamic and responsive to various physio-
logical or pathological conditions [49]. Exercise training leads to increases in mitochondrial
mass and mitochondrial biogenesis [50]. Exercise affects intracellular calcium, increases
cellular adenosine triphosphate turnover, enhances the ratio of nicotinamide adenine dinu-
cleotide (NAD+) to NAD + hydrogen, and increases ROS [51]. All this signaling activates
PGC-1α [52]. PGC-1α is the master regulator of mitochondrial biogenesis and plays a
vital role in regulating cardiac function [53]. Fine-tuning PGC-1α expression maintains
the cardiac physiology and the balance of cardiac energy biogenesis of mitochondria. In
contrast, heart failure is associated with disordered mitochondrial structure and a drop
in mitochondrial oxidative capacity [46,48]. Pathological remodeling of the heart, usually
due to ischemia with myocardium loss, results in the mismatch of mitochondrial energy
demand and generation [46,48]. Heart failure is associated with the downregulation of
transcription factors of mitochondrial biogenesis through PGC-1α [54,55]. Decreased mi-
tochondrial density and maximal oxygen uptake occur at the late stage of heart failure
in patients [48]. Moreover, the polymorphisms in the PGC-1α gene are correlated with
increased risks of hypertrophic cardiomyopathy and heart failure [56]. PGC-1α is required
to induce ROS-detoxifying enzymes, such as glutathione peroxidase 1 and superoxide
dismutase 2. PGC-1α is a critical regulator of mitochondrial ROS metabolism in cardiac
function, providing a potential target for heart failure treatment.

Irisin was identified as a PGC-1α–dependent myokine [3]. Irisin plays an essential role
in energy homeostasis through white fat browning and muscle fiber type switching [57].
Irisin can modulate glucose homeostasis by adipocytes via UCP1 expression and liver via
gluconeogenesis [58]. Irisin can ameliorate lipid metabolic derangements in obesity and en-
hance lipolysis via the cAMP-PKA-HSL pathway [59,60], and irisin is secreted from skeletal
muscle and adipocytes after exercise [61]. In cardiomyocytes, FNDC5 mRNA expression
and irisin are abundant and associated with high energy expenditure [7,32,62]. Exercise
increases cardiac and plasma levels of irisin in rats [63]. Increases in irisin also improve
cardiac progenitor cell-related cardiac repair [8,9]. However, we will need more evidence
to confirm the effects of irisin on cardiac repair. In a rat model of chronic heart failure,
the circulating irisin level was reduced [64]. These exercise-related irisin enhancements of
heart function have age-dependent effects, which might be crucial for aging patients with
heart failure.

Irisin could improve cardiac remodeling by inhibiting oxidative stress and attenuating
Akt signaling activation [65,66]. In rats with ischemic cardiomyopathy and heart failure,
the decreased irisin level was modulated by inflammatory cytokines and angiotensin
II [64]. In cardiomyocytes after angiotensin II injury, irisin can lessen apoptosis through
autophagy [67]. As demonstrated by the link between energy metabolism and irisin, irisin
might be essential in heart failure.

3.2. Irisin in Patients with Heart Failure

The first study in patients with heart failure revealed high PGC-1α and FNDC5 expres-
sion from skeletal muscle biopsy samples correlation with a better functional capacity [68].
High aerobic cardiopulmonary exercise can improve FNDC5 expression in patients with
heart failure [68]. In patients with acute heart failure, serum irisin predicted 1-year mor-
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tality. A higher level of irisin in patients with heart failure was associated with more
deaths than a lower level of irisin [10]. Cachexia is an unfavorable outcome of heart failure.
Cachexia is caused by muscle wasting and the exacerbation of heart failure decompensa-
tion. A low level of circulating irisin was noted in female patients with heart failure with
cachexia [69]. By contrast, another study showed a high level of irisin in heart failure with
cachexia [70].

Heart failure with a preserved ejection fraction has a more complex mechanism than
that with a reduced ejection fraction does. It affects both systolic and diastolic function
of the heart and is related to cardiac hypertrophy and myocardial fibrosis [71]. The
traditional treatment, including β-blockers and angiotensin-converting enzyme inhibitors,
was ineffective in heart failure with preserved ejection fraction. One small study revealed
that irisin levels were higher in patients with heart failure with preserved ejection fraction
than those with reduced ejection fraction [72].

To date, research in irisin and heart failure is still insufficient. Whether irisin is a
biomarker for heart failure or the exact mechanistic signaling of heart failure is unclear.
Heart failure has different stages, including acute heart failure, chronic heart failure, or
chronic heart failure with acute decompensation. In the different stages of heart failure,
the role of irisin might have multiple functions. In acute ischemic injury with heart failure,
higher irisin could waste more energy and increase oxidative stress and ROS [32]. A higher
level of irisin is associated with higher mortality in acute heart failure [10]. The higher irisin
level associated with greater energy expenditure may lead to heart failure exacerbation
and higher mortality. Higher irisin might enhance the energy demand and produce
more oxidative stress. In the chronic heart failure stage, lower irisin might represent
muscle loss and cachexia [69]. However, we need a large cohort study to prove this
observation in the future. The oxidative stress and increased mitochondrial respiration
due to irisin overexpression and impaired mitochondrial biogenesis could lead to heart
failure progression and cardiac fibrosis [32,48]. Current therapeutic goals in patients with
heart failure are neuroendocrine activation inhibition, ventricular unloading, and heart rate
reduction. However, no therapeutic medication can directly target metabolic mechanisms
or mitochondrial biogenesis. Irisin might be a new target of heart failure treatment in
metabolic and energy regulation.

4. Hypertension and Ventricular Hypertrophy

Hypertension is the most prevalent cardiovascular disease [73]. Uncontrolled hyper-
tension increases several other cardiovascular risks [74]. Exercise is a lifestyle modification
used in the treatment of hypertension [75]. However, the mechanism linking exercise and
blood pressure is not fully understood. Irisin abundance is increased with exercise, and
regular exercise can decrease blood pressure as a lifestyle modification in people with
hypertension [3,4,75]. Multiple studies have revealed an association between irisin levels
and blood pressure. Systolic and diastolic blood pressure were positively correlated with
irisin concentration in patients without hypertension [76]. In patients with preeclampsia,
irisin expression has a negative correlation with blood pressure, but FNDC5 expression
in the placenta has a positive correlation with blood pressure [77]. In patients receiving
antihypertensive medication, the levels of irisin are increased [78]. In hypertensive rats,
injection of irisin can increase blood pressure through hypothalamic paraventricular nu-
cleus neuron activation and reduce blood pressure by mesenteric artery dilatation through
endothelium-dependent and endothelium-independent mechanisms [79,80]. Irisin has no
direct vasorelaxant effect on mesenteric arteries in rats. However, irisin can activate AMPK.
The activated AMPK then phosphorylates Akt and eNOS with increased NO produc-
tion [12,81]. In obese mice, irisin improves endothelial function through the AMPK/eNOS
pathway [82]. Irisin promotes endothelial function by activating the ERK signaling path-
way. Irisin treatment increases endothelial cell proliferation and protects cells from high
glucose-induced apoptosis through Bcl-2 and Bax expression [83].
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Hypertension can influence cardiac function. High blood pressure causes pressure
overload and myocardial hypertrophy, and a hypertrophic heart leads to heart failure [84].
This mechanical stress may trigger paracrine or autocrine secretion related to irisin [85].
Irisin protects against pressure overload-induced cardiac hypertrophy by inducing protec-
tive autophagy and autophagic flux by activating AMPK-ULK1 signaling [86]. Injection of
irisin into hypertensive rats lowers blood pressure by reducing oxidative stress and inflam-
matory response. The possible mechanism was nuclear factor E2-related factor-2 (Nrf2)
signaling and the hypothalamic paraventricular nucleus as sympathetic regulation [87]. A
higher irisin level in patients with idiopathic pulmonary arterial hypertension reflects high
pulmonary artery pressure and poor prognosis [88].

In patients with diabetes, the risks of coronary artery disease, hypertension, and
myocardial infarction are increased [89]. The term ‘diabetic cardiomyopathy’ refers to
myocardial dysfunction in patients with diabetes mellitus. In myocardial remodeling in
mice with streptozotocin-induced diabetes, irisin has opposite effects at different doses.
Low-dose (0.5 µg/g) irisin improves diabetic cardiomyopathy by inhibiting the high
glucose-induced endothelial-to-mesenchymal transition by increasing Smad7 expression
and suppressing the phosphorylation of Smad2 and Smad3 in human endothelial cells [90].
However, high-dose (1.5 µg/g) irisin fails to prevent ventricular dysfunction and increases
collagen deposition in the heart [90]. Intraperitoneal injection of irisin in diabetic mice
can increase circulating endothelial progenitor cells by activating the phosphoinositide
3-kinase/Akt pathway and eNOS expression [9].

Based on current studies of irisin, blood pressure, and cardiac hypertrophy, many
signaling pathways were associated with irisin in cardiovascular effects. (Table 1) From
a clinical perspective, lower serum irisin levels and higher serum irisin levels in patients
sometimes have opposite effects [10,14–16,19]. The injection of different doses of irisin can
also induce conflicting effects [62,79,80,87,90]. This suggests that irisin plays a critical role
in blood pressure control, and a balanced serum level is essential in maintaining vascular
tone. Another explanation is that irisin can act as a cofactor to modulate vascular function
with heart hypertrophy, and irisin imbalance can lead to dysregulated cardiac physiology.

Table 1. Signaling pathways of irisin in cardiovascular effects. TAC, transverse aortic constriction; Nrf2, E2-related factor-2;
STZ, streptozotocin; EndMT, endothelial-to-mesenchymal transition; MAPK, mitogen-activated protein kinase; AMPK,
adenosine monophosphate-activated protein kinase; mTOR, mechanistic target of rapamycin; ULK1, serine/threonine-
protein kinase.

Signaling Pathway Irisin Source/Dose Target Cells/Tissues Animal Model Cardiovascular Effect References

PI3K/Akt/eNOS Recombinant Irisin
0.5 mg/kg

Blood/Bone marrow
Endothelial progenitor cell

STZ-induced Diabetic
Mice

Improved the function of
endothelial progenitor cells [9]

AMPK-Akt-eNOS-
NO

Recombinant Irisin
0.1, 1, 10 µg/kg

Human coronary
endothelial cell

Spontaneously
hypertensive rats Lowers blood pressure [12]

MAPK/p38 Recombinant Irisin
100 mg/kg Cardiomyocyte Ischemia/Reperfusion

Mice

Protect the heart against
ischemia and reperfusion

injury
[35]

AMPK/mTOR Irisin to cell Cardiomyocyte High glucose-induced
cardiomyocytes of rats

Ameliorates high
glucose-induced

cardiomyocytes injury
[36]

AMPK Recombinant Irisin
0.5 µg/g Cardiomyocyte

High fat diet-induced
Diabetic Mice with

ischemia/reperfusion

Attenuates myocardial
ischemia/reperfusion
injury and improves

mitochondrial function

[37]

Akt Recombinant Irisin
10 µg/kg Cardiomyocyte TAC-induced cardiac

hypertrophic rat
Improve cardiac

remodeling [65]

MicroRNA-
19b/AKT/mTOR Irisin to cell

Oxidative stress-induced
injury rat cardiac myoblast

cell

Attenuates H2O2-induced
apoptosis [66]

Angiotensin II Irisin transgenic
mice Cardiomyocyte TAC-induced cardiac

hypertrophic mice
Ameliorates apoptosis

through autophagy [67]
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Table 1. Cont.

Signaling Pathway Irisin Source/Dose Target Cells/Tissues Animal Model Cardiovascular Effect References

AMPK-ULK1 Recombinant Irisin Cardiomyocyte TAC-induced Cardiac
hypertrophic Mice

Inducing protective
autophagy and improves

cardiac hypertrophy
[68]

Nrf2 Recombinant Irisin
10 µg/kg

Hypothalamic
paraventricular nucleus

Spontaneously
hypertensive rats Lowers blood pressure [87]

EndMT
MAPK

Recombinant Irisin
0.5, 1.5 µg/g Cardiomyocyte STZ-induced Diabetic

Mice

Dose-dependent
bidirectional effect on

myocardial fibrosis
[90]

5. Perspectives and Conclusions

Irisin has multiple functions in diabetes, obesity, and cardiovascular disease. Irisin
induces the browning of adipose tissue to promote energy expenditure which prevents
obesity and metabolic syndrome [57]. Exercise adapts muscle to express more irisin
in peripheral myelin nerve sheath and plays roles in neural differentiation [2,7]. It is
involved in glucose metabolism, endothelial function, and neuromuscular linkage. The
multiorgan function of irisin indicates that it is a double-edged sword in cardiovascular
disease treatment. In blood pressure control, irisin might contribute to vasoconstriction or
vasorelaxation. In the early phase of myocardial ischemia, irisin can reduce myocardial
ischemic injury through mitochondria by affecting oxygen stress and apoptosis. Thus,
irisin may have a protective effect during acute hypoxemia. In the late phase of myocardial
infarction, higher irisin levels cause more major cardiovascular events. The overexpression
of irisin also enhances cardiac cell damage. A possible mechanism is that higher irisin
overdrives mitochondria to enhance oxidative stress and apoptosis, thereby influencing
myocardial cell repair.

The function of irisin in the cardiovascular field is gaining interest, and many labora-
tories have been investigating the therapeutic roles of irisin. The following areas could be
further investigated:

1. The adequate therapeutic level of irisin in myocardial infarction
2. The optimal timing of irisin administration during heart failure
3. The role of irisin as a biomarker in acute myocardial infarction and heart failure
4. The mechanism of irisin during heart failure repair (trigger or consequence)
5. The further response of irisin in vascular disease and hypertension

Further research is warranted to identify more of the essential mechanisms and
therapeutic effects of irisin in cardiovascular disease. The disparities in irisin study results
indicate the unknown aspects of irisin on the cardiomyocyte. With more evidence, irisin
might be found to have an essential regulatory role in myocardial infarction, heart failure,
and hypertension.
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