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Abstract: In vivo large-area confocal laser scanning microscopy (CLSM) of the human eye using
EyeGuidance technology allows a large-scale morphometric assessment of the corneal subbasal nerve
plexus (SNP). Here, the SNP of a patient suffering from diabetes and associated late complications
was analyzed. The SNP contained multiple clusters of large hyperintense, stellate-shaped, cellular-
like structures. Comparable structures were not observed in control corneas from healthy volunteers.
Two hypotheses regarding the origin of these atypical structures are proposed. First, these structures
might be keratocyte-derived myofibroblasts that entered the epithelium from the underlying stroma
through breaks in Bowman’s layer. Second, these structures could be proliferating Schwann cells
that entered the epithelium in association with subbasal nerves. The nature and pathophysiological
significance of these atypical cellular structures, and whether they are a direct consequence of the
patient’s diabetic neuropathy/or a non-specific secondary effect of associated inflammatory processes,
are unknown.

Keywords: in vivo large-area confocal laser scanning microscopy; subbasal nerve plexus; keratocyte-
derived myofibroblasts; Schwann cells; diabetes

In vivo confocal laser scanning microscopy of the cornea. The cornea represents a
biological barrier to and mediator of the external environment and consists of five dis-
tinct layers: The epithelium, including the subbasal nerve plexus (SNP); Bowman’s layer;
stroma; Descemet’s membrane; and the endothelium [1]. Each of these layers fulfills spe-
cific biological functions which are crucial to ocular homeostasis. In addition, the cornea
is highly innervated by sensory nerves that exert important influences on the regulation
of corneal epithelial integrity and wound healing [2]. Corneal nerves lose their myelin
sheathes soon after entering the cornea at the limbus and become essentially transparent;
thus, their clinical appearance was not amenable to in vivo evaluation until the develop-
ment of confocal laser scanning microscopy (CLSM) [3]. During in vivo CLSM, corneal
elements, including cells, the extracellular matrix, and nerves, scatter light at various
degrees, making it possible to obtain high signal-to-noise images leading to high contrast
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microscopic imaging of the native cornea at the cellular level [4]. Several studies have
shown that SNP changes are not characteristic of one specific corneal pathology, but reflect
non-specific pathological processes which are present in many corneal, ocular, or systemic
diseases [5,6] or arise as a result of a therapy regime, such as that used to treat multiple
myeloma [7]. The in vivo CLSM scans of the SNP within this study were performed by
using Heidelberg Retina Tomograph II (HRT II, Heidelberg Engineering GmbH, Heidel-
berg, Germany) in combination with an in-house modified version of the Rostock Cornea
Module (RCM, Heidelberg Engineering GmbH, Heidelberg, Germany)—the RCM 2.0—and
the EyeGuidance system, which enabled large-scale imaging of the SNP [8–10]. During
conventional CLSM, single images represent a standard area of 0.16 mm2 (Figure 1, inset B),
thereby covering approximately 0.2% of the average complete corneal surface, which is
insufficient for conducting a reliable morphometric assessment of the complete SNP [5]. In
the past, mosaicking approaches of single images have been proposed in order to examine
the SNP on a larger scale. The EyeGuidance system applied in this study represents a
highly automated computer-controlled technique that facilitates the generation of mosaic
images by using a moving fixation target which is presented to the contralateral eye [8,9].
Figure 1 and Figure S1 display a normal SNP of a healthy volunteer using large-area CLSM.
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Figure 1. Normal subbasal nerve plexus (SNP) of a healthy volunteer obtained from a 55-year-old male using large-
area confocal laser scanning microscopy (CLSM). Numerous hyperintense subbasal nerves of varying diameters, many
of which are associated with dendritic cells, are visible (§, nerves of the SNP, and �, dendritic cell) (high-resolution
image supplementary Figure S1). Inset (A): subbasal nerve (§) and dendritic cell (�), and inset (B): single CLSM image
(area 400 × 400 µm2).

Patient’s history. The patient presented here has suffered from type 2 diabetes melli-
tus (DM) since 2005, with poorly adjusted blood-sugar control (HbA1c 9.5%). Further key
diagnoses include bilateral diabetic nephropathy (actual grade II), diabetic polyneuropathy,
steatosis hepatitis, coronary vascular disease, arteriosclerosis, sleep apnea syndrome, adi-
positas grade III, and hyperlipidemia. Specific ophthalmological diagnoses include mild
non-proliferative retinopathy (NPDR) and a mild epiretinal gliosis which was detected by
optical coherence tomography (OCT). Slit-lamp examination showed slight subepithelial
densities within the anterior stroma of the cornea. In addition to the standard ophthalmo-
logical diagnostic methods, we examined the patient’s eye using CLSM with large-area
imaging techniques [8,9].
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Findings in the patient’s SNP by large-area CLSM. The SNP of the patient (Figure 2
and Figure S2) contained a large number of atypical hyperintense, cellular-like structures
to an extent that has never been observed before by us or described in the literature. Abnor-
malities in the corneal epithelium are one of the most common and long-term complications
of DM [5,11]. Other DM patients (pictures not shown here) with hyperglycemia have also
shown similar structures in their SNPs, but not to the same extent as the patient described
here. Chronic hyperglycemia has been reported to trigger the expression of various cy-
tokines, chemokines, and cell adhesion molecules, resulting in their over-expression and
contribution to the development of ocular complications in DM [11]. Based on this, we
hypothesize that the unusual cellular structures detected in the patient’s SNP could reflect
abnormal cellular activities within the basal epithelium caused by inflammatory processes.
Regarding the origin of these atypical cellular elements, we would like to propose the
following two hypotheses (Hypothesis 1 and 2).
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Figure 2. Subbasal nerve plexus (SNP) in the cornea of a 71-year-old male admitted to hospital due to hyperglycemia.
Clusters of hyperintense, large, cellular-like structures are present throughout the central cornea (§, nerves of the SNP;
&, applanation artifacts; #, hypointense areas of unknown origin; *, neuroma; and �, dendritic cell) (high-resolution
image supplementary Figure S2). Inset (A): the cellular-like structures are stellate-shaped and appear to possess multiple
cytoplasmic processes, and inset (B): hyperintense cellular structures with enclosed “granular-like” accumulations which
could represent cell nuclei (black arrow).

Hypothesis 1. The Cellular-Like Elements are Keratocyte-Derived Myofibroblasts.

Jester et al. [12] investigated the light-scattering and actin organization of rabbit
keratocytes under various culture conditions using confocal reflectance microscopy and
fluorescence. Rabbit keratocytes cultured in serum-free conditions showed a characteristic
dendritic morphology with predominantly cortical actin organization [12]. Fibroblastic
keratocytes stimulated with platelet-derived growth factor (PDGF) appeared elongated and
spindle-shaped with prominent intracellular actin filament bundles; fibroblasts stimulated
with fibroblastic growth factor (FGF-2) appeared broader and flatter; and myofibroblasts
cultured with transforming growth factor beta (TGF-β) showed a large, spreading mor-
phology with extensive intracellular stress fibers [12]. Of interest, PDGF has been reported
to affect the processes of DM and its complications, largely via diverse signaling pathways,
such as reactive oxygen species (ROS) [13]. A comparison of these in vitro observations and
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our in vivo findings detected numerous similarities in size and shape between cultured
keratocytes/myofibroblasts and our detected hyperintense structures.

According to Wilson’s et al. [14] paradigm of fibrosis, the epithelial basement mem-
brane (EBM) is intact during corneal homeostasis and blocks epithelial TGF-β and PDGF
from penetrating into the underlying stroma. After epithelial injuries, the epithelium and
the EBM are disrupted and TGF-β and PDGF are activated and penetrate the underlying
stroma, driving the development of myofibroblasts from keratocyte-derived and bone-
marrow-derived (fibrocyte) precursors [14]. Myofibroblasts themselves secrete disordered
collagen type 1, collagen type 3, and other matrix material that disrupt the normal stromal
lamellae to produce corneal opacity or scarring [14]. After severe injuries of the cornea
where the basement membrane is damaged, large numbers of myofibroblasts are gener-
ated, which persist in the corneal stroma and secrete disorganized extracellular matrix
components, leading to fibrosis and alterations in the structure and function of the corneal
stroma [15].

Morphological changes in Bowman’s layer are associated with advanced bullous
keratopathy and Fuchs’s corneal dystrophy [16]. During disease progression, the ep-
ithelium becomes increasingly dysfunctional and at late stages, changes also occur in
Bowman’s layer [16]. According to one hypothesis [16], at some point, keratocytes or their
progeny, corneal fibroblasts, and myofibroblasts are no longer confined to the underlying
stroma, but enter Bowman’s layer. Corneal fibroblasts eventually advance to the immediate
subepithelial region and differentiate into alpha-smooth muscle actin (α-SMA)-expressing
myofibroblasts. These histopathological changes noted in bullous keratopathy or Fuchs’
dystrophy support the hypothesis that Bowman’s layer is actively maintained during an
individual’s life by regulatory systems that are compromised by epithelial dysfunction
associated with the progression of these diseases [16]. Cytokines, growth factors, or other
modulators that comprise this regulatory system likely modulate the keratocyte phenotype,
localization, and viability [16]. In a case report by Shetty et al. [17], breaks in Bowman’s
layer and SNP changes were observed in a Dry Eye patient with chronic pain and Vitamin
D deficiency. These authors proposed that ocular surface inflammation leads to increased
epithelial permeability and rarefaction of basal epithelial cells. Changes of subbasal nerves
coupled with epithelial changes lead to microscopic breaks in Bowman’s layer, providing a
conduit for inflammatory factors to enter the stroma [17]. Changes in the subbasal nerves
may also trigger the release of proteolytic enzymes that can lead to further enlargement of
the breaks propagating more inflammation [17].

In summary, the mechanisms described above could also have led to the migration
of stromal cellular elements into the epithelium of our patient. Due to continuous in-
flammatory processes affecting the epithelial basement membrane and subbasal nerves,
keratocyte-derived myofibroblasts from the stroma could have entered Bowman’s layer
through breaks. It is of interest to note in our patient that not all breaks in Bowman’s layer
are associated with abnormal cells, and conversely, not all abnormal cells are located near
visible breaks in Bowman’s layer. Concerning the latter observation, it is tempting to specu-
late that the formation of breaks in Bowman’s layer is a dynamic and transient occurrence,
i.e., a break forms, stromal cells migrate through the opening into the epithelium, and the
break then closes, leaving no evidence of its prior existence upon CLSM examination.

Hypothesis 2. The Cellular-Like Elements are Schwann Cells.

It is well-known that corneal nerves originate from the trigeminal ganglion and enter
the corneal stroma at the corneal limbus [18–21]. The nerve bundles lose their perineurium
and myelin sheaths within approximately 1 mm of the limbus and continue into the corneal
stroma only surrounded by non-myelinating Schwann cell sheaths forming “Remak bun-
dles” [22]. These nerve bundles subdivide repeatedly to form smaller nerve branches
that enter the superficial stroma located just beneath Bowman’s layer [20,21]. Within the
corneal stroma, keratocytes are often found in proximity to the nerve fibers and occasion-
ally enwrap adjacent nerve fibers in cytoplasmic extensions [20,21]. As Schwann cells
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are the primary glial cells of the peripheral nervous system (PNS), they also have several
additional functions in the healthy cornea [23]. Along with the insulating properties of the
axons as a prerequisite for stimulus transmission, they possess phagocytotic properties
and remove axonal debris after injury and coordinate cytokine signaling and inflammatory
responses with macrophages. In order to accomplish these functions, Schwann cell dedif-
ferentiation, proliferation, migration, and re-differentiation processes are necessary [24].
Stromal nerves enwrapped by Schwann cells penetrate Bowman’s layer to provide sen-
sitivity to the ocular surface. In humans, approximately 400–500 widely spaced stromal
nerves penetrate Bowman’s layer, mainly in the peripheral and intermediate cornea, to
produce the epithelial subbasal nerve plexus [18]. The subbasal nerves lose their Schwann
cell wrappings immediately upon entering the basal epithelium. It is known that corticos-
teroids regulate inflammation and cell proliferation and can be synthesized by peripheral
nerves [25]. Schwann cells are very sensitive to these endogenous corticosteroids and can
react with changes in morphology and proliferation [25]. The morphological appearance
of the atypical cellular elements seen in our patient is reminiscent of glial cells and sug-
gests that a potential imbalance of existing cytokines and hormones could have caused
an uncontrolled migration and proliferation of Schwann cells in some central areas of the
patient’s cornea.

It should also be noted that mild epiretinal gliosis was detected by optical coherence
tomography (OCT) in our patient. Epiretinal gliosis is associated with changes in cytokine
secretion driven by macroglia. It has been shown by Eastlake and colleagues [26] that the
majority of cytokines and inflammatory factors were produced by Müller glia cells and
included the granulocyte colony stimulating factor (G-CSF), monocyte chemoattractant
protein-1 (MCP-1), platelet-derived growth factor BB (PDGF-bb), CC-chemokine ligand 5
(also known as RANTES), vascular endothelial growth factor (VEGF), and transforming
growth factor-beta 2 (TGF-β2). This process is called reactive gliosis, through which glial
cells seek to maintain retinal homeostasis. When malfunctioning, macroglial cells can
become primary pathogenic elements. Reactive gliosis has been described in different
retinal pathologies, including age-related macular degeneration, diabetes, glaucoma, retinal
detachment, and retinitis pigmentosa [27]. We hypothesize that the cytokines involved in
these processes can also enter the anterior segment of the eye and the aqueous humor via
diffusion through the vitreous, where they may ultimately reach the cornea and activate
Schwann cells.

Lastly, it must be acknowledged that our hypotheses are only based on in vivo mor-
phological data. The correlation between in vivo morphology and the real identity and
composition of the findings could only be determined by a comparison with other ex vivo
methods, such as immunohistology, which was not practicable here.

In conclusion, the SNP of the patient presented in this paper contained extensive
patches of large, stellate-like cellular elements of unknown origin. Based on the patient’s
history and the characteristic morphological appearance of the cellular elements, two
hypotheses are proposed. The first hypothesis is that these elements are keratocyte-derived
myofibroblasts from the underlying stroma that have entered the epithelium through tran-
sient breaks in Bowman’s layer caused by inflammatory processes. The second hypothesis
is that these elements are Schwann cells that have infiltrated the epithelium in association
with corneal subbasal nerves. The morphological appearance of the cells is consistent with
either hypothesis. The atypical cellular elements within the patient’s SNP could have been
caused by his DM and chronic hyperglycemia or, more likely, they may have developed as
a non-specific secondary effect of associated inflammatory processes. This study reflects the
clinical diagnostic potential of the in vivo large-area CLSM technique in terms of detecting
early changes and investigating the longitudinal effects of diseases or treatment regimens
affecting the SNP.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/2/154/s1.
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